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Abstract

In generalizing the classical theory of circle maps, we study the rotation set for
maps of the real line x — f(x) with almost periodic displacement f(z) — . Such
maps are in one-to-one correspondence with maps of compact abelian topological
groups with the displacement taking values in a dense 1-parameter subgroup. For
homeomorphisms, we show existence of the analog of the Poincaré rotation number,
which is the common rotation number of all orbits besides possibly those that have
rotation zero. (The coexistence of zero and non-zero rotation numbers is the main
new phenomenon as compared to the classical circle case.) For non-invertible maps,
we prove results about realization of points of the rotation interval as the rotation
numbers of orbits and ergodic measures. We also address the issue of practical
computation of the rotation number.
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1 Introduction

We are concerned with rotation — more accurately, average displacement — of
points under an iterated map f : R — R of the form f(z) = x + ¢(x) where ¢
is a bounded continuous function. Although we do not make this assumption just
yet, for the most part, we will restrict ourselves to ¢ that is almost periodic in the
sense of Bohner and Bohr, i.e. the family of translations {¢(- +7) : 7 € R} is
precompact in the topology of uniform convergence [4]. (The prototypical example
is f(r) = v+ +asin(x) +bsin(v/2x).) The rotation number of x € R with respect
to f is defined as the limiting average displacement

n —
o, 2) o= lim L)
n— 00 n
provided the limit exists. By the rotation set p(f,K) of a subset K C R we
understand the collection of all limiting average displacements

lim 7f l(xl) —

1—00 ’I’Li

where n; € N are such that lim; ,,, n; = co and x; € K. Equivalently,

p(f,K) =) cl(U {LT)L_“”” xEK}). (1.1)

m>1 n>m

(Here “cl” denotes for the topological closure.) This is an adaptation of the defi-
nition of Misiurewicz and Ziemian in [15]. It is easy to see (cf [15]) that p(f, K) is
always compact and that it is connected if K is connected. Thus the rotation set
of f, p(f) := p(f,R), is a priori a closed segment. We note that other reasonable
formulations of rotation set of f are contained in p(f) and include as a subset the
pointwise rotation set of f, p,(f) = {p(f,xz) : = € R for which p(f, z) exists}.
Which definition one chooses is to some degree a matter of taste and our choice of
p(f) should be understandable by the time we are done.

Much is known when ¢ is periodic, i.e. when f is a lift of a circle map (see
e.g. [17, 1, 23]). We only mention that the title reaches back to the theory of
orientation preserving circle homeomorphisms, for which p(f) is a point: the cel-
ebrated Poincaré rotation number ([18]). However, periodicity is an idealization
that may be disputed in some instances!, and one is naturally lead to inquire:
what if ¢ is not exactly periodic but merely almost periodic? Although apparently
absent from the literature, this question poses a problem related to that about
skew-products of circle maps, which appear in many works (e.g. [11, 13, 19]). The
relation is established via flow equivalence and is perhaps most transparent from
a classical standpoint: Circle homeomorphisms arise as Poincaré maps for doubly

Heraclitus would say: “No-one can step into the same river twice”.



periodic ODE’s, e.g. 2’ = F(x,t) where F is periodic in reals z and t. When the
periodicity in ¢ is relaxed to almost periodicity, the skew-products emerge. The
homeomorphisms of R with almost periodic displacement correspond, in turn, to
F periodic in t but almost periodic in z (cf [20]). Interchanging the roles of z
and t roughly effects the said flow equivalence, and the standard tools of ergodic
theory allow for rigorous implementation of this idea. In what follows, hardly
straying from the traveled path and without any pretense of particular originality,
we provide an introduction to the theory.

To do away with the obvious, we first consider the general situation of bounded
¢ and non-decreasing f. The preservation of order on R forces the orbits to march
in “lock step”; for example, if p(f,z) > 0 and f"(y) is unbounded from above,
then p(f,y) exists and p(f,y) = p(f,z). One easily discovers then that there are
four possibilities for the pointwise rotation set p,(f):

Case 1) p,(f) = {0},

(f)
Case 2) p,(f) = {p} where p #0,

Case 3) p,(f) = {0, p} where p # 0,

Case 4) p,(f) ={p-,0, p;s} where p_ <0 < py.

Note that in case 2 actually p(f,x) = {p} for all z € R, and in cases 3 and 4 f
must have a fixed point; however, there may be no fixed points in Case 1. Also,
easy examples show that p,(f) can be a proper subset of p(f) in any of the cases.

From now on, we restrict ourselves to displacement functions ¢ that are almost
periodic (in the sense of Bohner and Bohr). Any such ¢ is either of fixed sign
or changes sign on an infinite set unbounded from above and below. The latter
possibility leads to rather easy dynamics that fall under Case 1. When the sign
is fixed, i.e. ¢ > 0 or ¢ < 0, Case 4 is clearly excluded but any of Cases 1, 2, 3
may occur — although Case 3 is a bit more subtle (see the example below). Less
obvious are possibilities for p(f).

Theorem 1 Suppose that f(x) = v + ¢(x), © € R, is non-decreasing and ¢ is
almost periodic. Then there is a number p € R such that either p(f) = {p}, or
p(f) = Conv({0, p}). (Here Conv stands for the convex hull.)

Moreover, in the former case, p,(f) = {p}, and in the latter case, p,(f) is of the
form {0}, {r}, or {0,r} where r is some number in p(f).

We shall refer to the number p as the rotation number of f. The astute reader will
notice that the only non-trivial ingredient of the theorem is that p(f) = [p_, p4]
cannot happen for some py that are both positive or both negative. In fact,
Theorem 1 is merely a pale reflection of a less elementary and more revealing
result — Theorem 3 below — asserting that p is the common rotation vector of all
ergodic measures (on the appropriate compactification of R).



The possibility that p(f) = Conv({0, p}) with p # 0 allowed by the theorem is
a manifestation of a phenomenon absent in the classical periodic context whereby
f(z) has an unbounded sequence of near tangencies with the diagonal and these
tangencies detach from the diagonal fast enough so that they can be negotiated by
some orbits with non-zero average speed. This behavior, reminiscent of intermat-
tency in circle families, is best illustrated by a quintessential example of a toroidal

flow due to A. Katok ([9, 7]).

Katok’s Example. On the two-dimensional torus T2, realized by the usual iden-
tification of the sides of the unit square [0, 1]?, consider a function ® : T? — R such
that ® > 0 and ®~'(0) = {py} for a single point py € T2. Let X be a vectorfield
on T? that arises from a constant vectorfield on [0,1]* with irrational slope, and
let F' be the time-one-map of ® - X. A whole family of different maps f: R - R
with quasi-periodic displacement is obtained by restricting F' to particular flow-
lines of X. These f’s share the same rotation set p(f) that necessarily contains 0.
At the same time, the mean return time to a circular cross-section of the torus is
proportional to [r, 1/®(p)v(dp) (where the integral is taken with respect to the
surface area). Thus if [, 1/®(p)v(dp) < 400, we actually have p(f) = [0, p] where
p = C/ [121/@(p)v(dp) with C depending on X only — otherwise, p(f) = {0}.
By the Birkhoff ergodic theorem, p,(f) = p(f) for v-almost all flowlines. At the
same time, ® can be adjusted so that on some flowlines p,(f) is {0}, {r}, or {0,r}
for any value 7 in the range [0, p] — (which reveals a disturbing nonrobustness of
pp(f)). Also note that, even if p(f,x) = p, typically sup,cn | f"(z) —x —np| = 00
(cf Furstenberg’s example invoked in Section 4). O

We mention that whether intermittent behavior with non-zero rotation (a la
the above example) is typical or not depends on the frequency module of ¢. For
instance, a typical quasi-periodic ¢ with r-frequencies and inf ¢ = 0 — by which
we mean a ¢ arising as above from a smooth ® : T" — R with a generic zero —
has rotational intermittency exactly when r > 2. This can be shown via the usual
approximation of the map by a flow near the tangency.

We shift our attention now to the situation that generalizes the degree-one circle
maps when f is no longer increasing and p(f) is typically a non-trivial interval.
We prove the following result by adopting the “cutting technique” described in [1].

Theorem 2 Suppose that f(x) = x+ ¢(x) where ¢ : R — R is an almost periodic
function and infer ¢(x) > 0, then py(f) = p(f), i.e. for any p € p(f) there is
x € R such that p(f,x) = p.

Again, Katok’s example shows that the hypothesis inf ¢ > 0 is necessary. After
we prove Theorem 2 in Section 3, we shall see what the possibilities are without
this assumption. Also, for any p € p(f) in Theorem 2, we actually find a whole
locally compact almost periodic invariant set K of  with p(f,z) = p and an almost
periodic invariant probability measure v with [ ¢(x) v(dz) = p. At the same time,
we should emphasize that, even if p(f) is just a point {p}, there may as well be
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that sup,cn | f"(x) — 2 — np| = oo for almost all z € R, unlike in the periodic case
(see Section 4).

Before leaving the introduction we recast the problem in a way that is both
conceptually and technically more appealing. By standard results in topological
dynamics (see e.g. [6, 2]), given an almost periodic ¢ : R — R, there is a compact
abelian topological group G, a dense homomorphic immersion v : R — G, and a
continuous function ® : G — R such that ¢ = ® ov. We shall adopt additive
notation for the group operation in G and write suggestively z - v := v(z), z € R.
(To give a simple example, when ¢(z) = sin 2 +sin(v/27), G is the two dimensional
torus T? := {(x (mod 27),y (mod 27)}, z - v = (z,v27), and ®(z,y) = sinz +
siny.) The map f uniquely extends to F': G — G called the hull of f and given on
p € G by

F(p)=p+2(p)-v. (1.2)

Writing S for the unit complex circle, we now fix a character y : G — S such that
xowv # 1. Clearly, xYowv : R — S is of the form x o v(z) = ¢* X # 0. We may
as well require that A > 0. (The existence of y is assured by the Peter-Weyl-van
Kampen theorem, see [16].) By lifting x|r., through the exponential exp : R — S,
exp(x) := €®™  we obtain a coordinate § : R-v — R on the dense subgroup
R - v C G; let us take it so that §(0) = 0. Since # o v(z) = O(x - v) = Az, we are
led to abuse the notation and write 6(v) for A so that the two coordinates x on R
and 0 on R - v are related? by

6 =0(v)x. (1.3)

The group G is foliated by F-invariant immersed lines p + R - v, and the 6-
displacement of points under the application of F' is measured by ®’ : G — R,

@’ (p) := (p)f(v) = O(F(p) — p).

The appropriate rotation set is

p’(F):= m cl (

m>1

U {w: peg}>. (1.4)

n>m

The definitions of the rotation number p?(F,p) and the pointwise rotation set p’(F)
should be easy to guess. The important fact is that the rotation sets p’(F) and
p(f) coincide up to the obvious scaling:

P’ (F) = 0()p(f).

This follows from the density of R - v in G and the continuity of ®. At the same
time, the obvious inclusion 6(v)p,(f) C pi(F) is often proper; although, clearly

2By rescalling x, we could achieve §(v) = 1; however, we prefer to keep distinction between x
and 6.



O(v)p(f,r) = p’(F,x - v) for any * € R. We should also mention that each
point p of p?(F) is realized by some invariant probabilistic measure p on G, i.e.
p=J;®%p) pldp). (If p=lim; %”:)_pi), then p can be found as the weak*-
limit of the atomic measures equidistributed on orbit segments p;, ..., F" 1(p;).)
Moreover, if p is the extreme point of p?(F), uu can be selected to be ergodic. At the
same time, given any ergodic measure u, p?(F,p) = [ ®°(p) pu(dp) for all p-generic
points p € G (— these points may all be off the line R - v.) In particular, we have

P ={ [ ¥ we s} =comir) 1)

where M(F') is the set of all probabilistic invariant measures on G. The proofs of
the last three facts are easily obtained by using the arguments similar to those in
[15, 21].

To summarize — conforming with the de rigueur approach of the topological
theory of almost periodic functions, see e.g. [19] — we made a transition from
the the elementary context of a map f of the real line with an almost periodic
displacement to the abstract context of a self-map F' of a compact abelian group
G with the displacement F' — Id taking values in a dense 1-parameter subgroup
R - v. (Such F are always in the form (1.2).) From this perspective, Theorem 1 is
a manifestation of the following more revealing result.

Theorem 3 Suppose that F' : G — G 1s the hull of a non-decreasing continuous
map f: R — R with almost periodic displacement (as defined above). There exists
a unique p € R (depending on f only) such that

/g () puldp) = 0(v)p

for any ergodic invariant probability measure pn on G. Moreover, any such measure
with fg % (p) u(dp) = 0 is supported on the set of fived points of F.

The key to the proof of Theorems 1 and 3 is in observing that the part of the
dynamics of F' that contributes non-zero rotation is flow equivalent to a skew-
product over a minimal translation (map) on a subgroup of G. This will facilitate
application of the subadditive ergodic theorem to compute the average rotation —
details follow in Section 2. Section 3 is devoted to the proof of Theorem 2. Section
4, based on [22], contains a formula for the rotation number that is more suitable
for numerical approximation than the definition. (We add that the constructions
of Section 2 are referred to in Sections 3 and 4.)

To close, we stress again the introductory character of this note. We are silent,
for instance, on existence of conjugacy with the rigid translation, which is far
more delicate than for circle diffeomorphisms (e.g. a semi-conjugacy does not
exist in general as exemplified by Furstenberg’s example in Section 4). Ultimately,



one should explore the interplay between smoothness, the rotation number, and
the frequency module of the displacement function. This however leads (via flow
equivalence) to a well known open question about existence of global analogues
of the local KAM-type results in dimensions higher than one (the circle case).
Appreciation of this deep problem can be developed by reading Herman’s [12] and
following the references therein.

2 Non-decreasing Maps

In this section, we prove Theorems 1 and 3, and we establish continuity of the
rotation number as a function of the map. We assume thruought this section that
f is non-decreasing.

Proof of Theorems 1 and 3. If ¢ changes sign then we are in the trivial situation
with p(f) = p,(f) = {0} whereby all orbits tend to fixed points and thus all
invariant measures are carried on the fixed point set. Therefore, we assume from
now on that that ¢ does not change sign, say ¢ > 0, and that p(f) # {0}. In view
of equality (1.5), the first assertion of Theorem 1 will be established if we show
that p(f) has only one positive extremal point, and this follows from the Claim
2.0 below. The assertion about p,(f) in Theorem 1 is then a consequence of the
elementary discussion in the introduction.

Claim 2.0 Consider as above ¢ > 0 and all F-invariant ergodic probability mea-
sures p on G with limn_>C>o O(F™(p) — p) = +oo for p-almost all points. (These
include p’s with fg Ju(dp) > 0 by the Birkhoff ergodic theorem.) The rotation

vector of i, fg (dp) 15 positive and independent on which p is taken.

This claim also implies Theorem 3. Indeed, the main assertion is clear; and to
see “the moreover part” suppose that fg ®(p) pu(dp) = 0 for an ergodic measure
(. From the claim, for a positive u-measure set of p, the non-decreasing sequence
O(F™(p) — p) is bounded and thus convergent, which implies that F™(p) converges
to a fixed point of F. By ergodicity, this actually happens for p-almost all p.

To complete the proof, we focus now on showing Claim 2.0. Recall that the
suspension semi-flow of F, 8 : Gr x RT — Gp, RT = [0,00), is abstractly
defined as the constant unit speed flow along the segments p x [0,1] on Gp =
G x [0,1]/ ~ with the identification (p,1) ~ (F(p),0), p € G. We shall prefer
however a more concrete realization of §. To interpolate between the identity and
F, we set F7(p) :== p+7®(p) - v, 7 € [0,1], p € G; and we consider a semi-flow F
on G x R obtained by patching together infinitely many copies of this homotopy:
F:(GxR) xRt = (G xR) is given on (p,t) € G x R by

Fr(p,t) = (P o Flslo P~ (p) ¢ + 7) (2.1)

where s := 7+t — [t] (and |a| := max{k € Z : k < a}). Note that, given
p € G, the points of p X R, move under the semi-flow F confined to the invariant
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plane (p+ R -v) x R along broken lines of positive (possibly infinite) slope. These
flow lines are ordered (i.e. cannot cross — although they may merge at points of
(p+R-v) x Z). We record the following easy facts.

Fact 2.1 (i) F7™ is a homeomorphisms for T € [0,1);

(ii) F is equivariant under the Z-action generated by (p,t) — (p,t + 1);

(iii) The quotient F : (G x S) x Rt — G x S of F by the Z-action is conjugate to
S wvia h: Gp — G x S induced by (p,t) — (F'(p),t), pe G, t € [0,1].

The F-invariant measure y yields a semi-flow invariant measure x := h,om, (u®
dt) on G x S, where 7 : G x [0, 1] — G is the natural projection (and h is provided
by (iii) of Fact 2.1.) The rotation set of F' may be recovered from F via

n—00

1im 0 (prg(F7(p, 1) — p) /7 = lim 0(F"(p) = p)/n

where 7 := F 4 (p) so that (p, |t]) and (p,t) are on the same F-orbit. (Indeed,
for 7 € [n,n + 1], the difference between the expressions under the limits on both
sides is of order O(1/n).) Recall that the measure y is carried on the set

G i={peg: lim (F"(p) —p) = +oo},

that is u(G*) = 1. Likewise, k(G x S) = 1, where we used the fact that if
lim; 00 0(prg(F7(p,0)) — p) = oo, then lim, ., O(prg(F7(p,t)) — p) = oo for any
t € R (due to the order preservation and the Z-equivariance of F).

Denote by A the kernel of the character x (defined in the introduction),
A:=x"1(1)«g,
and set
AT =G " NnA.

Observe that there is a well defined first return map R : A* x R — AT x R for F.
Since all the flow-lines of points in AT x R have finite positive slope — as vieved
in the plane (p + R - v) x R) — it follows that R is continuous and that AT x R
is a G5 set.

Another thing to notice is that R is a skew-product over the translation T :
A — A, T(p) := p+ w where w := 67!(1), i.e. the diagram below commutes,

A+><R—R—>A+><R
AT I At

Here, T is minimal because {I™(0) : n € N} is dense in A. Also, R maps the
fibers p x R one to another via Z-equivariant maps and thus descends to a skew
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product R: AT x S — A" x S of non-decreasing circle maps:

At xS —F 5 At xS

| |
A

Much like in the standard theory of special representation flows ([5]), the semi-
flow invariant measure x on G x S induces an R-invariant probabilistic measure
non At x S. Here, for lack of a good reference, we indicate the main steps. First,
a time-change of F is made so that the return time to A™ x S is constant and one;
here, the Jacobian of the time change is piecewise constant along the orbits of F
and is given by

db d
w(p) = 5 = —

==l 0 (ool F ) ),

7=0

which can be seen to be integrable with respect to k. The measure x; of density
with respect to k proportional to w is invariant for the time-changed semi-flow. In
the second step, the natural projection r : G* x S — A" x S that sends a point
(p, t) to its first return to AT x S is used to push x forward to the desired measure
n := r.(k) invariant under R.

We note that 7 (as a minimal group translation) is uniquely ergodic so that
the push forward v := 7,(n) must be the unique probabilistic Haar measure on A.

The rotation vectors can be expressed in terms of R by averaging the return
time, denoted At : AT x S — R™*. Namely, for n-almost all (p,t) € AT x S,

PED = lim A= [ Atpndnd). (22)
oo A+xR

where we abused (overloaded) the notation to write At : N x AT x S — R for the
additive cocycle of time displacements:

At(n,p,t) == pra(R"(p,t)) —t = At(p,t) + ...+ At(R" (p, 1)).

Indeed, we assumed that limy_,., (F*(p) —p) = lim,,_,,, At(n,p,t) = oo for almost
all p; and simple geometry in the (p+R-v) xR plane of the flow F shows that for any
n there is k (and vice versa) such that |At(n,p,t)—k| < 2 and |0(F*(p)—p)—n]| < 2,
where 7 := F ") This yields the first equality in (2.2); and the second follows
from the Birkhoff ergodic theorem.

To compute the averages, we introduce a subadditive cocycle At : Nx AT — R
over T' that majorizes At:

At(n,p) := sup prr (Rn(p, t)) —t.

teR



Because R maps the fibers p x R in a non-decreasing and Z-equivariant fashion,
the following inequalities hold for any (p,t) € AT x Sand n € N

At(n,p) —1 < At(n, p,t) < At(n, p). (2.3)

It follows that At is v-integrable:

/A (. p) v(dp) < / (A, 0) + 1) n(dp ) = np(Fop) ™ + 1< 0,

Thus the subadditive ergodic theorem can be applied to get, for v-almost all p € A
and all £ € R,

lim At(n,p,t)/n= lim At(n,p)/n=\:= inf/ At(n,p)/nv(dp) (2.4)
n—r00 n—00 n A

where we used (2.3) and A depends only on f — not on px. One concludes, via
(2.2), that [ ®°(p) u(dp) = 1/ for all ergodic measures p with non-zero average
displacement. This finishes the proof of Claim 2.0. O

The above proof shows, in particular, existence of the rotation number for skew-
products of circle homeomorphisms, which has been already established in [11, 13]
(see also [22]). Our argument is more in the spirit of Herman; although, he does
not invoke the subadditive ergodic theorem preferring to work exclusively with
invariant measures and their average displacements.

We shall show now that, where p(f) = {p}, the rotation number p behaves
continuously with respect to almost periodic perturbations of f. The proof hinges
on the continuity of the rotation number for skew-products of circle maps, which
again goes back to [11, 13].

Proposition 2.1 Suppose that F = Id + ® - v with p’(F) = {p} for some p # 0
and that &, : G — R, k € N, are continuous and converge to ® uniformly. For
Fy :=1d + @y, there is ky and numbers py such that p(Fy) = {pr} for k > ko and
limg 00 p = p-

Proof of Proposition 2.1. Since p’(F) = {p}, p # 0, at the cost of reversing the
orientation of R, we can assume that there is k > 0 and kg such that & > «
and &, > k for k > ky. As in the proof of Theorem 1, we get the return maps
R, R, : A x R — A x R and subadditive cocycles At, At : A x N — R so that
p~t = inf, [[At(n,p)/nv(dp) and p;' = inf, [ Atg(n,p)/nv(dp) just like (2.4).
Similarly, we have superadditive cocycles

At(n, p) := mf pre(R"(p, 1)) — ¢
for which the analog of (2.3) holds:

At(n,p) < At(n,p,t) < At(n,p) + 1.
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The subadditive ergodic theorem applied to —At yields that p! =
sup,, [ At(n,p)/nv(dp) — with similar formulas for py’s. Here we silently used
that ®,’s are bounded away from zero by s so that AT = A and the functions
At(n, ), Atg(n, ), At(n,-), and At,(n, -) are uniformly bounded (hence integrable)
for each n € N. It follows also that Ry’s converge uniformly to R and At,(n,-) and
Aty(n,-) converge uniformly to At(n,-) and At(n,-) for any fixed n. Now, given
e > 0, we can fix n large enough so that the difference of the extreme sides in the
following inequalities is less than e,

[t = 1/n) i) < p < [ (S,) 4 1)) )

At the same time we can pass to the limit with £ — oo in

[t n— 1/ vidp) < i < [ STutnsp)fn-+ 1) viap)

and see that p;’s are eventually contained in the € neighborhood of p. This finishes
the proof by the arbitrariness of €. O

The hypothesis ®; > 0 in Proposition 2.1 is essential as can be easily seen by
tinkering with the way ® tends to zero near py in Katok’s example. (Integrability
of 1/® is clearly sensitive to arbitrarily small perturbations, say of class C*.)

Remark 2.1 The majorization with At and At guarantees uniform convergence
of (f"(x) —x)/n to the rotation number in the case when inf ¢ > 0 — c.f. Section

J.
3 Non-monotonic Maps

We turn our attention to non-monotonic maps in order to demonstrate Theorem
2 as stated in the introduction. The idea is to adapt the “cutting technique” de-
scribed in [1] to our almost periodic context. As before, G is a compact topological
group with a dense homomorphisms R> z+— x-v € G.

Definition 3.1 Given a continuous ® : G — R, the plateau set of ¢ is
Const(®) :={p € G: x> x+P(p+z-v) is constant on a neighborhood of x = 0}.
We define the upper ® as &, : G — R given onp € G by

P, (p) := Sgg{s +e(p+s-0)}

and the lower ® as ®_ : G — R given onp € G by

®_(p):= ;gg{s +®(p+s-v)}
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For A > 0 we also define ) : G — R by
@, (p) := (min{P, ®_ + )\})+
and we denote by Consty the plateau set of Py.

Note that the plateau set may not be open or closed in G. The definitions
of &, are best understood by observing that, in the periodic case, the functions
z+ P (x-v)and x + ®_(z - v) coincide with f,(z) and fi(x) in [1]. We omit a
number of facts that can be easily generalized from [1] via this correspondence; we
shall need the following:

(i) The mappings @, and ®, are continuous and depend continuously on ® and
A. (In fact, they are Lipschitz with constant 1 with respect to the sup metric);

(i) @ <P\ <P, infd =infd, and sup P, = sup P;
(iii = ®_ and there is A} > 0 such that ®), = ®,;

(iv) ®,(p) is non-decreasing in A > 0 for any fixed p € G;

(v

The following is an analog of Lemma 3.7.15 in [1] with a very similar proof.

)
) @
) @
) ®x(p) = ®(p) for p in the complement of the interior int(Const,).

Lemma 3.1 Suppose that ® : G — R is continuous and such that the function
x +— F(x-v) is non-decreasing taking F = Id + ® - v. There exists a non-empty
compact invariant set @ C G such that F™(p) ¢ int(Const(®)) for all p € Q and
n € N.

Proof of Lemma 3.1. The set Q := G\ |J,on £ "(int(Const(®))) has the
required properties provided we can show that it is non-empty. Otherwise, if
Q2 = 0, compactness yields that G = J, o £ "(int(Const(®))) for some finite
set NV C N, and it follows that G is the plateau set for the iterate F™* where
n. := max N . However, int(F"(G)) = G # 0 by surjectivity of F" and observe that
if ¢ € int(F™(G)), then there must be some non-plateau point p € G such that
q = F™(p). This is a contradiction. O

Note that Lemma 3.1 does not assure that QNp+R-v # () forall p € G (c.f.
Remark 3.2). This prompted us to give a yet another generalization of Lemma
3.7.15 in [1], which shows that the compactness hypothesis is superfluous.

Lemma 3.2 Suppose that f : R — R is non-decreasing and that f(x) — x does
not change sign over all x € R (i.e. is either non-negative or non-positive). Then
there exists an orbit (zy)gez, vk = f(Tr_1), such that x) & int(Const(f)) for all
k € Z. (Here Const(f) :=={x € R: f is locally constant at x}.)
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An easy example with a single attracting plateau shows that the hypothesis on the
sign of f(x) — x is essential.

Corollary 3.1 Suppose that f : R — R is non-decreasing with almost periodic
displacement, then there exists an orbit (xy)kez, T = f(zk_1), such that x), &
int(Const(f)) for all k € Z.

Proof of Corollary 3.1. If f(x) — x does not change sign, we are done by the
lemma. Otherwise f(x) changes sign and does it so infinitely many times by almost
periodicity. There will be in particular an z, where f(z) — z changes sign from
negative to positive. Note that z, is a fixed point of f that is not in the interior
of Const(f). O

Proof of Lemma 3.2. To fix attention let us assume that f(z) > z for all
z € R. If there is a point at which f(x) = x then x; := x is the sought after
orbit as x cannot be in the interior of Const(f). Suppose then that f(z) > x for
all z € R. Since orbits are monotone sequences we have limy_, ., 2 = +00 and
limy_, o 2 = —o0; otherwise, the finite limit would constitute a fixed point of f
contradicting f(x) > x.

Fix one orbit (ax)rez. Consider the product space X := [, czlax, ars1] with
the product topology and its closed subspace consisting of orbits, Y := {(zy) €
X : zx = f(vg_1), k € Z}. We have the manifestly open sets U, := {(zx) €
X : x, € int(Const(f))}, m € N. It suffices to demonstrate that Y\ (J,,cq Um #
(). For an indirect proof let us suppose it is otherwise. Then, by compactness,

Y C Uy U...UUpy, for some m; < ... < my, € Z. We may as well assume
that m; = 0 at the cost of renumbering a;’s. Set n = m, + 1 and consider
9 = [™ao,ar] : G0, a1] = [an, any1]. For any xg € [ag, 1], f is locally constant

at one of the points x, = f*(z), k = 0,1,... ,m, = n — 1, which implies that
g is locally constant at z,. Being locally constant at all points of [ag, a;], ¢ is
constant on [ag,a;]. Hence, a, = g(ag) = g(a1) = a,41, which contradicts strict
monotonicity of ay’s as guaranteed by f(z) > z. O

Proof of Theorem 2. Let p(f) = [p—, p+]. We have that @5 > inf® >k > 0, so
that Proposition 2.1 and (i) yield continuous dependence on A > 0 of the rotation
number py of Fy = Id + ®,. Invoking (iii) yields py = p_ and px, = p; so that
there must exist A, 0 < A < A,, with p, = p. Take 2 provided by Lemma 3.1
applied to Fy. For p € Q, F}(p) & int(Consty) for all n € N, and (iv) implies
F{(p) = F™(p) so that p(F,p) = p. Define K := {z € R: z-v € Q}. Because
clearly int(Const(F)) N R - v C int(Const(f)), Corollary 3.1 assures that K is
nonempty. For x € K, we have p(f,x) = p(F,z-v) = p. O

Remark 3.2 When p(F) = {p} with p # 0, the fact that QNp+R-v £ O for all
p € G can be seen from the minimality of T : A — A. Indeed, consider Flg : Q2 — )
and the associated skew product R : Ag x R — Ag X R constructed as in the proof of
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Theorem 1 with Ay := AN K. Now, A is closed and invariant under the minimal
translation T : A — A so Ay = A. For p € G, the line p+ R - v clearly intersects
A, and thus it intersects €.

As mentioned in the introduction, Katok’s example shows that the theorem fails
without the assumption that inf ¢ > 0 or sup ¢ < 0. When ® has zeros, the function
A — py is only continuous over the set of \’s for which ®, has no tangencies with
zero. The possibility of jumps of py at the first and last such tangency as \ traverses
[0, A, ] allows one only to deduce that there are p_ <b_ <c¢_ <0<c¢;y <by <py
so that p(f) = [p_, p+] and the set of rotation vectors realized by orbits or by
ergodic measures on G is of the form [p_, b )U{c_}U{0}U{c; }U(by, py]. It should
be possible to construct examples showing that there are no extra restrictions on
P+, b1, cy although we did not attempt to do so.

4 Approximation of the Rotation Number

We address briefly the issue of practical approximation of the rotation number for a
non-decreasing map f : R — R with almost periodic displacement ¢(x) = f(x)—uz.
In the periodic case, one can determine the rotation number to within O(1/n) by
taking n iterates of any single point. (Faster algorithms exist if one is willing to a
priori preclude some bad irrational rotation numbers, see [3].) As we shall see, this
is generally no longer true in the almost periodic situation; however, we have the
following result closely related to the main theorem of [22].

Theorem 4 Suppose that f(x) = v + ¢(x), © € R, is non-decreasing and ¢ is
almost periodic with inf || > 0. If p # 0 is the rotation number of f (i.e. p(f) =
{p}), then we have for 1 € R* that

1 T
— lim min{n € N: |f"(z) —x| > }de —Ilp'| <1+ 1. (4.1)
2T T—00 _T

(Here the first “17 is the length of S and the second “1” is the distance between
two consecutive natural numbers.)

The functions  — min{n € N : |f"(z) — x| > [} can be easily computed nu-
merically. Also, the theorem does not cover the intermittent case when inf |¢p| =0
as then singularities develop under the integral in (4.1) yielding numerical integra-
tion tricky — c.f. Remark 4.3 below.

Before we prove the theorem, let us elaborate on the difficulty it is devised to
bypass. When ¢ is periodic, we have | f"(z) —xz —p(f)n| < 1 for any point = € R so
that (f™(z)—x)/n approximates p(f) with error bounded by 1/n. At the same time,
in the almost periodic case, it is possible that sup g | f" () —2z—np| = oo for almost
allz € R and all p € R, and the obvious method of computing p fails. To illustrate
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this point, one can draw upon the classical Furstenberg example ([14, 8, 10]), which
is a mapping of the T? with a lift R : R? — R? given by R(z,y) = (z + a,y +
h(xz)+1). Here « is a lacunary irrational number and h(z) is a continuous periodic
function with average zero that fails to be cohomologous to zero in the continuous
category but h(z) = k(xz + «) — k(x) for some essentially unbounded periodic and
locally integrable function k. By inverting the flow equivalence construction in
the proof of Theorem 1, one produces from R a mapping F : R? — RZ that
preserves the foliation into irrational lines with slope . The map F covers a
homeomorphisms F' : T2 — T2 which is the hull of certain f(z) = x + ¢(z) with
a quasi-periodic ¢ obtained as the restriction of ®(z,y) = F(z,y) — (z,%) to the
irrational line. As in the proof of Theorem 1, c.f. (2.2), the rotation number of f
is p(f) = (J; h(z) +1dz)~" = 1. However, for almost all = and all y,

RB'(z,y) = (2,y) — na, 1) = (0,k(z + (n — D)a) — k(z)) (4.2)

gets arbitrarily big as n varies over N because of the essential unboundedness of
k. This corresponds to unboundedness of f"(z) — xz — n.

The route to remedy the situation is suggested by observing that, even though
the right hand side of (4.2) is rather ill behaved, its average is zero. This sheds some
light on the role of the integral in Theorem 4. The proof below is an adaptation
of the argument in [22].

Proof of Theorem 4. We shall use the suspension semi-flow F on G x S and its
lift F to G x R as constructed in the proof of Theorem 1. We shall also need a
continuous version of the cocycle At(n,p,t), namely: 7 : R" x G x R - R*,

T(A,p,t) :=min{s > 0: O(prg o Fi(p,t) —p) > A}.

Thus T (A, p, t) is simply the time required for the point (p,t) to cover #-distance
equal to A. From (1.3), the integrand in (4.1) is given by

min{n € N: |f"(z) —z| > 1} =[T(/8(v),x - v,0)] (4.3)
(where [a] :=min{k € Z: a < k}). Also,
Aim T(A,p,t)/A=p!

forallpe G — cf. (2.4).

Fix A € R" and set for convenience 7 = A/6(v) just so that (177 (p) —p) = A
for all p € G, where T is the translation flow on G, T%(p) = p+ s - v. Consider the
sum of the form

Eal

Ek(to, C ,tk;,l) = g T(A,T]T(p),t]) (44)

J

Il
o
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where k € N and ¢ € R*. By analogy to (2.3), the Z-equivariance of F yields, for
any ¢, € R,

so that
1S* (o, o teo1) = S0, L) < (4.6)

for any ¢, € R*. Fix k € N and consider a piece of orbit of F, ((p(1), 1)) o<i<s.
where ¢, is such that 0(p(t,)—p(0)) = kA, i.e. T (kA,p,0) = t, or TF(p(0)) = p(t,).
))-

Take tp = 0 and ¢;’s for j = 1,... .k — 1 so that p(t;) = T77(p(0)). Also, set
to=...=1;_1 =0. The 1nequahty (4 6) becomes
k-1
‘T(kA,p, 0)—» T(AT7p,0)| <k. (4.7)
=0

Now, there is a dense set of A’s in R* for which 77 : G — G is ergodic. For any
such A, after dividing by £ and passing to the limit with £ — oo, we get

\Ap—l - [0 v(d@\ <o
g

where v is the Haar measure on G. Taking into account (4.3) and the fact that

/T(A,p, 0)v(dp) = lim — lim 'T Az -v,0)ds (4.8)
g

T—00 2T T—o0

by strict ergodicity of the translation flow on G, we arrive at (4.1) for a dense set
of [. The extension to all [ is easily obtained by continuity. O

Remark 4.3 In the intermittent case, (4.8) may fail since the integrand is no
longer continuous; however, Theorem 4 remains valid if one replaces the integral
over R by the corresponding integral over G with respect to the Haar measure.
Without this modification one can only assert that (4.1) holds for almost all p € G
once x — f(x) =z + @(z-v) is replaced by x — x + ®(p + x - v).

We comment that the argument for Theorem 4 leads to an alternative proof of
the existence of the rotation number for f. Let us only argue that lima_, w
exists and is constant at Haar almost all p. Then one can conclude Theorem 1 by
considering the invariant measures for the flow F with the time changed to 6. All
those measures project to the Haar measure on G. To show our claim, note that
the limits T p.0)

+ 12 7p7
AT (p) : lim sup —=70
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and T(kA, p, 0)
— . . 7p7
A" (p) := ll}?_l}g)lf A
are independent of A > 0 for any p € G. Indeed, given A, A >0, and large k € N,
there are ki, ko € N such that & — max{A, A} <k <k < ky <k + max{A, A}
and T (k1A,p,0) < T(kA,p,0) < T (k2A,p,0). At the same time, (4.7) yields, for
almost all p,

W) - 5 [ T 0| < 1/

By taking A arbitrarily large, we conclude that A_(p) = A, (p), that is
lima oo w = ) exists and is constant at almost all p — as claimed.
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