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(�1; :::; �n) for which the product �� = ��1 :::��n is not zero? Concretely,when does the number an of such sequences of length n increase exponen-tially in n, i.e. h := limn!1 ln an=n > 0? We give a sharp answer in terms ofcertain algebras associated with the products ��1 :::��n . Our approach leadsthrough topological dynamics and yields results going far beyond answeringthe question. Indeed, the number h can be interpreted as the topologicalentropy of the shift map acting on the space of in�nite binary sequences forwhich any �nite segment is as above. This space is an example of what wecall a cocyclic subshift | a new kind of subshift that generalizes topologicalMarkov chains and so�c systems.If only to justify the name (cocyclic subshifts), let us assume a broaderperspective for a moment. Given a map f : X ! X, one may considercocycles � with values in a semigroup G with zero 0. This is to say that� : N �X ! G satis�es �(n +m; x) = �(n; x) � �(m; fnx), n;m 2 N, and0 2 G is such that 0 � g = g � 0 = 0 for all g 2 G. The support of the cocycle�, X� := fx 2 X : �(n; x) 6= 0 for all n 2 Ng, is forward invariant underf , fX� � X�. Our problem is an instance of a general question about therelation between the properties of X� and those of G and �.The cocyclic subshifts are, by de�nition (Section 2), the spaces X� ob-tained from the shift map f on X := f1; :::; mgN, (fx)i = xi+1, and froma locally constant2 cocycle � into the semigroup G = End(V ) of all lineartransformations of a �nite dimensional vector space V . (Our initial questioncorresponds to m = 2 and � depending only on x0.) This should be viewedas a generalization of [21], where B. Weiss introduced so�c systems by takingfor G any �nite semigroup (c.f. Section 10).Besides the broader class of subshifts considered, what sets our workapart from the existing literature on so�c systems is the focus on the algebragenerated by the cocycle: the algebra is less structured and more regular thanthe semigroup, thus allowing for more complete and constructive theory.Most importantly, by exploiting the classical Wedderburn-Artin theory of�nitely-dimensional algebras, we are able to implement for cocycles the ideasof reducible, irreducible, and aperiodic such that the corresponding cocyclicsubshifts have a structure very similar to that of topological Markov chainsde�ned by reducible, irreducible, and aperiodic matrices.In particular, the mixing cocyclic subshifts are those de�nable by aperi-2i.e. �(1; x) depends on a �nite initial block of x of �xed length.2



odic irreducible (primitive) cocycles; and they satisfy the speci�cation prop-erty. This is the key result of the paper with a corollary (via Bowen's theory)that the topologically transitive cocyclic subshifts are intrinsically ergodic(i.e. have a unique invariant probability measure of maximal entropy).To reveal our motivation, we mention that our results are relevant to thesymbolic dynamics built around the Conley index for maps ([15, 19, 18, 20,13]). While the reader may consult [18] for a formal exposition, let us give aglimpse of how cocyclic subshifts enter the scene.Roughly, the phase space (of a discrete dynamical system) is divided into�nitely many compact pieces labeled 1 through m. Each piece has associatedan index which is a pointed topological space, and the dynamics induceson the cohomologies of the indices an action that generates the cocycle onf1; :::; mgN. An in�nite sequence of pieces codes an orbit of the map (i.e. theorbit is selected from the sequence) provided the cocycle does not vanish:the sequence is in X�. One may think of this as a common generalization ofthe Lefschetz �xed point theorem, where there is only one piece (the wholespace), and the usual concept of a Markov partition, where there are manypieces but the way they map is very restricted. The role of the cocyclicsubshifts is then analogous to that of subshifts of �nite type in the standardsymbolic dynamics.The primary application of the technique is for con�rming chaos in con-crete dynamical systems, a problem that reduces to the question whetherX� factors onto the full two-shift ([14, 15, 20, 18, 3]). Our structure theoryfor cocyclic subshifts resolves the issue completely: the factor map exists i�in the spectral decomposition given by the Wedderburn-Artin theory of theappropriate algebras, there is an aperiodic component which is not a singlepoint (Corollary 9.3); and this criterion admits e�cient numerical implemen-tation | see the appendix. In fact, we prove that all of topological entropyon a cocyclic subshift is realized by embedded horseshoes (Theorem 7.2).Moreover, the cocyclic subshifts with zero entropy stand out as those withparticularly simple non-wandering dynamics concentrated on few periodicorbits captured by a certain zeta-like generating function (Section 9).As this paper is aimed at both a solution of the chaos detection problemand an introduction to a new type of symbolic dynamics, we con�ned itsscope in many respects. Restriction to the algebraically closed base �eld orthe one-sided shifts is easy to overcome and helped to simplify presentationof the main ideas. More notable omission is that of ergodic theory of the3



intrinsic measure (including the computation of the entropy h), which is dealtwith in the forthcoming [11]. Unresolved is also left the problem of factors ofcocyclic subshifts, an uncharted class that brings out more exotic semigroupsof subspaces of matrices, yet possibly coincides with cocyclic subshifts (seeSection 11). Here, [16] instills some hope by picking up our new class ofsubspace semigroups for systematic study.To end the introduction, we put together a quick guide to what follows.Sections 2 and 3 contain de�nitions and some basic properties of cocyclicsubshifts as dynamical systems. The progression of Sections 4, 5, and 6 de-velops a decomposition of a cocyclic subshift into irreducible and primitive(irreducible and aperiodic) pieces, and shows that these are topologicallytransitive and mixing, correspondingly. Thus the stage is set for the proofthat primitivity implies speci�cation in Section 7, with intrinsic ergodicity ofa topologically transitive cocyclic subshift and entropy generation by horse-shoes obtained as easy corollaries. Section 8 digresses to show that, undera suitable non-degeneracy assumption on a cocycle, its irreducibility andaperiodicity follows from transitivity and mixing (correspondingly) of theunderlying cocyclic subshift. Section 9 (together with the appendix) charac-terizes the cocyclic subshifts with zero entropy and then derives criteria forchaos; a certain zeta-like generating function is one notable tool here. Section10 discusses the inclusion of so�c systems into cocyclic subshifts; in particu-lar, it contains a concrete example of a non-so�c cocyclic subshift | perhapsworth inspecting just after reading Section 2. Section 11, in turn, contains anexample (the context free subshift) of a subshift with speci�cation that is notcocyclic nor is a factor of a cocyclic subshift. Finally, Section 12 introducesa useful way of presenting cocyclic subshifts by graphs with propagation, i.e.labeled (colored) graphs with matrix weights over the edges.Acknowledgments. It has been a pleasure to write most of this paper atthe Center for Dynamical Systems and Nonlinear Studies of Georgia Instituteof Technology, a uniquely stimulating and friendly group gathered aroundJack K. Hale. In particular, the author is grateful to K. Mischaikow, M.Mrozek, and A. Szymczak for introduction to the questions of the discreteConley index. Also, not to be left without praise should be the constructivecriticism of the referees that greatly in
uenced the �nal shape of this paper.
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2 The De�nition.Let A be a �nite alphabet of m symbols, say A = f1; :::; mg. Recall thatthe (full) one-sided shift (over A) is the product space AN with the shift mapf : AN ! AN given by f : (xi)i2N 7! (xi+1)i2N. Taken as a product ofdiscrete spaces, AN is compact, and f is a continuous map. The standardmetric d on X is d((xi); (yi)) = 2�j where j 2 N is minimal such thatxj 6= yj. By a subshift of AN we understand any closed X � AN that isinvariant under f (i.e. f(X) � X).Denote by End(V ) all the linear endomorphisms of a linear space V .The space V is always assumed to be �nite-dimensional, non-zero, and overan algebraically closed �eld C. Moreover, we shall compose linear mapsin End(V ) on the right: �(	(v)) = v	� for �;	 2 End(V ) and v 2 V .(Thereby we treat V as a right End(V )-module.) The following is the centralde�nition of this paper.De�nition 2.1 A cocyclic subshift of � = (�1; :::;�m) 2 End(V )m is thesubshift X� � AN given byX� := fx 2 AN : �x1 � � ��xn 6= 0; 8n 2 Ng:A subshift X � AN is a cocyclic subshift i� X = X� for some �.Note that X� can be empty.Following [5], any �nite sequence � 2 Ak will be referred to as a block(of length j�j := k). In particular, given x 2 AN and k 2 N, we have ablock [x]k := (x1; :::; xk). (We will also use [x]i;k := (xi; :::; xi+k�1).) Eachblock � determines an open set U� := fx 2 AN : [x]k = �; k = j�jg and aproduct �� := ��1 � � ���k . We say that � occurs in X� i� U� \X� 6= ;, andwe say that � is allowed (or ��allowed) i� �� 6= 0. All blocks occurring inX� are allowed, but not vice versa: an allowed � may not be a sub-block ofany x 2 X�. Nevertheless, the complement of X� is the union of U� over alldisallowed �'s; therefore, X� is compact. Since f(X�) � X�, X� indeed is asubshift.As indicated in the introduction, De�nition 2.1 can be recast in a moregeneral context of cocycles. Consider � : N�AN ! End(V ) that is a locallyconstant cocycle with values in the semigroup End(V ). This is to say that5



there are q 2 N and endomorphisms �i1:::iq 2 End(V ), ij 2 A, j = 1; :::; q,such that�(n; x) = �x1:::xq�x2:::xq+1 � � ��xn:::xn+q�1; x 2 AN; n 2 N:The minimal such q we call the anticipation3 of �, and by the support of �we understand the set fx 2 AN : �(n; x) 6= 0; 8n 2 Ng. In the case whenq = 1, the support coincides with the cocyclic subshift X�.Proposition 2.1 (characterization via cocycles) The class of cocyclicsubshifts of AN coincides with that of the supports of locally constant cocycleson AN (with values in the endomorphism semigroup of a �nite dimensionalvector space).Proposition 2.1 is an immediate consequence of the following lemma.Lemma 2.1 If � is a locally constant cocycle in End(V ), then there is a�nite-dimensional linear space V 0 and a locally constant cocycle �0 in End(V 0)with anticipation q0 � 1 such that, for x 2 AN,�(n; x) = 0; 8n 2 N () �0(n; x) = 0; 8n 2 N: (1)Proof. It su�ces to show that if the anticipation of � is q > 1, then�0 satisfying (1) can be found with anticipation q0 < q. Let Ji : V ! V mand Pj : V m ! V be the canonical injections and projections, so thatvJiPj = �ijv for v 2 V and i; j 2 A. Set, for any i 2 Aq�1 and x 2 AN,�0i1:::iq�1 := mXk=1 Piq�1�i1:::iq�1kJk and �0(n; x) := �0x1:::xq�1 � � ��0xn:::xn+q�2:By using JiPj = �ij, it is easy to see the corresponding cocycle to be�0(n; x) = mXk1;:::;kn=1Pxq�1�x1:::xq�1k1Jk1Pxq�x2:::xqk2Jk2 � � ��xn:::xn+q�2knJkn =mXkn=1Pxq�1�x1:::xq�x2:::xq+1 � � ��xn:::xn+q�2knJkn3c.f. [12] 6



The last sum contains the factor �(n� 1; x) in each term, so �(n� 1; x) = 0for some n > 1 implies �0(n; x) = 0. Also, Jxq�1�0(n; x)Pxn+q�1 = �(n; x) sothat �0(n; x) = 0 implies �(n; x) = 0. The equivalence (1) follows. 2We �nish this section with a couple of remarks. It may be convenientat times to talk about possibly in�nite blocks � = (�i)i=bi=a, where a; b 2Z[ f�1;1g, a � b. Note that, even though �� may be unde�ned, one canunambiguously de�ne the kernel ker(��) if a is �nite, the image im(��) if bis �nite, and non-vanishing of �� in any case.Also, rather than X�, it is often more suitable to consider the two-sidedcocyclic subshift consisting of all bi-in�nite (�a = b =1) allowed blocks,~X� := f(xi)i2Z : �xn � � ��xm 6= 0; n < m; n;m 2 Zg:Translation between ~X� and X� is standard: one views ~X� as the naturalextension of X� by identifying each (xi)i2Z 2 ~X� with the corresponding fullorbit (an)n2Z in X�, an+1 = fan; the two are related via xi := [ai]1, i 2 Z([5]).3 Preliminary properties.In order to establish cocyclic subshifts as a natural class of dynamical sys-tems, we shall verify that cocyclicity of a subshift X � AN is an intrinsicproperty of its shift dynamics f : X ! X and that it is preserved under thebasic set theoretic operations.Recall that a subshift X is conjugate to another subshift Y (possibly overa di�erent �nite alphabet ~A) i� there is a homeomorphism h : Y ! X suchthat h� ~f = f �h where f and ~f are the shift maps on X and Y , respectively.Theorem 3.1 (conjugacy invariance) A subshift conjugate to a cocyclicsubshift is a cocyclic subshift.Before a proof, recall that any subshift X � AN determines for r 2 N asubshift X [r] = f([x]i;r)i2N : x 2 Xg over the re�ned alphabet Ar, (recall[x]i;r = (xi; :::; xi+r�1)). This X [r], so called r-block presentation of X, isconjugate to X via the map 
[r]A : AN ! (Ar)N given by (xi)i2N 7! ([x]i;r)i2N(see [12]). 7



Lemma 3.1 If X � AN is a cocyclic subshift, then so is its r-block presen-tation X [r] � (Ar)N for r 2 N.Proof. Suppose that X = X� for some � 2 End(V )m. Consider thecocycle 	 : N� (Ar)N ! End(V ) given by	(1; ((x1;1; :::; x1;r); (x2;1; :::; x2;r); :::)) := (�x1;1 if x1;2 = x2;1; :::; x1;r = x2;r�1;0 otherwise:Roughly, 	 is � on the image of 
[r]A and zero on the complement, (wherethe progressive overlap condition, see [12], is violated). The anticipation of	 does not exceed two by de�nition. It is also easy to verify that X [r] is thesupport of 	, which makes X [r] a cocyclic subshift. 2Proof of Theorem 3.1. Suppose a subshift Y � ~AN is conjugate to acocyclic subshift X � A via h : Y ! X. Denote by B[r]X the set f[x]r :x 2 Xg of all r-blocks occurring in X, with the analogous de�nition for Y .It is well known that the conjugacy h and its inverse h�1 are sliding blockcodes ([12]), meaning that there are r; s 2 N and maps � : B[s]Y ! B[r]X and� : B[r]X ! B[1]Y such that, for y 2 Y and x 2 X,x = h(y) () [x]i;r = �([y]i;s); 8i 2 N () yi = �([x]i;r); 8i 2 N:The maps � and � on the symbols induce �1 : (B[s]Y )N ! (B[r]X )N and�1 : (B[r]X )N ! (B[1]Y )N. From h�1 � h = Id, � � �(y1; :::; ys) = y1 for any(y1; :::; ys) 2 B[s]Y . It follows that, �1 � �1 � 
[s]~A (y) = y for any y 2 ~AN suchthat [y]i;s 2 B[s]Y for all i 2 N.By Lemma 3.1, there are V and � 2 End(V )mr such that X [r] = X� �(Ar)N. We shall prove that Y is the support of the cocycle 	 : N� ~AN !End(V ) given by 	(1; y) := (�(1; �([y]s)) if [y]s 2 B[s]Y ;0 otherwise.Assume that y 2 ~AN is such that 	(n; y) 6= 0 for all n 2 N. Then[y]i;s 2 B[s]Y for all i 2 N, i.e. 
[s]~A (y) 2 (B[s]Y )N. Moreover, 	(n; y) = �(n; x)for x := �1 �
[s]~A (y) 2 (B[r]X )N and all n 2 N. From the assumption x 2 X [r],8



and so �1(x) 2 Y . Since �1(x) = �1 � �1 � 
[s]~A (y) = y, we have proventhat y 2 Y .On the other hand, given y 2 Y , we have [y]i;s 2 B[s]Y for all i 2 N, sothat 	(n; y) = �(n; x) 6= 0 for x = �1 � 
[s]~A (y) and all n 2 N. 2Out of the multitude of possible algebraic operations on cocycles, wesummon the direct sum and the tensor product to observe the following:Fact 3.1 The sum, intersection, and Cartesian product of two cocyclic sub-shifts are cocyclic subshifts.Proof. Let X� � AN and X~� � ~AN be cocyclic subshifts, � 2 End(V )mand ~� 2 End( ~V ) ~m.We claim that X� [X~� = X��~� where we assume that A = ~A and thecocycle �� ~� 2 End(V � ~V )m is given by (v� ~v)(�� ~�)(n; x) = v�(n; x)�~v ~�(n; x) for x 2 AN, n 2 N. The simple reason is that a � b = 0 i� a = 0and b = 0.On the other hand, X��X~� � (A� ~A)N coincides with X�
~� where thecocycle � 
 ~� 2 End(V 
 ~V )m ~m is given on simple tensors by (v 
 ~v)(� 
~�)(n; (x; y)) = v�(n; x)
 ~v ~�(n; y) for (x; y) 2 AN� ~AN, n 2 N. This hingeson the fact that a
 b = 0 i� a = 0 or b = 0.Finally if A = ~A, to get X�\X~� as a cocyclic subshift one can use �
 ~�restricted to the diagonal in AN�AN . By abusing notation we still write forit �
 ~� 2 End(V 
 ~V )m but now (v
 ~v)(�
 ~�)(n; x) = v�(n; x)
 ~v ~�(n; x)for x 2 AN , n 2 N. 2Another useful property is that cocyclic subshifts are closed under takingpowers and roots (of the shift map f). Recall, for a subshift X � AN andl 2 N, the map �(l)A : (x)i2N 7! ([x](k�1)l+1;l)k2N conjugates f l : X ! X towhat is called a power subshift X(l) � (Al)N.Proposition 3.1 (powers) Suppose that l 2 N and X � AN is a subshift.Then X is cocyclic i� X(l) � (Al)N is cocyclic.Proof. One implication is simple. If X = X�, then tautologically X(l) =X�(l) where �(l) 2 End(V )ml is the power cocycle, �(l)� := �� for � 2 Al.For the opposite implication, let � : N � (Al)N ! End(V ) be a cocyclerealizingX(l) as its support. Set ~V :=Ll�1i=0Nl�1j=0 Vi;j where Vi;j's are disjoint9



copies of V . The indexing is considered cyclic modulo l. For i = 0; :::; l � 1,k 2 N, and y 2 AN, let �i(k; y) 2 End(V ) be given by�i(k; y) := (�(k; �(l)A (y)) if i = 0;Id otherwise:Consider the cocycle �0 : N�AN ! End( ~V ) that is given on simple tensorsby4  l�1Mi=0 l�1Oj=0 vi;j!�0(1; y) := l�1Mi=0 l�1Oj=0 vi+1;j�i+j (mod l) (1; y):It is a routine calculation to verify that�Ll�1i=0Nl�1j=0 vi;j��0(n; y) =Ll�1i=0Nl�1j=0 vi+n;j�i+j+n�1(1; y):::�i+j+n�q(1; f q�1y):::�i+j(1; fn�1y):Thus, for n = kl, k 2 N, we have exactly k non-trivial �'s in the productabove (when i+ j � q (mod l)) so that l�1Mi=0 l�1Oj=0 vi;j!�0(kl; y) = l�1Mi=0 l�1Oj=0 vi;j�0(k; f i+j�1 (mod l)y): (2)Now, if y 2 X then also f i+j�1 (mod l)y 2 X, so that �0(k; f i+j�1 (mod l)y) 6=0 for all i; j; and consequently, �0(kl; y) 6= 0. Hence, X is contained in thesupport of �0.On the other hand, if y 62 X then �0(k; y) = �(k; �lA(y)) = 0 for somek 2 N. It follows that �0(kl; y) = 0, because, for each i, we have a tensorfactor �0(k; f i+j�1 (mod l)y) = �0(k; y) = 0 for j = 1 � i mod l. Hence, thesupport of �0 is contained in X. 24The idea is to suspend � by twisting the cyclic permutation ofLl�1i=0 Vi;j with � actingon the �jth place. Also, the tensor product would be super
uous if not for the possibilitythat x 62 X but fkx 2 X for some x 2 AN and k 2 N.
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4 Irreducibility and Topological Transitivity.We start in this section our main theme of correlating the structure of X�with the algebraic properties of the cocycle �.The set of all blocks can be thought of as a free semigroup with theconcatenation as multiplication. (For � = (�1; :::; �n) and � = (�1; :::; �m),their concatenation is �� = (�1; :::; �n; �1; :::; �m).) The semigroup of � �End(V )m is, by de�nition,G� := f�� : � is a blockgtreated as a sub-semigroup of End(V ) generated by the components of �.The map � 7! �� is a homomorphism between the two semigroups.Less structured (and more penetrable) is the algebra of �, by de�nitionequal to the linear span of G� in End(V ),E� := (X� a��� : a� 2 C almost all zero) :The algebra E� acts on V on the right, which is a �nite dimensional faithfulrepresentation. A particularly nice situation arises if this representation isirreducible, that is vE� = V for any non-zero v 2 V . Existence of such faith-ful representation (primitivity) is equivalent to E� being simple (no properbi-ideals exist and E2� 6= 0). The Wedderburn-Artin theory (p 421 in [8] or[6]) asserts that a simple algebra is the full endomorphism algebra over a di-vision ring, which means that E� = End(V ) because the �eld is algebraicallyclosed.De�nition 4.1 A cocycle � 2 End(V )m is irreducible i� V 6= 0 and E� =End(V ). A cocyclic subshift is irreducible i� it can be represented as X� forsome irreducible �.The de�nition di�ers from the one in [21] where simplicity of the semi-group (not the algebra) is postulated5. This will ultimately allow for more5The two are not equivalent: Z is not simple as a semigroup but has a primitiverepresentation as multiplication in C (with E = C simple), and the cyclic multiplicativesemigroup Zp is simple but its faithful complex representations are all diagonizable (p.443, [1]). 11



complete description of the dynamics in terms of the underlying algebra. Re-call that X� is topologically transitive i� the orbit ffnxgn2N is dense in X�for some x 2 X�. Also, if a block � has non-nilpotent ��, then the in�niteconcatenation x = �1 (i.e. xi := �i mod j�j) is a periodic point in X�; theperiod is equal to j�j i� � is not a power (i.e. � = �l implies l = 1). Allperiodic points in X� arise in this way, and we will denote their union byPer(X�).Theorem 4.1 (transitivity) If � is irreducible, then X� is non-empty,topologically transitive, and the set of periodic points Per(X�) is dense inX�.The following frequently invoked lemma uncovers the mechanism behindthe theorem.Lemma 4.1 (connecting) Suppose that � is irreducible. If � and ! aretwo allowed blocks, that is ��;�! 6= 0, then there is a block � for which���! 6= 0. Moreover, such � exists withj�j � maxf0; dim(ker(�!))� dim(im(��)) + 1g � d = dim(V ):Note one easy corollary: all allowed blocks occur in X� for irreducible �.Proof of Lemma 4.1. Let b be a �nite set of blocks such that (��)�2bforms a basis of E� = End(V ) as a linear space over C. There is C 2 End(V )such that ��C�! 6= 0, and so one must have �����! 6= 0 for some � 2 b.Note that j�j has an upper bound that is uniform in � and ! | a fact thatsu�ces for much of what follows in this paper. The "moreover part" needsanother argument though.Suppose that ��! = 0, as otherwise there is nothing to prove, and setk := minfj�j : �����! 6= 0; � a blockg, k � 1. Consider � = (ik; :::; i1) with�����! 6= 0. Set V1 := ker(�!). Observe that(i)1 im(���ik :::�i1) 6� V1;and, by minimality of k, we have(ii)1 im(���ik :::�il) � V1; 1 < l � k;12



since otherwise ���ik :::�il�! 6= 0. It follows that V1�i1 6� V1, that is V2 :=fv 2 V1 : v�i1 2 V1g is properly contained in V1. A similar argument as forV1 yields (i)2 im(���ik :::�i2) 6� V2;and, by minimality of k, we have(ii)2 im(���ik :::�il) � V2; 2 < l � k:Again, V3 := fv 2 V2 : v�i2 2 V2g must be strictly contained in V2. Byiterating this process, we get a strictly descending sequence of linear spacesV1 � V2 � ::: � Vk all of which contain im(��). It follows that k � 1 �dim(V1)� dim(im(��)), which ends the proof. 2For x 2 X, the eventual rank of x (with respect to �) is de�ned asq(x) := limn!1 rank(�(n; x)):Clearly, the sequence stabilizes and fx 2 AN : q(x) > 0g coincides with X�.Proof of Theorem 4.1. To come up with a point y 2 X� which trajectoryis dense in X�, form a sequence including all the allowed blocks: !1; !2; ::: ,�!i 6= 0 for i 2 N, and then use Lemma 4.1 repeatedly to get �i's such thaty := !1�1!2�2::: belongs to X�. (Allowed blocks exist by irreducibility, inparticular X� 6= ;.)For density of Per(X�), it is enough to prove that Per(X�) accumulateson the point y found above. Take n arbitrary but large enough to haverank(�(n; y)) = q(y). Because (fmy)m2N �lls X� densely, there is m suchthat � := [y]n = [fm+ny]n and so [y]n+m+n = ��� for some �. If V0 :=im(��) = V ��, thenim(����) = V0��� = V0���� � V0:In fact, the inclusion above must be equality because all the involved spaceshave dimension equal to q(y). Thus V0��� = V0 and so ��� is not-nilpotent,which puts (��)1 and z = (��)1 in Per(X�). Since d(z; y) � 2�n, we aredone by arbitrariness of n. 2 13



5 Spectral Decomposition.Our next task is to represent the recurrent dynamics of a cocyclic subshiftas a union of irreducible cocyclic subshifts. This is analogous to the spectraldecomposition of a hyperbolic set ([17]) with an important caveat that theunion need not be disjoint, and the points in its complement need not bewandering but merely transient in the following sense.For a map f : X ! X and k 2 N, we shall call a set U � X k-transient ifsupx2X#fn 2 N : fnx 2 Ug � k:Actually, we are only interested in the case when X is a compact Hausdor�topological space, f is continuous, and U is open (so that 1-transient U iswhat normally is called a wandering neighborhood, [5].) By a transient U wemean U that is k-transient for some k 2 N, and the transient set of f isT (f) :=[fU : U is open and transientg:While avoiding detailed discussion, we relate T (f) to the standard notionsof the non-wandering set 
(f) := (SfU : U is open and wanderingg)c and the(positively) recurrent set R(f) := clfx 2 X : x 2 !(x)g| where cl stands forthe closure and !(x) is the accumulation set of (fnx)n2N.Proposition 5.1 (i) The wandering points, 
(f)c, are dense in T (f).(ii) The transient points are not recurrent: R(f) � T (f)c.We remark that R(f) = T (f)c for cocyclic subshifts as will be apparent fromTheorem 5.1.Proof. (i) Clearly, 
(f)c � T (f). For density, we exhibit a non-emptywandering W in any non-empty transient U . As a function of x 2 X,kU(x) := #fn 2 N : fnx 2 Ug is lower-semicontinuous and bounded fromabove. Thus, for k0 := maxx2U kU(x), the setW := fx 2 U : kU(x) = k0gis open. W is also wandering, as otherwise x; fnx 2 W for some n > 0 sothat kU(x) = kU(fnx) + 1 > k0 | which is a contradiction.14



(ii) It su�ces to verify that (with kU(x) as in the proof of (i))cl [x2X !(x)! = �[fU : U open and kU(x) < +1 for x 2 Xg�c : (3)If y 2 !(x) for some x 2 X, then kU(x) = +1 for any neighborhood U of y|the \�" inclusion follows. On the other hand, if y has an open neighborhoodV disjoint with !(x) for all x 2 X, then kU(x) < +1 for a neighborhood Uof y that is pre-compactly contained in V . The \�" inclusion follows. 2Returning to cocyclic subshifts, transient dynamics may appear in X�in the presence of nilpotent bi-ideals in E�. If J � E� is such an ideal,that is E�JE� � J and J t = 0 for some t 2 N, then any block � with�� 2 J can repeat at most t � 1 times in any allowed block !. Indeed, if! = �1��2�:::�t��t+1, then �! 2 ��1J��2 :::J��t+1 � J t = 0: We refer tosuch � as a transient block because � can occur at most j�j � t times in anyx 2 X�, so that #fn : fnx 2 U�g � j�j � t and U� is transient.Assume that, for some non-zero linear spaces V1; :::; Vr, we have a homo-morphism R : E� !Qri=1 End(Vi) satisfying the following hypothesis(H) the kernel J of R is nilpotent and the components Ri : E� ! End(Vi),i = 1; :::; r, are surjective.For x 2 AN the homomorphism R determines the partial eventual ranksqi(x) := limn!1 rank(Ri(�(n; x)); i = 1; :::; r;which add up to q+(x) := Pi qi(x). Note that, if q+(x) = 0, then there isn 2 N such that �(x; n) 2 J(E�), which makes [x]n a transient block andany x 2 U[x]n a transient point.Theorem 5.1 (spectral decomposition) If X� is a cocyclic subshift, andR : E� !Qi End(Vi) satis�es the hypothesis (H), then the sets (X�)i := fx 2AN : qi(x) > 0g are irreducible cocyclic subshifts for irreducible cocycles�i := (Ri(�k))k2A 2 End(Vi)m:The union Sri=1(X�)i is a cocyclic subshift for(R(�k))k2A 2 End Mi Vi!15



and equals (X�)+ := fx 2 AN : q+(x) > 0g, which constitutes the set T (X�)cof all non-transient points of X�.Proof. Checking that the cocycles determine the right subshifts is trivial.The irreducibility follows immediately from the surjectivity in (H). That allnon-transient points are accounted for has already been observed. 2As noted before, the basic sets (X�)i need not be disjoint nor di�erent,a 
aw that can be remedied by passing to an appropriate cocyclic subshiftthat factors onto (X�)+ (�nite-to-one). Such is the cocyclic subshift withthe alphabet f(i; k) : i = 1; :::; r; k = 1; :::; mg and the cocycle given by(Ri(�k))(i;k), as it splits into disjoint transitive sets that are naturally conju-gate to the (X�)i's. This is reminiscent of the situation for so�c systems6 thatlack spectral decomposition, but are factors of topological Markov chains thathave spectral decomposition ([5]). Also, that there may be non-wanderingpoints outside (X�)+ can be seen in a so�c example7 given by the space ofsequences of 1's and 2's with at most two 1's occurring in each sequence (take�1 nilpotent with �21 6= 0 and �31 = 0, and �2 = Id). Here (X�)+ = f21g,yet every symbolic sequence with exactly one occurrence of 1 represents anon-wandering point (which is nevertheless 2-transient).To supply a homomorphism R satisfying hypothesis (H) for any non-empty X�, one can use the Wedderburn-Artin theory. Recall (see IX.2 in[8] or [6]) the Wedderburn (or Jacobson) radical J(E�) of the algebra E� isthe union of all nilpotent two-sided ideals in E� and is a nilpotent two-sidedideal by itself. Thus, J(E�)t = 0 for some minimal t = t�; and J(E�) 6= E�given that X� 6= ;. The quotient E�=J(E�) is then a semisimple algebraand, by the Wedderburn-Artin Theorem (Th 5.7, IX, [8]), it is isomorphic toQri=1 End(Vi) for some non-zero linear spaces Vi, i = 1; :::; r = r�. Intrinsi-cally, r� is the number of simple ideals in E�=J(E�) (c.f. Prop. 3.8, [8]) andPi dim(Vi) � dim(V ) (see (5) ahead). (Irreducibility of X�, which we donot assume, translates to r� = 1.)In order to obtain suitable R : E� ! Qi End(Vi), precompose the iso-morphism with the canonical projection E� ! E�=J(E�). The collection ofcocyclic subshifts ((X�)i)r�i=1 thus provided by Theorem 1 will be called the6Think of the union of two full shifts: one on f1; 2g and another one on f2; 3g; theyshare 21.7suggested by the referee 16



Wedderburn decomposition of X�. At this point we can record the followingconverse of Theorem 1 (c.f. Corollary 7.1 and Question 4 in Section 6 of [21]).Corollary 5.1 (irreducibility) A topologically transitive non-empty cocyclicsubshift is irreducible.Proof. A union of compact invariant sets is topologically transitive onlyif it coincides with one of the sets. Hence, for the Wedderburn spectraldecomposition of X�, we have X� = Si(X�)i = (X�)i for some i, and thesubshift X� coincides with one of its irreducible components. 2Before leaving this section, we digress that the Wedderburn-Artin homo-morphism R is not the only R satisfying hypothesis (H), but it is the simplestsuch R. Let us illuminate this point and use the opportunity to record a fewuseful algebraic facts.Consider another homomorphism that satis�es (H), ~R : E� !Q~rj=1 End( ~Vj).Because ~R(J(E�)) � J(Q~rj=1 End( ~Vj)) = 0 (see Prop. 3.1.3 in [6]), we haveJ(E�) � ker( ~R). From (H), the opposite inclusion holds so that J(E�) =ker( ~R). Thus ~R induces a monomorphism� : rYi=1 End(Vi)! ~rYj=1End( ~Vj)such that ~R = � �R, and in this sense R is simpler than ~R.Moreover, the structure of � is very transparent: The component homo-morphisms �ij : End(Vi)! End( ~Vj) are either zero or isomorphisms becauseEnd(V ) is simple for any non-zero V (see Schur's lemma, [6]). Additionally,if i1 6= i2, then �i1i2j : End(Vi1)� End(Vi2)! End( ~Vj) has a non-zero kernel(by counting dimensions). The kernel must be equal to one of the two ideals0 � End(Vi2) or End(Vi1) � 0, so that �i1j = 0 or �i2j = 0. In this way, foreach j there is a unique i with �ij 6= 0.8 One immediate corollary is thatXi dim(Vi) �Xj dim( ~Vj): (4)8This essentially proves a standard fact (see [6]) thatLj ~Vj is isomorphic as a moduleover E� toLi kiVi; here ki := #fi : rij 6= 0g.17



Finally, although optimal, R may not be best suited for practical calcu-lations: it is more convenient to deal with ~R derived directly from the givenrepresentation on V . The linear space V , as a right module over E�, has acomposition series (p. 375 in [8])0 =W~r � W~r�1 � :::: � W0 = V;where the quotientsWk�1=Wk have no proper submodules. One can constructa (non-canonical) splitting of V into linear spaces V = L~rj=1 ~Vj so thatWj = ~Vj � ::: � ~V~r. For any map A 2 E�, the component A(ij) : ~Vi ! ~Vj isde�ned as the composition of A with the canonical injection of ~Vi and thecanonical projection onto ~Vj. The map ~Rj : A 7! A(jj) is a homomorphism.It is either zero or it is onto End( ~Vj) because ~Vj ' Wj�1=Wj, having noproper submodules, is either zero or simple (over ~Rj(E�)). Since also A(ij)vanishes for i > j, the homomorphism ~R := Qj2fj: ~Rj 6=0g ~Rj has a nilpotentkernel; ~R satis�es hypothesis (H).Moreover, because Pj dim( ~Vj) � dim(V ), inequality (4) yieldsXi dim(Vi) � dim(V ): (5)Also, on assumption that �ij :6= 0, �ij : End(Vi) ! End( ~Vj) being an iso-morphism implies rank(A(jj)) = rankVi(Ri(A)) for any A 2 E� (where thesubscript Vi indicates that the rank is computed in the representation on Vi).It follows thatXi rankVi(Ri(A)) �Xj rank(A(jj)) � rank(A): (6)We shall need (5) and (6) later in Sections 7 and 8.6 Aperiodicity and Aperiodic Decomposition.The Wedderburn-Artin decomposition can be re�ned so as to distinguishwithin each transitive basic set �ner aperiodic (primitive) components thatare cyclicly permuted by the dynamics. A more structured algebra than E�serves this purpose. 18



Recall (from Section 3), that for any l 2 N, the iterate f l : X� ! X� isnaturally conjugate to the power subshift X(l), which is the cocyclic subshiftX�(l) � (Al)N supporting the cocycle�(l) := (��)�2Al � End(V )ml:The corresponding algebra, denoted by E (l)� , is generated by all �� with j�jdivisible by l. Of particular importance is the tail algebra of � given byE (1)� := \l2N E (l)� :Observe that E (1)� := Tk2N E (lk)� for lk := k!, and this is an intersection of adescending sequence of linear spaces so E (1)� = E (s)� for some s 2 N. We willwrite s� for the minimal s with this property. Of special interest is the casewhen s� = 1, i.e. E (l)� = E� for all l 2 N.De�nition 6.1 A cocycle � 2 End(V )m is called aperiodic i� V 6= f0g andits algebra coincides with its tail algebra, that is E� = E (1)� . A cocycle � iscalled primitive i� it is irreducible and aperiodic, that is V 6= f0g and E� =E (1)� = End(V ). A cocyclic subshift is aperiodic i� it can be represented asX� for some aperiodic �, and it is primitive if such � exists that is primitive.Note that from E�(lk) � E�(l) for k; l 2 N, it follows thatE (1)� = E (1)�(l) � E�(l) � E�; l 2 N:As an immediate consequence we note the following.Corollary 6.1 (i) If � is aperiodic (primitive), then so is �(l), l 2 N.(ii) If �(l) is primitive for some l 2 N, then so is �.Note that, from (i), if a subshift is primitive cocyclic then its powersubshift is primitive cocyclic. The opposite implication (stronger than (ii)above) will be proven only in the next section (see Corollary 8.2).As in Section 5, to decompose an irreducible cocyclic subshift into aperi-odic pieces, we use the (surjective) homomorphismM : E (1)� !Qj End(Wj)that induces the isomorphism of E (1)� =J(E (1)� ) and Qj End(Wj), for some19



non-zero linear spaces Wj, j = 1; :::; r1� . Here we should note that J(E (1)� ) 6=E (1)� because Per(X�) 6= ; : given �1 2 Per(X�), ��s� 2 E (s�)� = E (1)� isnon-nilpotent. Again J(E (1)� )t = 0 for some t 2 N, and let t1� be the minimalsuch t. M satis�es then the analogue of hypothesis (H) in Section 5,(HH) the kernel J of M is nilpotent and the components Mj : E (1)� !End(Wj), Wj 6= f0g, are surjective.Given x 2 AN, the appropriate partial eventual ranks areq1j (x) := limn!1 rank(Mj(�(ns; x))); s = s�;with q1+ (x) :=Pj q1j (x).Any irreducible X� is made of a cyclicly permuted aperiodic cocyclicsubshift, as described by the following result.Theorem 6.1 (aperiodic decomposition) If � � End(V )m is irreducible,then there exists q 2 N, q � d := dim(V ), such that X� = X0 [ ::: [ f q�1X0for some X0 � X� that is invariant under f q, and f q : X0 ! X0 is naturallyconjugate to a cocyclic subshift with a primitive power. In fact, if s = s�, sothat E (1)� = E (s)� , and M : E (1)� ! Qrj=1 End(Wj) satis�es hypothesis (HH),then X� is the union of(X�)(1)j := fx 2 AN : q1j (x) > 0g; j = 1; :::; r;which (acted upon by f s) are naturally conjugate to the primitive cocyclicsubshifts of (As)N that are given by the primitive cocycles�(1)j := Mj(�(s)) = (Mj(��))�2As � End(Wj)ms:The set X0, as well as each of its iterates fX0; :::; f q�1X0, can be found asone of the (X�)(1)j 's; moreover, q � r � d and q divides s.Remark 6.1 As it will become clear later (Corollary 8.2), f q : X0 ! X0in the theorem is in fact a primitive cocyclic subshift, even though we shownow only that it has a primitive power. To exemplify the di�culty consider� = (�1) with �1 = � 0 11 0 � so that r1� = s� = 2 and X� = f11g =(X�)(1)1 = (X�)(1)2 = X0; primitivity of �(1)1 assures only that f 2 : X0 ! X0is primitive, not f : X0 ! X0. 20



Proof of Theorem 6.1. That (X�)(1)j arises from �(1)j is a tautology.We �rst show that �(1)j is primitive. Since Mj is a homomorphism, wehave E�(1)j = Mj(E (s)� ). But Mj(E (s)� ) = Mj(E (1)� ) = End(Wj), which makes�(1)j irreducible. Moreover, not only E�(1)j = Mj(E (s)� ), but for the samereason E (l)�(1)j = Mj(E (sl)� ), for all l 2 N. By the de�nition of s, the right-hand sides of the two last equalities coincide so E (l)�(1)j = E�(1)j ; consequently,E (1)�(1)j = E�(1)j = End(Wj) and �(1)j is primitive.Next, we argue that X� = Srj=1(X�)(1)j . (That r � d follows from (5) inSection 5.) Periodic orbits are dense inX� (Theorem 1), so it su�ces to showthat x 2 Per(X�) and q1+ (x) = 0 implies a contradiction. Represent then xas x = �1 with j�j divisible by s. Since q1+ (x) = 0, we have Mj(��N ) = 0 forsome N and all j. Thus ��N 2 ker(M) = J(E (1)� ) and ��Nt 2 J(E (1)� )t = 0,t = t1� , which contradicts x 2 X�.To �nish the argument we will show that, upon reordering of the (X�)(1)j 's,we have X� = S1�j�q(X�)(1)j , where (X�)(1)j+1 mod q = f(X�)(1)j mod q forj = 1; :::; q and some q � r. Note that, for any j, there is i such thatf(X�)(1)j � (X�)(1)i ; indeed, take z with its orbit under f s dense in (X�)(1)j ,fz 2 (X�)(1)i determines the suitable i. Of all the (X�)(1)j 's, let (X�)(1)1 ,: : : , (X�)(1)~r be these maximal with respect to inclusion (after renumberingperhaps) so that still X� = S1�j�~r(X�)(1)j . These ~r sets are permuted byf (because f s �xes them) and the permutation decomposes into cycles ofthe form (X�)(1)j1 ! (X�)(1)j2 ! ::: ! (X�)(1)jq ! (X�)(1)j1 , where q � r,q divides s, and all the maps are onto (by the maximality). The union ofthe (X�)(1)j 's along such a cycle is a compact invariant subset of X�. Beingtransitive, X� must coincide with one such union, and X0 = (X�)(1)j1 satis�esthen the conditions of the theorem. 2In a similar fashion to the situation in Theorem 5.1, the family of primitivepieces (X�)(1)j may be very redundant, with some of them intersecting oreven coinciding. Partly to blame is the fact that we do not optimize �for the given cocyclic subshift; however, disjointness of the primitive piecesis precluded by the very nature of the dynamics on X� | it breaks down21



already for so�c systems9. Of course all these problems vanish if one is willingto take �nite-to-one factors.7 Speci�cation and Intrinsic Ergodicity.Our goal now is to see that primitivity of a cocyclic subshift is equivalent toits topological mixing, or to a stronger property of speci�cation. Intrinsic er-godicity of topologically transitive cocyclic subshifts is one notable corollary.Recall that a subshift X is topologically mixing i�, given two blocks �1 and�2 that occur in X, there is n0 so that n � n0 implies that �1��2 occurs inX for some � with j�j = n. The speci�cation property requires furthermorethat the gap length n is uniform: X has speci�cation if there is n0 such thatgiven two occurring blocks �1 and �2 and n � n0, �1��2 occurs in X forsome � with j�j = n. This can be seen ([2]) as an equivalent formulation ofthe following Bowen's condition on existence (speci�cation) of periodic orbits(c.f. Def. 21.1 in [5]):(S) for some n0 2 N, given a �nite sequence of occurring blocks �1; :::; �kand numbers li � n0, i = 1; :::; k, there are connecting blocks �i, j�ij =li, such that (�1�1�2�2:::�k�k)1 2 Per(X�)We postpone the proof of the following well known fact.Fact 7.1 For a subshift X � AN, if its power subshift X(c) � (Ac)N hasspeci�cation for some c 2 N, then X has speci�cation.Theorem 7.1 (speci�cation) A primitive cocyclic subshift has speci�ca-tion.Speci�cation guarantees for a subshift good statistical properties, partic-ularly intrinsic ergodicity : by the theorem due to Bowen (Th. 22.15 in [5]),(S) implies existence of a unique probability measure � of maximal entropy.If X� is not primitive but merely transitive the maximal entropy measurestill exists; it is the average of the measures on the primitive componentsX0; :::; f q�1X0 provided by Theorem 6.1. Thus we can note the followingimportant corollary.9Consider a graph with two vertices a; b and edges ab labeled 0, ab labeled 1and ba labeled 1. The sequences starting with even number of 1's form a primitivepiece which shares 11 with its image under f .22



Corollary 7.1 A transitive cocyclic subshift is intrinsically ergodic.A construction of the maximal measure via an appropriate transfer operatorcan be found in [11].Proof of Theorem 7.1. Let X = X� � AN for a primitive cocycle � 2End(V )m. The argument is similar to that for density of periodic points inthe proof of Theorem 4.1. Letq0 := minfrank(��) : � is an allowed block, i.e. �� 6= 0g;and let � be a �xed block with rank(��) = q0. Set V0 := im(��). The roleof minimality of q0 is embodied by the following implication: if � is a blockwith ���� 6= 0, then rank(����) = q0 and V0��� = V0. By irreducibility such� exists (Lemma 4.1); choose one and set 
 := ��, c := j
j.In view of Fact 7.1, it su�ces to prove speci�cation for X(c). List allblocks occurring in X with length divisible by c : �1; �2; ::: . For each k 2 N,due to irreducibility of X�(c) (from Corollary 5.1), one can use Lemma 4.1 to�nd blocks �k and �k such that �
�k�k�k
 6= 0 and dc � j�kj; j�kj 2 cN. Asanticipated, the minimality of q0 assures that V0��k = V0 for �k := �k�k�k
,as well as V0�
 = V0. For any two blocks �k and �j, and for l � 0, wehave V0��k
l�j = V0 so that �k�k
l+1�j�j occurs in X. In this way, we canconnect �k with �j with any gap length n exceeding 2dc+ c. Hence, X(c) hasspeci�cation and so does X by Fact 7.1. 2Even though cocyclic subshifts are generally not uniformly hyperbolic, letus observe that horseshoes are still the mechanism responsible for generatingall of the topological entropy (which is reminiscent of Katok's theorem forC1+�-di�eomorphisms of surfaces [9]). This hinges on the existence of asynchronizing word, as the 
 in the proof of Theorem 7.1 above.Theorem 7.2 (horseshoes) Suppose that X� is a cocyclic subshift. Forany � > 0, there exist N; n 2 N such that N � exp(n(h(f) � �)) andfn : X� ! X� has an embedded full N-shift; namely, f�i1�i2::: : ij 2f1; :::; Ng; j 2 Ng � X� for some pairwise di�erent blocks f�igNi=1 of lengthn. Proof. It su�ces to argue in the primitive case since the full entropy mustbe carried on one of the mixing pieces (X�)(1)j provided by Theorem 6.1.23



Assume then that 
, c = j
j, is a (synchronizing) block as in the beginningof proof of Theorem 7.1. From the de�nition of topological entropy (viaseparated sets, see [5]) conclude that, for arbitrarily large n0 2 cN, thereare N � exp(n0(h(f) � �=2)) di�erent blocks �1; :::; �N of length n0 with��i 6= 0, i = 1; :::; N . Set l = 2dc + c. As before we can get blocks �iof the form �i := �i�i�i
di , di 2 N, such that V0��i = V0 and j�ij are allequal to n := n0 + l. These blocks can be freely concatenated: if x 2 AV isconcatenated from elements of the set f�igi2N, then V0�x 6= 0 so that x 2 X�.Since l is independent of n0, we have N � exp(n(h(f) � �)) provided n0 islarge enough. 2We append the proof of Fact 7.1 for completeness.Proof of Fact 7.1. The blocks occurring in X(c) correspond to the blocksof X with length divisible by c. Thus speci�cation for X(c) means that thereis l0 2 N such that if �1 and �2 with c dividing j�ij, i = 1; 2 occur in Xand l � l0, then �1��2 occurs in X for some � with j�j = lc.Suppose that n � l0c and �1 and �2 occur in X. Write n = lc + r withl � 0 and 0 � r < c. There are blocks �1, �2, and � with j�j = r, such that�1 := �1�1� and �2 := �2�2 occur in X and c divides j�ij, i = 1; 2. (To �nd�1, use f(X) = X | which follows from transitivity.)Now, �1��2 = �1�1���2�2 occurs in X for some � with j�j = lc by speci-�cation for X(c). Thus �1
�2 occurs in X, for 
 = �� and j
j = n. 28 Primitivity fromMixing, and Irreducibilityfrom Transitivity.A primitive cocyclic subshift is mixing by Theorem 7.1. We set out to showthe opposite implication, which complements the already proven fact that atransitive cocyclic subshift is irreducible (Corollary 5.1). In fact, we shall seethat, under suitable assumptions on a cocycle, transitivity and mixing of acocyclic subshift force, correspondingly, irreducibility and primitivity of thecocycle.It is instrumental to consider together with a cocycle � 2 End(V )m its ex-terior powers �^r = (�^ri )mi=1 2 End(V ^r)m, where V ^r is the linear space ofantisymmetric tensors of degree r on V and �^ri is the map induced on tensorsby �i, i = 1; :::; m. Since, for A 2 End(V ), rank(A) � r i� rank(A^r) � 1,24



X� strati�es intoX�^r = fx 2 X� : rank(�[x]n) � r; for all n 2 Ng; r = 1; : : : ; dim(V ):In particular, if r0 is the minimal rank of �, by de�nition equal tor0 = min rank(�) := minfrank(��) : �� 6= 0g;then X� = X�^r0and the minimal rank of �^r0 equals 1.Proposition 8.1 (rank reduction) If X is a cocyclic subshift, then X =X	 for some 	 of minimal rank 1. Moreover, if X is irreducible, then such	 exists that is irreducible.Proof. The �rst assertion follows by passing to the rth0 exterior power, asexplained above. For the moreover part, we may already assume then thatX = X� for � with minimal rank 1. By Theorem 4.1, X� is topologicallytransitive. In the Wedderburn-Artin decomposition of X� given by Theorem5.1, X� is equal then to some (every) basic set (X�)i (c.f. the proof of Corol-lary 5.1). Since, rankVi(Ri(A)) � rankV (A) for any A 2 E� (by (6) in Section5), the minimal rank of Ri(�) does not exceed that of � | so it equals 1,and 	 = Ri(�) is the desired cocycle. 2Here is one advantage of reducing the minimal rank to one:Theorem 8.1 If � 2 End(V )m is such that E� has no radical, i.e J(E�) =f0g, and � has minimal rank 1, then(i) if X� is transitive, then � is irreducible;(ii) if X� is mixing, then � is primitive.We should note that J(E�) = f0g for any irreducible �. In fact, J(E�) =f0g means that E� is semisimple so that � is a direct sum of irreduciblecocycles.Corollary 8.1 (primitivity) A non-empty mixing cocyclic subshift is prim-itive. 25



Proof of Corollary 8.1. If X is a mixing cocyclic subshift, then it istransitive and so it is irreducible by Corollary 5.1. The cocycle 	 providedby Proposition 8.1 satis�es then the hypothesis of Theorem 8.1 and so 	 isthe desired primitive cocycle with X = X	. 2Since mixing is preserved under taking roots, Proposition 3.1 and Corol-lary 8.1 yield the following corollary, which shows that ultimately the X0 inTheorem 6.1 is primitive (c.f. Remark 6.1).Corollary 8.2 If X is a subshift and its power X(l) is a primitive cocyclicsubshift for some l 2 N, then X is also a primitive cocyclic subshift.Proof of Theorem 8.1.(i): As in the proof of Corollary 5.1 or Proposition 8.1, X� coincides with itsevery irreducible component, X� = (X�)i, i = 1; : : : ; r�. Since the inequality(6) in Section 5 implies thatr�Xi=1 min rank(Ri(�)) � min rank(�);we must have r� = 1, which means that E� = E�=J(E�) = End(Vi) fori = 1 = r�, i.e. � is irreducible.(ii): First note that if X� is mixing then it is topologically transitive underany power of f , which makes X� equal to X0 in the aperiodic decompositiongiven by Theorem 6.1. Thus X� has a primitive power, and so X� hasspeci�cation by Theorem 7.1 and Fact 7.1.By the already proven (i), � is irreducible. We have to show that �is primitive, i.e. that E (l)� = End(V ) for all l 2 N, which is equivalent tovE (l)� = V for any non-zero v 2 V (c.f. the beginning of Section 4). Fix thenv 2 V n f0g and consider the subspacesW (l) := linfv�� : rank(��) = 1; l divides j�jg � vE (l)� ; l 2 N:We note that W (l)'s are invariant, W (l)E (l)� � W (l); and we claim that W (l) =V , l 2 N. For l = 1, E� = End(V ) from irreducibility, and W (1) = V by theinvariance because W (1) 6= f0g. For l > 1 we show that W (l) = W (1). Fixa block � with rank(��) = 1 and suppose that u := v�� 6= 0. Speci�cationsupplies a block � such that ���� 6= 0 and l divides j���j. Hence v���� =u��� = c � u for some non-zero scalar c, which proves that u 2 W (l). Byarbitrariness of �, W (l) =W (1) = V ; and vE (l)� = V follows. 226



9 Zeta Function and the Zero Entropy Case.Sections 5 and 6 give the following picture of a general cocyclic subshift.Corollary 9.1 For � 2 End(V )m, the non-transient set (X�)+ of the co-cyclic subshift X� is a union of at most dim(V ) sets, each invariant undersome positive iterate of the shift map and conjugate to a primitive cocyclicsubshift.The proof amounts to superimposing Theorem 6.1 onto Theorem 5.1:by recognizing the simple components of the algebra E�, pass to a numberof irreducible cocycles, and then further split each of these into primitivecocycles according to the simple components of its tail algebra. The totaldimension of the representation spaces for all the cocycles involved in eachstep does not exceed d = dim(V ) (c.f. (5) in Section 5) | thus the estimate.A primitive cocyclic subshift satis�es speci�cation (Theorem 7.1) and soit has positive topological entropy unless it is just one point (Prop. 21.6 in[5]). This yields the following complement to Theorem 7.2.Corollary 9.2 (zero entropy) A non-empty cocyclic subshift X� has zerotopological entropy i� its primitive pieces are single points; that is when thenon-transient set consists of at most dim(V ) periodic points.Sharpness of the estimate is con�rmed by a trivial example.Example. Take V with a basis (e1; :::; ed) and rank-one �i : V ! V withei 7! ei+1 (mod d), i = 1; :::; d. Then Per(X�) is readily seen to be a singleperiodic orbit of period d. (Also E� = End(V ), while E (1)� ' Cd.)In applying the Conley index methods to proving chaos ([15, 20, 18, 3]),the issue of recognizing whetherX� has positive entropy becomes particularlyimportant because then a power of X� (by Theorem 7.2) factors onto thefull two-shift10, and so does the original dynamical system by the algebraictopology of the Conley index (see [3]). In view of our structure theory, theproblem is completely resolved through inspection of the semisimple algebrasE�=J(E�) and E (1)� =J(E (1)� ).10i.e. a continuous h : X� ! f1; 2gN exists such that h � fk = f2 � h for some k 2 N,where f2 is the shift map on f1; 2gN 27



Corollary 9.3 A cocyclic subshift f : X� ! X� is chaotic, i.e. f haspositive entropy and fk continuously factors for some k onto the full two-shift i� X� has a primitive component that is not a point.Proof. If all primitive components are points then we are in the situationof Corollary 9.2 and the entropy is zero which precludes existence of the factormap. If one of the primitive components is not a point then speci�cationimplies positive entropy, and the factor map exists via Theorem 7.2. 2With some additional work, Corollary 9.3 leads to e�cient numerical al-gorithms. Without slowing down to discuss the details (relegated to theappendix), we turn to a su�cient condition for chaos in X� readily veri�ableby inspecting �. The way leads through a certain zeta function, an approachthat we developed for the proof of a conjecture due to K. Mischaikow andM. Mrozek. In our language, the conjecture reads:For some power of a cocyclic subshift X� to factor onto the full shiftf0; 1gN, it su�ces that either of the two hypotheses below is satis�edmXi=1 rank1(�i) > rank1 mXi=1 �i! ;mXi=1 rank1(�i) = rank1 mXi=1 �i!� 1;where rank1(A) := limn!1 rank(An).Based on a di�erent approach, special cases were established by A. Szym-czak who, arguing under the �rst hypothesis only, required that m = 2,rank1(�0) = 1, and rank1(�0 +�1) = 0 ([20]). In a subsequent re�nement,M. Carbinatto allowed for rank1(�0) > 1 (private communication). Observethat, in view of Theorem 7.2, the conjecture addresses exactly the problemof verifying positive topological entropy on X�.With a periodic orbit P � Per(X�) associate a rational function�P (z) := det(I � zp(x)�[x]p(x))�1; z 2 C;
28



where x 2 P and p(x) is the period (and recall that [x]p(x) = (x1; :::; xp(x))).This is the restriction to the diagonal in Cm of a more natural11 function�P (z1; :::; zm) := det(I � zp1(x)1 � ::: � zpm(x)m �[x]p(x))�1; z1; :::; zm 2 C;where x 2 P and pi(x) is the number of times i occurs in the block [x]p(x) sothat p1(x) + :::+ pm(x) = p(x). Note that, the de�nitions do not depend onx 2 P because det(I �AB) = det(I �BA) for any matrices A, B. Also, weinclude the exponent �1 to stress the analogy with the classical zeta function| although working with polynomials, not their reciprocals, is usually moreconvenient.The arrangement of the periodic orbits in X� is to some extent governedby an explicit function��(z1; :::; zm) := det(I � z1�1 � :::� zm�m)�1:Theorem 9.1 (zeta function) For a cocyclic subshift X� � f1; :::; mgN,��(z1; :::; zm) = YP�Per(X�) �P (z1; :::; zm) (7)where the product is taken over all periodic orbits P and converges absolutelyfor (z1; :::; zm) in a neighborhood of the origin in Cm.Proof of Theorem 9.1. This is a version of the standard zeta functiontrick. We carry out only the formal calculation leaving the convergence as asimple exercise. Also, no generality is lost in assuming that zi = 1. For anyA 2 End(V ), 1Xk=1 trace(Ak)zk=k = � ln det(I � zA): (8)Hence, 1Xn=1 X�2An trace(��1 :::��n)=n = 1Xn=1 trace((�1 + :::+ �m)n)=n;11re
ecting the fact that the projective action of the cocycle solely determines its sup-porting subshift. 29



which is ln(the left side of (7)). On the other hand, the above sum can becalculated over periodic points to giveXx2Per(X�) 1Xk=1 trace��k[x]p(x)� =(kp(x)) = Xx2Per(X�) 1p(x) 1Xk=1 trace��k[x]p(x)� =k;which is ln(the right side of (7)). 2Proof of the conjecture. Observe that rank1(A) is the degree of det(I �zA) as a polynomial in z for any A 2 End(V ). Due to Theorem 7.2, it su�cesto prove non-vanishing of topological entropy on X�. Suppose the entropyis zero. By Corollary 9.2, Per(X�) is �nite and the reciprocals of both sidesin the formula (7) are polynomials in z = z1 = ::: = zm. Each �xed pointx = i1, i = 1; :::; m, contributes to the product the characteristic polynomialdet(1� z�i), which implies that Pi rank1(�i) � rank1(�1 + :::+ �m) andcontradicts the �rst hypothesis. If the inequality above is strict, this is dueto some x 2 Per(X�) with the period p(x) > 1. The periodic orbit Pof x contributes a polynomial factor ��1P of degree at least p(x). Thus thediscrepancy between the two sides must be at least two; the second hypothesisis contradicted. 210 So�c and Non-So�c Cocyclic Subshifts.As indicated in the introduction, cocyclic subshifts include so�c systems.This can be seen in at least two ways: algebraic (Theorem 10.1) and graphtheoretic (Theorem 10.2). The main purpose of this section is to point outthat the inclusion is proper and to give a concrete example of an interestingcocyclic subshift.Recall that a so�c system, as introduced to ergodic theory by [21], isa subshift XG of the full shift on AN, A = f1; :::; mg, where G is a �nitesemigroup with a �xed set of generators fg1; :::; gmg and (xi)1i=1 2 XG i�gx1::::gxn 6= 0 for all n 2 N. So�c systems and their applications have aconsiderable amount of literature devoted to them | consult [4, 10, 12] andthe references therein (see also Section 12).Theorem 10.1 (i) Every so�c system is a cocyclic subshift.(ii) There exists a cocyclic subshift that is not so�c.30



A simple su�cient condition for X� to be so�c is positivity of the cocycle.Theorem 10.2 If � = (�i)i2A where �i's are represented by matrices withnon-negative entries, then X� is a so�c system. Any so�c system arises inthis way.We will prove Theorem 10.1 now and Theorem 10.2 in the next section.Proof of Theorem 10.1, part (i). This amounts to the standard task ofrepresenting G by linear transformations. Append the unity to G if necessaryto get a semigroup with unity ~G. Take for the linear space V the semigroupalgebra of ~G, V :=Lg2 ~G C, and associate to each i 2 A the linear transfor-mation �i induced on V by the right multiplication by gi. If � = (�i)i2A,then �(x1;:::;xn) = 0 i� gx1:::gxn = 0 | as a result X� = XG. 2For a proof of (ii) consider the following example.Example (of a cocyclic subshift that is not so�c).Take two copies V1 and V2 of R2 and linear maps �ij : Vi ! Vj given by thematrices (acting on the right)�11 = � 2 00 1 � �12 = � 1 1�1 �1 � �21 = � 1 00 1 ��22 = � 1 30 1 � :Let V := V1 � V2. Set �1 : v1 � v2 7! v1�11 � v1�12 and �2 : v1 � v2 7!v2�21 � v2�22. Take � := (�1;�2). By de�nition, (x1; x2; :::) 2 X� i��x1 :::�xn : V ! V is not vanishing for all n 2 N. Observe that this isequivalent to �x1x2 :::�xn�1xn : Vx1 ! Vxn being nonzero for all n 2 N, whichis why the block representation of �1 and �2 is so convenient, and why wecan abuse notation by writing �x1:::xn for �x1x2 :::�xn�1xn.To determine the sequences of 1's and 2's forming X�, we will look thenat the projective action in Vi, i = 1; 2. The diagram on Figure 1 convenientlyencodes all the relevant data (c.f. Section 12).Note that all the �ij's are nondegenerate matrices with the exception of�12, which has the line W of slope s = 1, W := f(x; y) 2 R2 : x = yg,for both its kernel and its image. The action of �11 and �22 on the slopes := y=x is given by �11(s) = s=2 and �22(s) = s+3 respectively. For �2n1m ,it is �2n1m(s) = (s+3(n�1))=2(m�1), m;n 2 N. Hence, we have �12n1m2 = 0,if 1 + 3(n� 1) = 2m�1; (9)31
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Figure 1: Graph with propagation of a nonso�c cocyclic subshift. A pathin the graph determines a sequence of 1's and 2's, which is in X� i� thecorresponding product of matrices over the edges is non-zero (equivalently, sdoes not get mapped to �).and otherwise �12n1m2(s) = 1 for all slopes s. It follows that, for � =2n11m12n21m2::: , �� does not vanish i� 1 + 3(ni � 1) 6= 2mi�1, i = 2; 3; 4::: .Note that no restrictions are put on n1 and m1, as the slope did not stabilizeto s = 1 at the outset. Accounting for the sequences terminating with 11 or21 and those starting with 1 leads to the following formula for X�:X� = f2n11m12n21m2 ::: : m1; n1 2 N [ f0;1g; and mi; ni 2 N [ f1g; with1 + 3(ni � 1) 6= 2mi�1 for i = 2; 3; 4; :::g:As a side remark, let us indicate thatX� is primitive. A simple calculationwith Mathematica con�rmed that the linear span of f�� : j�j = 4g is thewhole End(V ); in particular, it contains the identity so that End(V ) = E (4)� =Idl=4�1E (4)� � E (l)� for all l 2 4N. Hence, E� = E (1)� = End(V ).Proof of Theorem 10.1, (ii). For a block �, the set of ! for which �!occurs in some x 2 X� is called the follower set of �. To see that X� (fromthe example) is not a so�c system, it is enough to establish that there are32



in�nitely many di�erent follower sets (see [21] or page 252 in [5]). To thisend, let (mk; nk) for k 2 N be di�erent solutions to (9), say mk := 2k + 1and nk := (22k + 2)=3. The block 1ml21 is a follower of 12nk i� k 6= l. Thusthe follower sets of 12n1; 12n2; ::: are di�erent from each other. 211 Factors of Cocyclic Subshifts and Beyond.We turn our attention brie
y to factor subshifts of cocyclic subshifts and showthat they do not exhaust the whole class of subshifts with speci�cation. (Inparticular, a subshifts with speci�cation need not be cocyclic.)Recall that, given a cocyclic subshift X� � ~AN, a map h : X� ! AN isa factor map if it is continuous and h � ~f = f � h with ~f equal to the shifton ~AN. The subshift Y := h(X�) is referred to as the factor of X� (via h).For example, if one identi�es symbols via a surjective map � : ~A ! A, thenh : (xi) 7! (�(xi)) is a factor map. Actually, as observed already by Hedlund(see [5]), any factor map h has this form provided one is willing to replace Xwith its (conjugate) r-block presentation X�[r] for some r 2 N (see Section3 for de�nitions).For convenient algebraization of factors of cocyclic subshifts, we abandonEnd(V ) in favor of a new larger semigroup made of all linear subspaces inEnd(V ).De�nition 11.1 For a linear space V , the semigroup of linear subspaces ofEnd(V ), which we also call the subspace semigroup12 of End(V), isEnd(V ) := fW � End(V ) : W is a linear subspacegwith the product of W and ~W 2 End(V ) de�ned asW � ~W := linfA ~A : A 2 W; ~A 2 ~Wg:It is easy to see that End(V ) is indeed a semigroup with the zero subspacef0g serving as the zero element denoted by 0. Thus given V 2 End(V )m wehave the corresponding cocycle and the supporting it subshift isXV := fx 2 AN : Vx1 � ::: � Vxn 6= 0; 8n 2 Ng � AN:12This name has been coined in [16]. 33



Proposition 11.1 (factor) A subshift Y � AN is a factor of a cocyclicsubshift i� there is a �nite dimensional linear space V and V 2 End(V )msuch that Y = XV .Proof. Suppose that X = X� � ~AN; � 2 End(V ) ~m, is a cocyclic subshiftand Y = h(X) � AN is its factor via h. We may assume that h is given bya symbol identi�cation � : ~A ! A since we can always replace X with itsr-block presentation for some r 2 N, which is also cocyclic by Theorem 3.1.Setting Vj := linf�i : i 2 ��1(j)g, j 2 A, easily yields Y = XV .For the opposite implication, given V 2 End(V )m, select a basis in eachVj, so that Vj = linf�i : i 2 Ijg where �i 2 End(V ) and Ij's are disjointindex sets, j = 1; : : : ; m. Then XV is a factor of a cocyclic subshift X� with� = (�i)i2SjIj : 2Proposition 11.1 reveals little. Confronted with the exotic End(V ), weare left eluded by the obvious problem:Question 1: Are factors of cocyclic subshifts cocyclic?From an algebraic standpoint, one may rather ask a weaker question.Question 2: Can any �nitely generated sub-semigroup G � End(V ) berealized as a matrix semigroup? Precisely, is there a �nite-dimensional linearspace V 0 and a homomorphism � : G! End(V 0) such that ��1(0) = 0?Such representation � does not exist for G = End(V ) as pointed out in[16] | a work sparked by our inquiry about the nature of End(V ). Question1 aside, the theory of cocyclic subshifts sheds some light on their factors. Wemention only one such easy corollary without proof.Corollary 11.1 Suppose that Y is a factor of a cocyclic subshift.(i) If Y is topologically transitive, then Y is intrinsically ergodic.(ii) If Y is mixing, then Y has speci�cation.To exhibit examples of subshifts that are not cocyclic, one can use thefollowing result in the spirit of the pumping lemma, see [12].Theorem 11.1 (pumping) If a subshift X is a factor of a cocyclic subshift,then there exists n0 2 N such that, for any �nite blocks �, �, and an in�niteblock �, supfn 2 N : ��n� 2 Xg is either in�nite or less than n0.34



The context free shift over the alphabet f0; 1; 2g is de�ned by disallowingthe blocks 01m2n0 where m 6= n 2 N. This is a standard example of asubshift that is not so�c but has speci�cation (see [12]).Corollary 11.2 (non-cocyclic speci�cation) The context free shift is nota factor of a cocyclic subshift.Proof of Corollary 11.2. Otherwise take n0 as in Theorem 11.1 and �xm > n0. The sequence 01n2m01 is disallowed for all n > m so, by Theorem11.1, it is disallowed for all n > n0 and thus for n = m | a contradiction.2 Theorem 11.1 depends on the following fact.Fact 11.1 Suppose that V 2 End(V ). If n � n0 := dim(V )2, then Vn �linfVk : k � n1g for any n1 2 N.Proof. In End(V ) we have a descending sequence of linear spaces Mn :=lin SfVk : k � ng 2 End(V ), n 2 N. There is then n� � dim(End(V )) =dim(V )2 such that Mn� =Mn�+1. Since Mn+1 =Mn � V, n 2 N, we haveMn�+k =Mn�Vk =Mn� for all k 2 N, and the fact follows. 2Proof of Theorem 11.1. By Proposition 11.1, X = XV for some V 2End(V )m. Consider the kernel of V�, that is K� := fA 2 End(V ) : AV[�]n =0; 9n 2 Ng, (where AV[�]n := fAW : W 2 V[�]ng). Clearly, ��n� 62 X ifand only if V�Vn� � K�. If the supremum in the theorem is �nite and equalto n1 then the inclusion holds for all n > n1, and Fact 11.1 (with V = V�)guarantees the inclusion for all n � n0 := dim(V )2. Thus n1 < n0. 2We see from the proof that, if X is presented in End(V ), then one cantake n0 = dim(V )2 in Theorem 11.1. If X is cocyclic, already n0 = dim(V )su�ces by the following remark.Remark 11.1 In the cocyclic case, i.e. if V = lin(L) for some L 2 End(V ),the assertion of Fact 11.1 holds for n0 = dim(V ), i.e. Ln 2 linfLk : k � n1gfor n � n0 and any n1 2 N.Proof. It su�ces to consider n1 > n � dim(V ). Set ~V := im1(L) :=Tk2N im(Lk). From the Jordan theorem, for n � dim(V ), rank(Ln) =rank1(L) := limk!1 rank(Lk), and ~L := Ljim1(L) is a self isomorphism35



of ~V . In order that Ln 2 linfLk : k � n1g, it is enough that ~Ln 2 ~W :=linf~Lk : k � n1g � End( ~V ) because all maps Lk for k � n0 agree with~Ln precomposed with the projection along ker1(L) := Sk2N ker(Lk) onto~V . Clearly, ~W ~L � ~W (mind that the endomorphisms act on the right).However, since ~L is an isomorphism, ~W ~L = ~W , and ~W = ~W ~L�1. Thus~Ln = ~Ln ~Ln1�n ~L�(n1�n) 2 ~W . 212 Graphs with Propagation.Another way to cast cocyclic subshifts and their factors is by generalizingthe graph theoretic description of so�c systems. We value this approach asit makes working with concrete examples so much more pleasurable.Think of the elements of the alphabet A = f1; :::; mg as encoding colors.Suppose G is a directed graph with colored edges: V is the set of vertices,E is the set of edges, and the colors are assigned to the edges by l : E!A.A sequence of edges (ei) is a path in G i� e+i = e�i+1, where e� and e+stand for the head and the tail of the edge e, respectively. Each �nite patha = (e1; :::; en) determines a block � = (l(e1); :::; l(en)); we say that � is thecoloring of a. The so�c system of the labeled directed graph G is the subshiftde�ned by allowing only the blocks that are colorings of some path, that isXG := f(l(ei))i2N : (ei)i2N a path in Gg � AN. All so�c systems arise inthis way and this characterization was introduced in [7].For an analogous description of cocyclic subshifts, one needs multiplica-tive matrix weights along the edges of G. More precisely, by a colored graphG with propagation � we understand a colored directed graph G (as above)that has each vertex v 2 V equipped with a linear space Vv and each edgee 2 E equipped with a linear transformation �e : Ve� ! Ve+; � = (�e)e2E.Denote the pair (G;�) by P. For a path a = (e1; :::; en), write �a := �e1:::�enand say that a propagates i� �a 6= 0. By de�nition, a �nite block of colors� = (�1; :::; �n) is allowed i� it is a coloring of some propagating path a; anin�nite block is allowed if its every �nite sub-block is allowed.We claim that the set of all in�nite allowed blocks, XP := f(l(ei))i2N :(ei)i2N allowed path in Pg, is a factor of a cocyclic subshift. To see that, setV =Lv2V Vv. Let Pv : V ! Vv and Jv : Vv ! V be the canonical projectionand injection, respectively; and put 	e := Pe��eJe+ for each edge e (where asusual we compose linear maps on the right). The cocyclic subshift X	 � EN36



for 	 := (	e)e2E factors onto XP under the symbol identi�cation given bythe coloring l ofG. In fact, every factor of a cocyclic subshift can be obtainedas XP for some P.It is an open problem (see Question 1 in Section 11) when XP is actuallycocyclic. We mention only a simple su�cient condition. A colored graphG isright (left) resolving, if no two edges with tails (heads) at the same vertex havethe same color, i.e. if e� = ~e� and l(e) = l(~e) then e = ~e for any e; ~e 2 E(G).A colored graph with propagation P = (G;�) is right (left) resolving i� Gis right (left) resolving. The right and left resolving are dual notions, wherethe dual P� of P is obtained by inverting all edges and replacing �e's withtheir adjoints ��e's. (Note that reading an allowed block of P� in the reverseorder gives an allowed block of P, and vice versa.)Proposition 12.1 If P = (G;�) is right (left) resolving, then XP is a co-cyclic subshift.Proof. Set V :=Lv2V Vv. To de�ne a cocycle � 2 End(V )m, set x�i =Pe2E: e�=v x�e for v 2 V and x 2 Vv (naturally embedded in V ), i =1; : : : ; m. In the right resolving case, XP = X� follows from the fact thatx�i = x�e where e is the (only) vertex colored i with e� = v, or x�i = 0if such an edge does not exist. In the left resolving case, that XP = X�is best seen via duality: the adjoint operator to �i is given by x���i =Pe2E: e+=v x���e for any x� 2 V �v . By left resolving, the sum has at most onenon-zero term, and one can argue as in the right resolving case. 2We should stress that any cocyclic subshift X� � AN arises trivially froma graph with only one vertex and a loop for each �i, i 2 A. Nevertheless,by choosing a more complicated graph one can gain better insight into thestructure of the subshift. The diagram in Section 10 may serve as an example.Also, note that the so�c system XG may be cast as a cocyclic subshift byassociating with each vertex of G a copy of R and with every edge theidentity R ! R. However, even for an irreducible aperiodic topologicalMarkov chain, the resulting cocyclic subshift may fail to be irreducible. Asan example one can take the Markov chain associated with the edge graphof the full graph over two vertices | the edges, all with di�erent colors, are:(1; 1); (1; 2); (2; 3); (2; 4); (3; 3); (3; 4); (4; 1); (4; 2). The subshift is conjugateto the full two-shift, but E� 6= End(V ). In fact, a straightforward calculation37



(with the aid of Mathematica) con�rmed that E� is of co-dimension 8 inEnd(V ).Finally, we turn to the proof of Theorem 10.2.Proof of Theorem 10.2. First we show that X� is a so�c system for positive �by producing a colored graph G for which X� = XG. Let �i be representedby a matrix (a(i)kl )dk;l=1 with non-negative entries. Take f1; :::; dg for vertices.For each positive a(i)kl , k; l = 1; :::; d, i 2 A, span an edge of color i from k tol with the weight Ai = a(i)kl over it. The positivity of weights over all edgesguarantees that if � is a coloring of a path then � is allowed and �� 6= 0.Since the opposite implication always holds, it follows that indeed X� = XG.For the second assertion of the theorem, invert the above construction toobtain from a colored graph (with weights defaulted to 1) a suitable positivecocycle. For a �xed color i, the corresponding matrix �i is just the incidencematrix of the graph obtained from G by removing all the edges of colordi�erent than i. 2A Implementing Chaos Detection.Section 9 spells out sharp criteria for chaos in X� but ignores the issuesof numerical implementation. Short of writing the actual code, we sketchhere possible algorithms based on the dichotomy: X� is either chaotic withpositive entropy and has the full two-shift as a factor (of some power), orX� has a zero entropy with all non-transient dynamics limited to at mostd := dim(V ) periodic orbits. The proposed algorithms can be integratedwith Szymczak's Conley index methods for e�cient chaos detection in thespirit of [3].To start with the simplest case of irreducible � 2 End(V )m, whether X�is chaotic can be decided simply by testing if X� is a single periodic orbit ofperiod p � d := dim(V ). Roughly, one can do the following:Recursively construct sets Bk := f� : � allowed and j�j = kg starting withk = 1. If #Bk > d for some k, then X� is chaotic | stop; otherwise,continue to get Bd. Now, set p := #Bd (the potential period), and see if allinitial p-segments of blocks in Bd coincide up to a cyclic permutation. If itis not so, then X� is chaotic; otherwise, X� has zero entropy (and we havefound the only periodic orbit that constitutes X�).The case of a general � 2 End(V )m, in principle, reduces to irreducible38



cases via the spectral decomposition. Yet this involves solving for eigenvec-tors of d � d matrices, which seldom can be done exactly | so we follow amore direct path.To �x notation, for a block �, let us call p 2 N a period of � i�, for someblock � with j�j = p, � is an initial sub-block of �1, i.e � = (�11 ; :::; �1j�j).For the minimal such period we write p(�). Clearly, p(�) � j�j; and note theusual uniqueness property of p(�) : if � = �l with j�j = p(�) and � = �k,then � = �m for some m.Theorem A.1 (chaos detection) For � 2 End(V )m, d := dim(V ), X�has zero entropy i� any non-transient allowed block � of length d2 + 1 hasminimal period p(�) � d. Moreover, then there are at most d such blocks.Recall from Section 5 that � is called non-transient i� �� 62 J where Jis the Jacobson radical of End(V ). This, in fact, can be decided withoutdetermining J and at a modest cost of d multiplications in the subspacesemigroup End(V ) (c.f. De�nition 11.1):Fact A.1 A block � is non-transient i� Wd 6= 0 for W := ��E� 2 End(V ).Before we give proofs, let us note that Theorem A.1 (coupled with Fact A.1)can be implemented as a �nite calculation:Compute recursively Bk := f� : � allowed and non-transient, j�j = kg start-ing with k = 1; weed out transient blocks at each stage via Fact A.1. If#Bk > d for some k, then X� is chaotic | stop; otherwise, continue to getBd2+1. Finally, check whether p(�) � d for each � 2 Bd2+1. If yes, X� haszero entropy; if not, X� is chaotic.The algorithm would require a polynomial (in d) number of matrix multi-plications; however, exact arithmetic of evaluating �� may bare exponentialcost even for integer cocycles. That the algorithm is correct we again leaveto the reader.Proof of Fact A.1. If � is transient, i.e. �� 2 J , then W � JE� � J sothat Wd � Jd = 0. On the other hand, if � is non-transient then �� hasa non-zero irreducible component Ri(��) in the Wedderburn-Artin spectraldecomposition (Theorem 5.1) and � can be extended to x 2 (X�)i via Lemma4.1, so that � = [x]n for n := j�j. By approximating x with a periodic point(Theorem 5.1), we get (��)1 2 X� for some �. Hence, (����)d 6= 0, and soWd 6= 0. 2 39



Lemma A.1 For d 2 N and x 2 AN, if every sub-block � of x with lengthj�j = d2 + 1 has its period p(�) � d, then x is periodic (with period p � d).Proof of Lemma A.1. Set �n := (xn; :::; xn+d2) and pn := p(�n). Let �n,j�nj = p(�n), be such that �n is the initial segment of �1n . It su�ces to seethat, for n 2 N, pn+1 = pn and that �n+1 = �n, where �n is the cyclic shift of�n by one place to the left. The block � := (xn+1; :::; xn+pnpn+1) is a sub-blockof both �n and �n+1 because pn; pn+1 � d. Thus � = �npn+1 = �pnn+1, and theuniqueness property of the minimal period implies that pn+1 = pn and that�n+1 = �n. 2Proof of Theorem A.1. If X� has zero entropy, then by Corollary 9.2 thenon-transient set (X�)+ of X� consists of at most d periodic points. Theassertion on non-transient blocks follows as they can occur as sub-blocks ofnon-transient points.In the other direction, if every non-transient block � of length d2 + 1has p(�) � d, then every non-transient point must be periodic of periodnot exceeding d by Lemma A.1. Hence, (X�)+ is �nite and thus carries noentropy. 2References[1] W. A. Adkins and S. H. Weintraub. Algebra: An Approach via ModuleTheory. Graduate Texts in Mathematics. Springer-Verlag, New York,1992.[2] A. Bertrand. Speci�cation, synchronization, average length. In Codingtheory and applications (Cachan, 1986), volume 311 of Lecture Notes inComput., pages 86{95. Springer-Verlag, Berlin-New York, 1988.[3] M. Carbinatto, J. Kwapisz, and K. Mischaikow. Horseshoes and theConley index spectrum. CDSNS96-247, 1996.[4] E. E. Coven and M. E. Paul. So�c systems. Isr. J. Math., 20:165{177,1975.[5] M. Denker, C. Grillenberger, and K. Sigmund. Ergodic Theory on Com-pact Spaces, volume 527 of Lecture Notes in Mathematics. Springer-Verlag, New York, 1976. 40
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