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1 IntroductionWe are concerned with rotation | more accurately, average displacement | ofpoints under an iterated map f : R ! R of the form f(x) = x + �(x) where �is a bounded continuous function. Although we do not make this assumption justyet, for the most part, we will restrict ourselves to � that is almost periodic in thesense of Bohner and Bohr, i.e. the family of translations f�(� + �) : � 2 Rg isprecompact in the topology of uniform convergence [4]. (The prototypical exampleis f(x) = x+ 
+ a sin(x)+ b sin(p2x).) The rotation number of x 2 R with respectto f is de�ned as the limiting average displacement�(f; x) := limn!1 fn(x)� xnprovided the limit exists. By the rotation set �(f;K) of a subset K � R weunderstand the collection of all limiting average displacementslimi!1 fni(xi)� xiniwhere ni 2 N are such that limi!1 ni =1 and xi 2 K. Equivalently,�(f;K) := \m�1 cl [n>m�fn(x)� xn : x 2 K�! : (1.1)(Here \cl" denotes for the topological closure.) This is an adaptation of the de�-nition of Misiurewicz and Ziemian in [15]. It is easy to see (cf [15]) that �(f;K) isalways compact and that it is connected if K is connected. Thus the rotation setof f , �(f) := �(f;R), is a priori a closed segment. We note that other reasonableformulations of rotation set of f are contained in �(f) and include as a subset thepointwise rotation set of f , �p(f) := f�(f; x) : x 2 R for which �(f; x) existsg.Which de�nition one chooses is to some degree a matter of taste and our choice of�(f) should be understandable by the time we are done.Much is known when � is periodic, i.e. when f is a lift of a circle map (seee.g. [17, 1, 23]). We only mention that the title reaches back to the theory oforientation preserving circle homeomorphisms, for which �(f) is a point: the cel-ebrated Poincar�e rotation number ([18]). However, periodicity is an idealizationthat may be disputed in some instances1, and one is naturally lead to inquire:what if � is not exactly periodic but merely almost periodic? Although apparentlyabsent from the literature, this question poses a problem related to that aboutskew-products of circle maps, which appear in many works (e.g. [11, 13, 19]). Therelation is established via 
ow equivalence and is perhaps most transparent froma classical standpoint: Circle homeomorphisms arise as Poincar�e maps for doubly1Heraclitus would say: \No-one can step into the same river twice".2



periodic ODE's, e.g. x0 = F (x; t) where F is periodic in reals x and t. When theperiodicity in t is relaxed to almost periodicity, the skew-products emerge. Thehomeomorphisms of R with almost periodic displacement correspond, in turn, toF periodic in t but almost periodic in x (cf [20]). Interchanging the roles of xand t roughly e�ects the said 
ow equivalence, and the standard tools of ergodictheory allow for rigorous implementation of this idea. In what follows, hardlystraying from the traveled path and without any pretense of particular originality,we provide an introduction to the theory.To do away with the obvious, we �rst consider the general situation of bounded� and non-decreasing f . The preservation of order on R forces the orbits to marchin \lock step"; for example, if �(f; x) > 0 and fn(y) is unbounded from above,then �(f; y) exists and �(f; y) = �(f; x). One easily discovers then that there arefour possibilities for the pointwise rotation set �p(f):Case 1) �p(f) = f0g,Case 2) �p(f) = f�g where � 6= 0,Case 3) �p(f) = f0; �g where � 6= 0,Case 4) �p(f) = f��; 0; �+g where �� < 0 < �+.Note that in case 2 actually �(f; x) = f�g for all x 2 R, and in cases 3 and 4 fmust have a �xed point; however, there may be no �xed points in Case 1. Also,easy examples show that �p(f) can be a proper subset of �(f) in any of the cases.From now on, we restrict ourselves to displacement functions � that are almostperiodic (in the sense of Bohner and Bohr). Any such � is either of �xed signor changes sign on an in�nite set unbounded from above and below. The latterpossibility leads to rather easy dynamics that fall under Case 1. When the signis �xed, i.e. � � 0 or � � 0 , Case 4 is clearly excluded but any of Cases 1, 2, 3may occur | although Case 3 is a bit more subtle (see the example below). Lessobvious are possibilities for �(f).Theorem 1 Suppose that f(x) = x + �(x), x 2 R, is non-decreasing and � isalmost periodic. Then there is a number � 2 R such that either �(f) = f�g, or�(f) = Conv(f0; �g). (Here Conv stands for the convex hull.)Moreover, in the former case, �p(f) = f�g, and in the latter case, �p(f) is of theform f0g, frg, or f0; rg where r is some number in �(f).We shall refer to the number � as the rotation number of f . The astute reader willnotice that the only non-trivial ingredient of the theorem is that �(f) = [��; �+]cannot happen for some �� that are both positive or both negative. In fact,Theorem 1 is merely a pale re
ection of a less elementary and more revealingresult | Theorem 3 below | asserting that � is the common rotation vector of allergodic measures (on the appropriate compacti�cation of R).3



The possibility that �(f) = Conv(f0; �g) with � 6= 0 allowed by the theorem isa manifestation of a phenomenon absent in the classical periodic context wherebyf(x) has an unbounded sequence of near tangencies with the diagonal and thesetangencies detach from the diagonal fast enough so that they can be negotiated bysome orbits with non-zero average speed. This behavior, reminiscent of intermit-tency in circle families, is best illustrated by a quintessential example of a toroidal
ow due to A. Katok ([9, 7]).Katok's Example. On the two-dimensional torus T2, realized by the usual iden-ti�cation of the sides of the unit square [0; 1]2, consider a function � : T2 ! R suchthat � � 0 and ��1(0) = fp0g for a single point p0 2 T2. Let X be a vector�eldon T2 that arises from a constant vector�eld on [0; 1]2 with irrational slope, andlet F be the time-one-map of � �X. A whole family of di�erent maps f : R! Rwith quasi-periodic displacement is obtained by restricting F to particular 
ow-lines of X. These f 's share the same rotation set �(f) that necessarily contains 0.At the same time, the mean return time to a circular cross-section of the torus isproportional to RT2 1=�(p)�(dp) (where the integral is taken with respect to thesurface area). Thus if RT2 1=�(p)�(dp) < +1, we actually have �(f) = [0; �] where� = C= RT2 1=�(p)�(dp) with C depending on X only | otherwise, �(f) = f0g.By the Birkho� ergodic theorem, �p(f) = �(f) for �-almost all 
owlines. At thesame time, � can be adjusted so that on some 
owlines �p(f) is f0g, frg, or f0; rgfor any value r in the range [0; �] | (which reveals a disturbing nonrobustness of�p(f)). Also note that, even if �(f; x) = �, typically supn2N jfn(x)� x� n�j =1(cf Furstenberg's example invoked in Section 4). 2We mention that whether intermittent behavior with non-zero rotation (�a lathe above example) is typical or not depends on the frequency module of �. Forinstance, a typical quasi-periodic � with r-frequencies and inf � = 0 | by whichwe mean a � arising as above from a smooth � : Tr ! R with a generic zero |has rotational intermittency exactly when r > 2. This can be shown via the usualapproximation of the map by a 
ow near the tangency.We shift our attention now to the situation that generalizes the degree-one circlemaps when f is no longer increasing and �(f) is typically a non-trivial interval.We prove the following result by adopting the \cutting technique" described in [1].Theorem 2 Suppose that f(x) = x+�(x) where � : R! R is an almost periodicfunction and infx2R �(x) > 0, then �p(f) = �(f), i.e. for any � 2 �(f) there isx 2 R such that �(f; x) = �.Again, Katok's example shows that the hypothesis inf � > 0 is necessary. Afterwe prove Theorem 2 in Section 3, we shall see what the possibilities are withoutthis assumption. Also, for any � 2 �(f) in Theorem 2, we actually �nd a wholelocally compact almost periodic invariant set K of x with �(f; x) = � and an almostperiodic invariant probability measure � with R �(x) �(dx) = �. At the same time,we should emphasize that, even if �(f) is just a point f�g, there may as well be4



that supn2N jfn(x)� x� n�j =1 for almost all x 2 R, unlike in the periodic case(see Section 4).Before leaving the introduction we recast the problem in a way that is bothconceptually and technically more appealing. By standard results in topologicaldynamics (see e.g. [6, 2]), given an almost periodic � : R! R, there is a compactabelian topological group G, a dense homomorphic immersion v : R ! G, and acontinuous function � : G ! R such that � = � � v. We shall adopt additivenotation for the group operation in G and write suggestively x � v := v(x), x 2 R.(To give a simple example, when �(x) = sin x+sin(p2x), G is the two dimensionaltorus T2 := f(x (mod 2�); y (mod 2�)g, x � v = (x;p2x), and �(x; y) = sinx +sin y.) The map f uniquely extends to F : G ! G called the hull of f and given onp 2 G by F (p) = p+ �(p) � v: (1.2)Writing S for the unit complex circle, we now �x a character � : G ! S such that� � v 6= 1. Clearly, � � v : R ! S is of the form � � v(x) = ei�x, � 6= 0. We mayas well require that � > 0. (The existence of � is assured by the Peter{Weyl{vanKampen theorem, see [16].) By lifting �jR�v through the exponential exp : R! S,exp(x) := ei2�x, we obtain a coordinate � : R � v ! R on the dense subgroupR � v � G; let us take it so that �(0) = 0. Since � � v(x) = �(x � v) = �x, we areled to abuse the notation and write �(v) for � so that the two coordinates x on Rand � on R � v are related2 by � = �(v)x: (1.3)The group G is foliated by F -invariant immersed lines p + R � v, and the �-displacement of points under the application of F is measured by �� : G ! R,��(p) := �(p)�(v) = �(F (p)� p):The appropriate rotation set is��(F ) := \m�1 cl [n>m��(F n(p)� p)n : p 2 G�! : (1.4)The de�nitions of the rotation number ��(F; p) and the pointwise rotation set ��p(F )should be easy to guess. The important fact is that the rotation sets ��(F ) and�(f) coincide up to the obvious scaling:��(F ) = �(v)�(f):This follows from the density of R � v in G and the continuity of �. At the sametime, the obvious inclusion �(v)�p(f) � ��p(F ) is often proper; although, clearly2By rescalling x, we could achieve �(v) = 1; however, we prefer to keep distinction between xand �. 5



�(v)�(f; x) = ��(F; x � v) for any x 2 R. We should also mention that eachpoint � of ��(F ) is realized by some invariant probabilistic measure � on G, i.e.� = RG ��(p)�(dp). (If � = limi!1 �(Fni (pi)�pi)ni , then � can be found as the weak�-limit of the atomic measures equidistributed on orbit segments pi; : : : ; F ni�1(pi).)Moreover, if � is the extreme point of ��(F ), � can be selected to be ergodic. At thesame time, given any ergodic measure �, ��(F; p) = R ��(p)�(dp) for all �-genericpoints p 2 G (| these points may all be o� the line R � v.) In particular, we have��(F ) = �Z ��(p)�(dp) : � 2 M(F )� = Conv(��p(F )) (1.5)where M(F ) is the set of all probabilistic invariant measures on G. The proofs ofthe last three facts are easily obtained by using the arguments similar to those in[15, 21].To summarize | conforming with the de rigueur approach of the topologicaltheory of almost periodic functions, see e.g. [19] | we made a transition fromthe the elementary context of a map f of the real line with an almost periodicdisplacement to the abstract context of a self-map F of a compact abelian groupG with the displacement F � Id taking values in a dense 1-parameter subgroupR � v. (Such F are always in the form (1.2).) From this perspective, Theorem 1 isa manifestation of the following more revealing result.Theorem 3 Suppose that F : G ! G is the hull of a non-decreasing continuousmap f : R! R with almost periodic displacement (as de�ned above). There existsa unique � 2 R (depending on f only) such thatZG ��(p)�(dp) = �(v)�for any ergodic invariant probability measure � on G. Moreover, any such measurewith RG ��(p)�(dp) = 0 is supported on the set of �xed points of F .The key to the proof of Theorems 1 and 3 is in observing that the part of thedynamics of F that contributes non-zero rotation is 
ow equivalent to a skew-product over a minimal translation (map) on a subgroup of G. This will facilitateapplication of the subadditive ergodic theorem to compute the average rotation |details follow in Section 2. Section 3 is devoted to the proof of Theorem 2. Section4, based on [22], contains a formula for the rotation number that is more suitablefor numerical approximation than the de�nition. (We add that the constructionsof Section 2 are referred to in Sections 3 and 4.)To close, we stress again the introductory character of this note. We are silent,for instance, on existence of conjugacy with the rigid translation, which is farmore delicate than for circle di�eomorphisms (e.g. a semi-conjugacy does notexist in general as exempli�ed by Furstenberg's example in Section 4). Ultimately,6



one should explore the interplay between smoothness, the rotation number, andthe frequency module of the displacement function. This however leads (via 
owequivalence) to a well known open question about existence of global analoguesof the local KAM-type results in dimensions higher than one (the circle case).Appreciation of this deep problem can be developed by reading Herman's [12] andfollowing the references therein.2 Non-decreasing MapsIn this section, we prove Theorems 1 and 3, and we establish continuity of therotation number as a function of the map. We assume thruought this section thatf is non-decreasing.Proof of Theorems 1 and 3. If � changes sign then we are in the trivial situationwith �(f) = �p(f) = f0g whereby all orbits tend to �xed points and thus allinvariant measures are carried on the �xed point set. Therefore, we assume fromnow on that that � does not change sign, say � � 0, and that �(f) 6= f0g. In viewof equality (1.5), the �rst assertion of Theorem 1 will be established if we showthat �(f) has only one positive extremal point, and this follows from the Claim2.0 below. The assertion about �p(f) in Theorem 1 is then a consequence of theelementary discussion in the introduction.Claim 2.0 Consider as above � � 0 and all F -invariant ergodic probability mea-sures � on G with limn!1 �(F n(p) � p) = +1 for �-almost all points. (Theseinclude �'s with RG �(p)�(dp) > 0 by the Birkho� ergodic theorem.) The rotationvector of �, RG �(p)�(dp), is positive and independent on which � is taken.This claim also implies Theorem 3. Indeed, the main assertion is clear; and tosee \the moreover part" suppose that RG �(p)�(dp) = 0 for an ergodic measure�. From the claim, for a positive �-measure set of p, the non-decreasing sequence�(F n(p)� p) is bounded and thus convergent, which implies that F n(p) convergesto a �xed point of F . By ergodicity, this actually happens for �-almost all p.To complete the proof, we focus now on showing Claim 2.0. Recall that thesuspension semi-
ow of F , S : GF � R+ ! GF , R+ := [0;1), is abstractlyde�ned as the constant unit speed 
ow along the segments p � [0; 1] on GF :=G � [0; 1]= � with the identi�cation (p; 1) � (F (p); 0), p 2 G. We shall preferhowever a more concrete realization of S. To interpolate between the identity andF , we set F � (p) := p+ ��(p) � v, � 2 [0; 1], p 2 G; and we consider a semi-
ow ~Fon G �R obtained by patching together in�nitely many copies of this homotopy:~F : (G �R)�R+ ! (G �R) is given on (p; t) 2 G �R by~F � (p; t) := �F s�bsc � F bsc � F�t+btc(p); t+ �� (2.1)where s := � + t � btc (and bac := maxfk 2 Z : k < ag). Note that, givenp 2 G, the points of p�R, move under the semi-
ow ~F con�ned to the invariant7



plane (p+R � v)�R along broken lines of positive (possibly in�nite) slope. These
ow lines are ordered (i.e. cannot cross | although they may merge at points of(p+R � v)� Z). We record the following easy facts.Fact 2.1 (i) F � is a homeomorphisms for � 2 [0; 1);(ii) ~F is equivariant under the Z-action generated by (p; t) 7! (p; t+ 1);(iii) The quotient F : (G � S)�R+ ! G � S of ~F by the Z-action is conjugate toS via h : GF ! G � S induced by (p; t) 7! (F t(p); t), p 2 G, t 2 [0; 1].The F -invariant measure � yields a semi-
ow invariant measure � := h����(�
dt) on G�S, where � : G� [0; 1]! GF is the natural projection (and h is providedby (iii) of Fact 2.1.) The rotation set of F may be recovered from ~F vialim�!1 � �prG( ~F � (p; t))� p�.� = limn!1 �(F n(p)� p)=nwhere p := ~F�t+btc(p) so that (p; btc) and (p; t) are on the same ~F -orbit. (Indeed,for � 2 [n; n + 1], the di�erence between the expressions under the limits on bothsides is of order O(1=n).) Recall that the measure � is carried on the setG+ := fp 2 G : limn!1 �(F n(p)� p) = +1g;that is �(G+) = 1. Likewise, �(G+ � S) = 1, where we used the fact that iflim�!1 �(prG( ~F �(p; 0)) � p) = 1, then lim�!1 �(prG( ~F � (p; t)) � p) = 1 for anyt 2 R (due to the order preservation and the Z-equivariance of ~F).Denote by � the kernel of the character � (de�ned in the introduction),� := ��1(1)� G;and set �+ := G+ \ �:Observe that there is a well de�ned �rst return map ~R : �+ �R! �+ �R for ~F .Since all the 
ow-lines of points in �+ �R have �nite positive slope | as vievedin the plane (p +R � v)�R) | it follows that ~R is continuous and that �+ �Ris a G� set.Another thing to notice is that ~R is a skew-product over the translation T :�! �, T (p) := p+ ! where ! := ��1(1), i.e. the diagram below commutes,�+ �R ~R���! �+ �R�??y �??y�+ T���! �+ :Here, T is minimal because fT n(0) : n 2 Ng is dense in �. Also, ~R maps the�bers p �R one to another via Z-equivariant maps and thus descends to a skew8



product R : �+ � S! �+ � S of non-decreasing circle maps:�+ � S R���! �+ � S�??y �??y�+ T���! �+ :Much like in the standard theory of special representation 
ows ([5]), the semi-
ow invariant measure � on G+ � S induces an R-invariant probabilistic measure� on �+ � S. Here, for lack of a good reference, we indicate the main steps. First,a time-change of F is made so that the return time to �+ � S is constant and one;here, the Jacobian of the time change is piecewise constant along the orbits of ~Fand is given by w(p; t) = d�dt := dd� ������=0� �prG( ~F � (p; t))� p� ;which can be seen to be integrable with respect to �. The measure �1 of densitywith respect to � proportional to w is invariant for the time-changed semi-
ow. Inthe second step, the natural projection r : G+ � S ! �+ � S that sends a point(p; t) to its �rst return to �+ � S is used to push � forward to the desired measure� := r�(�) invariant under R.We note that T (as a minimal group translation) is uniquely ergodic so thatthe push forward � := ��(�) must be the unique probabilistic Haar measure on �.The rotation vectors can be expressed in terms of R by averaging the returntime, denoted �t : �+ � S! R+. Namely, for �-almost all (p; t) 2 �+ � S,��(F; p)�1 = limn!1�t(n; p; t)=n = Z�+�R�t(p; t) �(dp; dt); (2.2)where we abused (overloaded) the notation to write �t : N� �+ � S! R for theadditive cocycle of time displacements:�t(n; p; t) := prR(Rn(p; t))� t = �t(p; t) + : : :+�t(Rn�1(p; t)):Indeed, we assumed that limk!1 �(F k(p)�p) = limn!1�t(n; p; t) =1 for almostall p; and simple geometry in the (p+R�v)�R plane of the 
ow ~F shows that for anyn there is k (and vice versa) such that j�t(n; p; t)�kj < 2 and j�(F k(p)�p)�nj < 2,where p := ~F�t+btc. This yields the �rst equality in (2.2); and the second followsfrom the Birkho� ergodic theorem.To compute the averages, we introduce a subadditive cocycle �t : N��+ ! Rover T that majorizes �t:�t(n; p) := supt2R prR � ~Rn(p; t)�� t:9



Because ~R maps the �bers p �R in a non-decreasing and Z-equivariant fashion,the following inequalities hold for any (p; t) 2 �+ � S and n 2 N�t(n; p)� 1 � �t(n; p; t) � �t(n; p): (2.3)It follows that �t is �-integrable:Z��t(n; p) �(dp) � Z��R(�t(n; p; t) + 1) �(dp; dt) = n�(F; �)�1 + 1 <1:Thus the subadditive ergodic theorem can be applied to get, for �-almost all p 2 �and all t 2 R,limn!1�t(n; p; t)=n = limn!1�t(n; p)=n = � := infn Z��t(n; p)=n �(dp) (2.4)where we used (2.3) and � depends only on f | not on �. One concludes, via(2.2), that R ��(p)�(dp) = 1=� for all ergodic measures � with non-zero averagedisplacement. This �nishes the proof of Claim 2.0. 2The above proof shows, in particular, existence of the rotation number for skew-products of circle homeomorphisms, which has been already established in [11, 13](see also [22]). Our argument is more in the spirit of Herman; although, he doesnot invoke the subadditive ergodic theorem preferring to work exclusively withinvariant measures and their average displacements.We shall show now that, where �(f) = f�g, the rotation number � behavescontinuously with respect to almost periodic perturbations of f . The proof hingeson the continuity of the rotation number for skew-products of circle maps, whichagain goes back to [11, 13].Proposition 2.1 Suppose that F = Id + � � v with ��(F ) = f�g for some � 6= 0and that �k : G ! R, k 2 N, are continuous and converge to � uniformly. ForFk := Id+ �k, there is k0 and numbers �k such that �(Fk) = f�kg for k � k0 andlimk!1 �k = �.Proof of Proposition 2.1. Since ��(F ) = f�g, � 6= 0, at the cost of reversing theorientation of R, we can assume that there is � > 0 and k0 such that � > �and �k > � for k � k0. As in the proof of Theorem 1, we get the return maps~R; ~Rk : � �R ! � � R and subadditive cocycles �t;�tk : � �N ! R so that��1 = infn R �t(n; p)=n �(dp) and ��1k = infn R �tk(n; p)=n �(dp) just like (2.4).Similarly, we have superadditive cocycles�t(n; p) := inft2RprR(Rn(p; t))� tfor which the analog of (2.3) holds:�t(n; p) � �t(n; p; t) � �t(n; p) + 1:10



The subadditive ergodic theorem applied to ��t yields that ��1 =supn R �t(n; p)=n �(dp) | with similar formulas for �k's. Here we silently usedthat �k's are bounded away from zero by � so that �+ = � and the functions�t(n; �), �tk(n; �), �t(n; �), and �tk(n; �) are uniformly bounded (hence integrable)for each n 2 N. It follows also that Rk's converge uniformly to R and �tk(n; �) and�tk(n; �) converge uniformly to �t(n; �) and �t(n; �) for any �xed n. Now, given� > 0, we can �x n large enough so that the di�erence of the extreme sides in thefollowing inequalities is less than �,Z (�t(n; p)=n� 1=n) �(dp) � � � Z (�t(n; p)=n+ 1=n) �(dp):At the same time we can pass to the limit with k !1 inZ (�tk(n; p)=n� 1=n) �(dp) � �k � Z (�tk(n; p)=n+ 1=n) �(dp)and see that �k's are eventually contained in the � neighborhood of �. This �nishesthe proof by the arbitrariness of �. 2The hypothesis �0 > 0 in Proposition 2.1 is essential as can be easily seen bytinkering with the way � tends to zero near p0 in Katok's example. (Integrabilityof 1=� is clearly sensitive to arbitrarily small perturbations, say of class C1.)Remark 2.1 The majorization with �t and �t guarantees uniform convergenceof (fn(x)� x)=n to the rotation number in the case when inf � > 0 | c.f. Section4.3 Non-monotonic MapsWe turn our attention to non-monotonic maps in order to demonstrate Theorem2 as stated in the introduction. The idea is to adapt the \cutting technique" de-scribed in [1] to our almost periodic context. As before, G is a compact topologicalgroup with a dense homomorphisms R 3 x 7! x � v 2 G.De�nition 3.1 Given a continuous � : G ! R, the plateau set of � isConst(�) := fp 2 G : x 7! x+�(p+x�v) is constant on a neighborhood of x = 0g:We de�ne the upper � as �+ : G ! R given on p 2 G by�+(p) := sups�0fs+ �(p + s � v)gand the lower � as �� : G ! R given on p 2 G by��(p) := infs�0fs+ �(p+ s � v)g:11



For � � 0 we also de�ne �� : G ! R by��(p) := (minf�;�� + �g)+ ;and we denote by Const� the plateau set of ��.Note that the plateau set may not be open or closed in G. The de�nitionsof �� are best understood by observing that, in the periodic case, the functionsx + �+(x � v) and x + ��(x � v) coincide with fu(x) and fl(x) in [1]. We omit anumber of facts that can be easily generalized from [1] via this correspondence; weshall need the following:(i) The mappings �� and �� are continuous and depend continuously on � and�. (In fact, they are Lipschitz with constant 1 with respect to the sup metric);(ii) �� � �� � �+, inf �� = inf �, and sup�+ = sup�;(iii) �0 = �� and there is �+ > 0 such that ��+ = �+;(iv) ��(p) is non-decreasing in � � 0 for any �xed p 2 G;(v) ��(p) = �(p) for p in the complement of the interior int(Const�).The following is an analog of Lemma 3.7.15 in [1] with a very similar proof.Lemma 3.1 Suppose that � : G ! R is continuous and such that the functionx 7! F (x � v) is non-decreasing taking F = Id + � � v. There exists a non-emptycompact invariant set 
 � G such that F n(p) 62 int(Const(�)) for all p 2 
 andn 2 N.Proof of Lemma 3.1. The set 
 := G n Sn2N F�n(int(Const(�))) has therequired properties provided we can show that it is non-empty. Otherwise, if
 = ;, compactness yields that G = Sn2N F�n(int(Const(�))) for some �niteset N � N, and it follows that G is the plateau set for the iterate F n� wheren� := maxN . However, int(F n�(G)) = G 6= ; by surjectivity of F and observe thatif q 2 int(F n�(G)), then there must be some non-plateau point p 2 G such thatq = F n�(p). This is a contradiction. 2Note that Lemma 3.1 does not assure that 
 \ p+R � v 6= ; for all p 2 G (c.f.Remark 3.2). This prompted us to give a yet another generalization of Lemma3.7.15 in [1], which shows that the compactness hypothesis is super
uous.Lemma 3.2 Suppose that f : R ! R is non-decreasing and that f(x) � x doesnot change sign over all x 2 R (i.e. is either non-negative or non-positive). Thenthere exists an orbit (xk)k2Z, xk = f(xk�1), such that xk 62 int(Const(f)) for allk 2 Z. (Here Const(f) := fx 2 R : f is locally constant at xg:)12



An easy example with a single attracting plateau shows that the hypothesis on thesign of f(x)� x is essential.Corollary 3.1 Suppose that f : R ! R is non-decreasing with almost periodicdisplacement, then there exists an orbit (xk)k2Z, xk = f(xk�1), such that xk 62int(Const(f)) for all k 2 Z.Proof of Corollary 3.1. If f(x) � x does not change sign, we are done by thelemma. Otherwise f(x) changes sign and does it so in�nitely many times by almostperiodicity. There will be in particular an x� where f(x) � x changes sign fromnegative to positive. Note that x� is a �xed point of f that is not in the interiorof Const(f). 2Proof of Lemma 3.2. To �x attention let us assume that f(x) � x for allx 2 R. If there is a point at which f(x) = x then xk := x is the sought afterorbit as x cannot be in the interior of Const(f). Suppose then that f(x) > x forall x 2 R. Since orbits are monotone sequences we have limk!+1 xk = +1 andlimk!�1 xk = �1; otherwise, the �nite limit would constitute a �xed point of fcontradicting f(x) > x.Fix one orbit (ak)k2Z. Consider the product space X := Qk2Z[ak; ak+1] withthe product topology and its closed subspace consisting of orbits, Y := f(xk) 2X : xk = f(xk�1); k 2 Zg. We have the manifestly open sets Um := f(xk) 2X : xm 2 int(Const(f))g, m 2 N. It su�ces to demonstrate that Y nSm2Z Um 6=;. For an indirect proof let us suppose it is otherwise. Then, by compactness,Y � Um1 [ : : : [ Umq for some m1 < : : : < mq 2 Z. We may as well assumethat m1 = 0 at the cost of renumbering ak's. Set n = mq + 1 and considerg := fnj[a0;a1] : [a0; a1] ! [an; an+1]. For any x0 2 [a0; a1], f is locally constantat one of the points xk = fk(x0), k = 0; 1; : : : ; mq = n � 1, which implies thatg is locally constant at x0. Being locally constant at all points of [a0; a1], g isconstant on [a0; a1]. Hence, an = g(a0) = g(a1) = an+1, which contradicts strictmonotonicity of ak's as guaranteed by f(x) > x. 2Proof of Theorem 2. Let �(f) = [��; �+]. We have that �� > inf � � � > 0, sothat Proposition 2.1 and (i) yield continuous dependence on � � 0 of the rotationnumber �� of F� = Id + ��. Invoking (iii) yields �0 = �� and ��+ = �+ so thatthere must exist �, 0 � � � �+, with �� = �. Take 
 provided by Lemma 3.1applied to F�. For p 2 
, F n� (p) 62 int(Const�) for all n 2 N, and (iv) impliesF n� (p) = F n(p) so that �(F; p) = �. De�ne K := fx 2 R : x � v 2 
g. Becauseclearly int(Const(F )) \ R � v � int(Const(f)), Corollary 3.1 assures that K isnonempty. For x 2 K, we have �(f; x) = �(F; x � v) = �. 2Remark 3.2 When �(F ) = f�g with � 6= 0, the fact that 
 \ p+R � v 6= ; for allp 2 G can be seen from the minimality of T : �! �. Indeed, consider F j
 : 
! 
and the associated skew product R : �0�R! �0�R constructed as in the proof of13



Theorem 1 with �0 := � \ 
. Now, �0 is closed and invariant under the minimaltranslation T : � ! � so �0 = �. For p 2 G, the line p +R � v clearly intersects�, and thus it intersects 
.As mentioned in the introduction, Katok's example shows that the theorem failswithout the assumption that inf � > 0 or sup � < 0. When � has zeros, the function� 7! �� is only continuous over the set of �'s for which �� has no tangencies withzero. The possibility of jumps of �� at the �rst and last such tangency as � traverses[0; �+] allows one only to deduce that there are �� � b� � c� � 0 � c+ � b+ � �+so that �(f) = [��; �+] and the set of rotation vectors realized by orbits or byergodic measures on G is of the form [��; b�)[fc�g[f0g[fc+g[(b+; �+]. It shouldbe possible to construct examples showing that there are no extra restrictions on��; b�; c� although we did not attempt to do so.4 Approximation of the Rotation NumberWe address brie
y the issue of practical approximation of the rotation number for anon-decreasing map f : R! R with almost periodic displacement �(x) = f(x)�x.In the periodic case, one can determine the rotation number to within O(1=n) bytaking n iterates of any single point. (Faster algorithms exist if one is willing to apriori preclude some bad irrational rotation numbers, see [3].) As we shall see, thisis generally no longer true in the almost periodic situation; however, we have thefollowing result closely related to the main theorem of [22].Theorem 4 Suppose that f(x) = x + �(x), x 2 R, is non-decreasing and � isalmost periodic with inf j�j > 0. If � 6= 0 is the rotation number of f (i.e. �(f) =f�g), then we have for l 2 R+ that���� 12T limT!1Z T�T minfn 2 N : jfn(x)� xj � lg dx� l��1���� � 1 + 1: (4.1)(Here the �rst \1" is the length of S and the second \1" is the distance betweentwo consecutive natural numbers.)The functions x 7! minfn 2 N : jfn(x) � xj � lg can be easily computed nu-merically. Also, the theorem does not cover the intermittent case when inf j�j = 0as then singularities develop under the integral in (4.1) yielding numerical integra-tion tricky | c.f. Remark 4.3 below.Before we prove the theorem, let us elaborate on the di�culty it is devised tobypass. When � is periodic, we have jfn(x)�x��(f)nj � 1 for any point x 2 R sothat (fn(x)�x)=n approximates �(f) with error bounded by 1=n. At the same time,in the almost periodic case, it is possible that supx2R jfn(x)�x�n�j =1 for almostall x 2 R and all � 2 R, and the obvious method of computing � fails. To illustrate14



this point, one can draw upon the classical Furstenberg example ([14, 8, 10]), whichis a mapping of the T2 with a lift ~R : R2 ! R2 given by ~R(x; y) = (x + �; y +h(x)+1). Here � is a lacunary irrational number and h(x) is a continuous periodicfunction with average zero that fails to be cohomologous to zero in the continuouscategory but h(x) = k(x + �)� k(x) for some essentially unbounded periodic andlocally integrable function k. By inverting the 
ow equivalence construction inthe proof of Theorem 1, one produces from ~R a mapping ~F : R2 ! R2 thatpreserves the foliation into irrational lines with slope �. The map ~F covers ahomeomorphisms F : T2 ! T2, which is the hull of certain f(x) = x + �(x) witha quasi-periodic � obtained as the restriction of �(x; y) = ~F (x; y) � (x; y) to theirrational line. As in the proof of Theorem 1, c.f. (2.2), the rotation number of fis �(f) = (R 10 h(x) + 1 dx)�1 = 1. However, for almost all x and all y,~Rn(x; y)� (x; y)� n(�; 1) = (0; k(x+ (n� 1)�)� k(x)) (4.2)gets arbitrarily big as n varies over N because of the essential unboundedness ofk. This corresponds to unboundedness of fn(x)� x� n.The route to remedy the situation is suggested by observing that, even thoughthe right hand side of (4.2) is rather ill behaved, its average is zero. This sheds somelight on the role of the integral in Theorem 4. The proof below is an adaptationof the argument in [22].Proof of Theorem 4. We shall use the suspension semi-
ow F on G �S and itslift ~F to G � R as constructed in the proof of Theorem 1. We shall also need acontinuous version of the cocycle �t(n; p; t), namely: T : R+ � G �R! R+,T (�; p; t) := minfs > 0 : �(prG � ~F s(p; t)� p) � �g:Thus T (�; p; t) is simply the time required for the point (p; t) to cover �-distanceequal to �. From (1.3), the integrand in (4.1) is given byminfn 2 N : jfn(x)� xj � lg = dT (l=�(v); x � v; 0)e (4.3)(where dae := minfk 2 Z : a � kg). Also,lim�!1T (�; p; t)=� = ��1for all p 2 G | c.f. (2.4).Fix � 2 R+ and set for convenience � = �=�(v) just so that �(T � (p)� p) = �for all p 2 G, where T is the translation 
ow on G, T s(p) = p+ s � v. Consider thesum of the form �k(t0; : : : ; tk�1) := k�1Xj=0 T (�; T j� (p); tj) (4.4)15



where k 2 N and t 2 Rk. By analogy to (2.3), the Z-equivariance of ~F yields, forany t; ~t 2 R, jT (�; T j�(p); t)� T (�; T j�(p); ~t)j � 1 (4.5)so that ���k(t0; : : : ; tk�1)� �k(~t0; : : : ; ~tk�1)�� � k (4.6)for any t; ~t 2 Rk. Fix k 2 N and consider a piece of orbit of ~F , ((p(t); t))0�t�t�where t� is such that �(p(t�)�p(0)) = k�, i.e. T (k�; p; 0) = t� or T k� (p(0)) = p(t�).Take t0 = 0 and tj's for j = 1; : : : ; k � 1 so that p(tj) = T j�(p(0)). Also, set~t0 = : : : = ~tk�1 = 0. The inequality (4.6) becomes�����T (k�; p; 0)� k�1Xj=0 T (�; T j�p; 0)����� � k: (4.7)Now, there is a dense set of �'s in R+ for which T � : G ! G is ergodic. For anysuch �, after dividing by k and passing to the limit with k !1, we get�������1 � ZG T (�; p; 0) �(dp)���� � 2�where � is the Haar measure on G. Taking into account (4.3) and the fact thatZG T (�; p; 0) �(dp) = limT!1 12T limT!1Z T�T T (�; x � v; 0) dx (4.8)by strict ergodicity of the translation 
ow on G, we arrive at (4.1) for a dense setof l. The extension to all l is easily obtained by continuity. 2Remark 4.3 In the intermittent case, (4.8) may fail since the integrand is nolonger continuous; however, Theorem 4 remains valid if one replaces the integralover R by the corresponding integral over G with respect to the Haar measure.Without this modi�cation one can only assert that (4.1) holds for almost all p 2 Gonce x 7! f(x) = x+ �(x � v) is replaced by x 7! x+ �(p + x � v).We comment that the argument for Theorem 4 leads to an alternative proof ofthe existence of the rotation number for f . Let us only argue that lim�!1 T (�;p;0)�exists and is constant at Haar almost all p. Then one can conclude Theorem 1 byconsidering the invariant measures for the 
ow ~F with the time changed to �. Allthose measures project to the Haar measure on G. To show our claim, note thatthe limits �+(p) := lim supk!1 T (k�; p; 0)k�16



and ��(p) := lim infk!1 T (k�; p; 0)k�are independent of � > 0 for any p 2 G. Indeed, given �; ~� > 0, and large k 2 N,there are k1; k2 2 N such that k � maxf�; ~�g � k1 � k � k2 � k + maxf�; ~�gand T (k1 ~�; p; 0) � T (k�; p; 0) � T (k2 ~�; p; 0). At the same time, (4.7) yields, foralmost all p, ������(p)� 1� ZG T (�; p; 0) �(dp)���� � 1=�:By taking � arbitrarily large, we conclude that ��(p) = �+(p), that islim�!1 T (�;p;0)� = � exists and is constant at almost all p | as claimed.References[1] L. Alsed�a, J. Llibre, and M. Misiurewicz. Combinatorial Dynamics and Entropyin Dimension One, volume 5 of Advanced series in Nonlinear Dynamics. WorldScienti�c, Singapore, 1993.[2] L. Auslander and F. Hahn. Real functions coming from 
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