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Abstract: Motivated by the computations in the theory of cohomological
Conley index, cocyclic subshifts are the supports of locally constant matrix
cocycles on the full shift over a finite alphabet. They properly generalize
sofic systems and topological Markov chains; and, via the Wedderburn-Artin
theory of finite-dimensional algebras, admit a similar structure theory with
a spectral decomposition into mixing components. These components have
specification, which implies intrinsic ergodicity and entropy generation by
sequences of horseshoes. Also, a zeta-like generating function for cocyclic
subshifts leads to simple criteria for existence of a factor map onto the full
two-shift — which gives practical tools for detecting chaos in general discrete
dynamical systems.

1 Introduction.

An elementary question encapsulates the topic of this article: Given two
square matrices ®y3, ®;, what can one say about binary sequences o =

! Partially supported by grants ARO DAAH-0493G0199, NIST G-06-605.
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(01, ...,0,) for which the product ®, = ®,,...9,, is not zero? Concretely,
when does the number a, of such sequences of length n increase exponen-
tially in n, i.e. h:=lim, o Ina,/n > 07 We give a sharp answer in terms of
certain algebras associated with the products ®,,...®, . Our approach leads
through topological dynamics and yields results going far beyond answering
the question. Indeed, the number A can be interpreted as the topological
entropy of the shift map acting on the space of infinite binary sequences for
which any finite segment is as above. This space is an example of what we
call a cocyclic subshift — a new kind of subshift that generalizes topological
Markov chains and sofic systems.

If only to justify the name (cocyclic subshifts), let us assume a broader
perspective for a moment. Given a map f : X — X, one may consider
cocycles @ with values in a semigroup G with zero 0. This is to say that
¢ : N x X — G satisfies ®(n +m,z) = ®(n,x) - &(m, f"x), n,m € N, and
0 € Gissuch that 0-g =¢-0=0 for all ¢ € G. The support of the cocycle
®, Xo :={x € X : ®(n,z) # 0 for all n € N}, is forward invariant under
f, [Xe C Xo. Our problem is an instance of a general question about the
relation between the properties of X4 and those of G and ®.

The cocyclic subshifts are, by definition (Section 2), the spaces Xg ob-
tained from the shift map f on X := {1,...m}~, (fz); = z;1, and from
a locally constant? cocycle ® into the semigroup G = End(V) of all linear
transformations of a finite dimensional vector space V. (Our initial question
corresponds to m = 2 and ® depending only on xy.) This should be viewed
as a generalization of [21], where B. Weiss introduced sofic systems by taking
for G any finite semigroup (c.f. Section 10).

Besides the broader class of subshifts considered, what sets our work
apart from the existing literature on sofic systems is the focus on the algebra
generated by the cocycle: the algebra is less structured and more regular than
the semigroup, thus allowing for more complete and constructive theory.
Most importantly, by exploiting the classical Wedderburn-Artin theory of
finitely-dimensional algebras, we are able to implement for cocycles the ideas
of reducible, irreducible, and aperiodic such that the corresponding cocyclic
subshifts have a structure very similar to that of topological Markov chains
defined by reducible, irreducible, and aperiodic matrices.

In particular, the mixing cocyclic subshifts are those definable by aperi-

%i.e. ®(1,z) depends on a finite initial block of z of fixed length.



odic irreducible (primitive) cocycles; and they satisfy the specification prop-
erty. This is the key result of the paper with a corollary (via Bowen’s theory)
that the topologically transitive cocyclic subshifts are intrinsically ergodic
(i.e. have a unique invariant probability measure of maximal entropy).

To reveal our motivation, we mention that our results are relevant to the
symbolic dynamics built around the Conley index for maps ([15, 19, 18, 20,
13]). While the reader may consult [18] for a formal exposition, let us give a
glimpse of how cocyclic subshifts enter the scene.

Roughly, the phase space (of a discrete dynamical system) is divided into
finitely many compact pieces labeled 1 through m. Each piece has associated
an index which is a pointed topological space, and the dynamics induces
on the cohomologies of the indices an action that generates the cocycle on
{1,...,m}N. An infinite sequence of pieces codes an orbit of the map (i.e. the
orbit is selected from the sequence) provided the cocycle does not vanish:
the sequence is in Xg. One may think of this as a common generalization of
the Lefschetz fixed point theorem, where there is only one piece (the whole
space), and the usual concept of a Markov partition, where there are many
pieces but the way they map is very restricted. The role of the cocyclic
subshifts is then analogous to that of subshifts of finite type in the standard
symbolic dynamics.

The primary application of the technique is for confirming chaos in con-
crete dynamical systems, a problem that reduces to the question whether
X factors onto the full two-shift ([14, 15, 20, 18, 3]). Our structure theory
for cocyclic subshifts resolves the issue completely: the factor map exists iff
in the spectral decomposition given by the Wedderburn-Artin theory of the
appropriate algebras, there is an aperiodic component which is not a single
point (Corollary 9.3); and this criterion admits efficient numerical implemen-
tation — see the appendix. In fact, we prove that all of topological entropy
on a cocyclic subshift is realized by embedded horseshoes (Theorem 7.2).
Moreover, the cocyclic subshifts with zero entropy stand out as those with
particularly simple non-wandering dynamics concentrated on few periodic
orbits captured by a certain zeta-like generating function (Section 9).

As this paper is aimed at both a solution of the chaos detection problem
and an introduction to a new type of symbolic dynamics, we confined its
scope in many respects. Restriction to the algebraically closed base field or
the one-sided shifts is easy to overcome and helped to simplify presentation
of the main ideas. More notable omission is that of ergodic theory of the



intrinsic measure (including the computation of the entropy h), which is dealt
with in the forthcoming [11]. Unresolved is also left the problem of factors of
cocyclic subshifts, an uncharted class that brings out more exotic semigroups
of subspaces of matrices, yet possibly coincides with cocyclic subshifts (see
Section 11). Here, [16] instills some hope by picking up our new class of
subspace semigroups for systematic study.

To end the introduction, we put together a quick guide to what follows.
Sections 2 and 3 contain definitions and some basic properties of cocyclic
subshifts as dynamical systems. The progression of Sections 4, 5, and 6 de-
velops a decomposition of a cocyclic subshift into irreducible and primitive
(irreducible and aperiodic) pieces, and shows that these are topologically
transitive and mixing, correspondingly. Thus the stage is set for the proof
that primitivity implies specification in Section 7, with intrinsic ergodicity of
a topologically transitive cocyclic subshift and entropy generation by horse-
shoes obtained as easy corollaries. Section 8 digresses to show that, under
a suitable non-degeneracy assumption on a cocycle, its irreducibility and
aperiodicity follows from transitivity and mixing (correspondingly) of the
underlying cocyclic subshift. Section 9 (together with the appendix) charac-
terizes the cocyclic subshifts with zero entropy and then derives criteria for
chaos; a certain zeta-like generating function is one notable tool here. Section
10 discusses the inclusion of sofic systems into cocyclic subshifts; in particu-
lar, it contains a concrete example of a non-sofic cocyclic subshift — perhaps
worth inspecting just after reading Section 2. Section 11, in turn, contains an
example (the context free subshift) of a subshift with specification that is not
cocyclic nor is a factor of a cocyclic subshift. Finally, Section 12 introduces
a useful way of presenting cocyclic subshifts by graphs with propagation, i.e.
labeled (colored) graphs with matrix weights over the edges.
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criticism of the referees that greatly influenced the final shape of this paper.



2 The Definition.

Let A be a finite alphabet of m symbols, say A = {1,...,m}. Recall that
the (full) one-sided shift (over A) is the product space AN with the shift map
[+ AN — AN given by f : (2;)ien = (2i41)ien. Taken as a product of
discrete spaces, AN is compact, and f is a continuous map. The standard
metric d on X is d((z;),(y;)) = 277 where j € N is minimal such that
z; # y;. By a subshift of AN we understand any closed X C AN that is
invariant under f (i.e. f(X) C X).

Denote by End(V) all the linear endomorphisms of a linear space V.
The space V is always assumed to be finite-dimensional, non-zero, and over
an algebraically closed field C. Moreover, we shall compose linear maps
in End(V) on the right: ®(¥(v)) = v¥® for &,V € End(V) and v € V.
(Thereby we treat V' as a right End(V)-module.) The following is the central
definition of this paper.

Definition 2.1 A cocyclic subshift of ® = (®4,...,9,,) € End(V)™ is the
subshift Xo C AN given by

Xo ={zecAN: &, .-, #0, Vn € N}.
A subshift X C AN is a cocyclic subshift iff X = Xg for some ®.

Note that X¢ can be empty.

Following [5], any finite sequence o € A* will be referred to as a block
(of length |o| := k). In particular, given x € AN and k € N, we have a
block [z]; := (z1,...,x). (We will also use [z];; := (24, ..., Tiyk—1).) Each
block o determines an open set U, := {z € AN : [z];, = 0, k = |0|} and a
product ®, := ®,, - -- ®,,. We say that o occurs in X¢ iff U, N X¢ # (), and
we say that o is allowed (or ®—allowed) iff &, # 0. All blocks occurring in
X are allowed, but not vice versa: an allowed o may not be a sub-block of
any x € Xg. Nevertheless, the complement of Xg is the union of U, over all
disallowed o’s; therefore, Xg is compact. Since f(Xg) C Xo, X indeed is a
subshift.

As indicated in the introduction, Definition 2.1 can be recast in a more
general context of cocycles. Consider @ : N x AN — End(V') that is a locally
constant cocycle with values in the semigroup End(V'). This is to say that



there are ¢ € N and endomorphisms ®;, _,;, € End(V), i; € A, j =1,...,q,
such that

®(n,z) = D, 4, D z e AN, neN.

T2...Tgt1 TneTrtq—1)

The minimal such ¢ we call the anticipation® of ®, and by the support of ®
we understand the set {z € AN : ®(n,x) # 0, Vn € N}. In the case when
q = 1, the support coincides with the cocyclic subshift Xg.

Proposition 2.1 (characterization via cocycles) The class of cocyclic
subshifts of AN coincides with that of the supports of locally constant cocycles
on AN (with values in the endomorphism semigroup of a finite dimensional
vector space).

Proposition 2.1 is an immediate consequence of the following lemma.

Lemma 2.1 If ® is a locally constant cocycle in End(V'), then there is a
finite-dimensional linear space V' and a locally constant cocycle ' in End (V")
with anticipation ¢' < 1 such that, for v € AN,

®(n,z) =0, Yn € N <= @'(n,z) =0, Vn € N. (1)

Proof. It suffices to show that if the anticipation of ® is ¢ > 1, then
@’ satisfying (1) can be found with anticipation ¢’ < ¢. Let J; : V — V™
and P; : V™ — V be the canonical injections and projections, so that
vJ;P; = &;jv for v € V and 4,5 € A. Set, for any i € A7"! and z € AN,

P’

11.lg—1

= PP ik and ¥'(n,z):= ) P

T1...Tg—1 Tn...Tptq—2"
k=1

By using J;P; = 0, it is easy to see the corresponding cocycle to be

m
/
¢ (TL, JI) = E quflq)xl...xqflkl Jkl quq)xg...qug Jk2 T q)xn...xn+q,2kn Jkn -
Ky kin=1
m
E qu_lq)wl...xq (I)wg...a:q+1 e (I)wn...a:n+q_2kn Jk;n
kn=1
3¢t [12]



The last sum contains the factor ®(n — 1, z) in each term, so ®(n—1,2) =0
for some n > 1 implies ®'(n,z) = 0. Also, J, _,®'(n,2)P,,, , = ®(n,z) so
that ®'(n,x) = 0 implies ®(n,z) = 0. The equivalence (1) follows. O

We finish this section with a couple of remarks. It may be convenient
at times to talk about possibly infinite blocks o = (0;)i=%, where a,b €
ZU{—00,0}, a < b. Note that, even though ®, may be undefined, one can
unambiguously define the kernel ker(®,) if a is finite, the image im(®,) if b
is finite, and non-vanishing of ®, in any case.

Also, rather than Xg, it is often more suitable to consider the two-sided

cocyclic subshift consisting of all bi-infinite (—a = b = 00) allowed blocks,
Xq;. = {(xi)iEZ : (I)wn .- '(I)wm ?é 0, n<<m,nmec Z}

Translation between X’cb and Xg is standard:NOHe views X’cb as the natural
extension of X¢ by identifying each (z;);cz € X¢ with the corresponding full
orbit (ap)nez in Xo, ani1 = fay; the two are related via xz; := [a;];, i € Z

([51)-

3 Preliminary properties.

In order to establish cocyclic subshifts as a natural class of dynamical sys-
tems, we shall verify that cocyclicity of a subshift X C AN is an intrinsic
property of its shift dynamics f : X — X and that it is preserved under the
basic set theoretic operations.

Recall that a subshift X is conjugate to another subshift ¥ (possibly over
a different finite alphabet ./Zl) iff there is a homeomorphism A : Y — X such
that ho f = foh where f and f are the shift maps on X and Y, respectively.

Theorem 3.1 (conjugacy invariance) A subshift conjugate to a cocyclic
subshift is a cocyclic subshift.

Before a proof, recall that any subshift X C AN determines for r € N a
subshift X"l = {([z];,)ien : = € X} over the refined alphabet A", (recall
[z];ir = (i, .., Tiyr—1)). This X so called r-block presentation of X, is
conjugate to X via the map 77 : AN — (AN given by (z;)ien — ([2]ir)ien
(see [12]).



Lemma 3.1 If X C AN is a cocyclic subshift, then so is its r-block presen-
tation X' C (AN for r € N.

Proof. Suppose that X = X for some ® € End(V)™. Consider the
cocycle ¥ : N x (A")N — End(V) given by

‘1):[;1,1 if T12 = X215y Tl = L2701,

0 otherwise.

\Ij(la ((xl,la e xl,r); (55'2,1, e SL’gyr), )) = {

Roughly, ¥ is ® on the image of 73{] and zero on the complement, (where

the progressive overlap condition, see [12], is violated). The anticipation of
U does not exceed two by definition. It is also easy to verify that X[ is the
support of ¥, which makes X[ a cocyclic subshift. O

Proof of Theorem 3.1. Suppose a subshift Y ¢ AN is conjugate to a
cocyclic subshift X C A via h : Y — X. Denote by BE? the set {[z], :
x € X} of all r-blocks occurring in X, with the analogous definition for Y.
It is well known that the conjugacy h and its inverse h=' are sliding block
codes ([12]), meaning that there are r,s € N and maps A : Bgf} — BK] and

[ BK] — B)[/l] such that, for y € Y and z € X,

r=h(y) < [z]i, = M[ylis),Vi e N <= y; = p([z];,), Vi € N.

The maps A and g on the symbols induce A : (Bgf})N — (BE?)N and

> (BEQ])N — (B){}])N. From h™' o h = Id, p o Ay, ..., ys) = yi for any
(Y1, .-y Ys) € Bg]. It follows that, > o A® o 7§](y) =y for any y € AN such
that [y];, € B for all i € N.

By Lemma 3.1, there are V and ® € End(V)™ such that X = X3 C
(A")N. We shall prove that Y is the support of the cocycle ¥ : N x AN —
End(V) given by

i [s]
R

Assume that y € AN is such that ¥(n,y) # 0 for all n € N. Then
[y)is € B¥ for all i € N, i.e. 75](31) e (BEYN. Moreover, ¥(n,y) = ®(n, z)
for x := A\ oyi](y) € (BE?)N and all n € N. From the assumption x € XU,
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and so pu®(z) € Y. Since p>®(x) = p>® o A® o 7}? (y) = y, we have proven
that y € Y.
On the other hand, given y € Y, we have [y;s € B@ for all © € N, so

that U(n,y) = ®(n,x) #0 for v = A\* o 'yJ[;}(y) and alln € N. O

Out of the multitude of possible algebraic operations on cocycles, we
summon the direct sum and the tensor product to observe the following:

Fact 3.1 The sum, intersection, and Cartesian product of two cocyclic sub-
shifts are cocyclic subshifts.

Proof. Let Xy C AN and Xz C AN be cocyclic subshifts, ® € End (V)™
and ® € End(V)™

We claim that Xg U Xg = X5 where we assume that A = A and the
cocycle @ ® € End(V @ V)™ is given by (v®7)(® @ ®)(n,z) = v®(n, z) ®
6é(n,x) for v € AN, n € N. The simple reason is that a @b = 0iff a = 0
and b = 0.

On the other hand, X¢ x X4 C (A x A)N coincides with X, where the
cocycle ® @ ® € End(V ® V)mm is given on simple tensors by (v ® 7)(® ®
®)(n, (x,y)) = v®(n, 2) 5P (n, y) for (z,y) € AN x AN, n € N. This hinges
onthe fact that c @ b=0iff a =0 or b = 0.

Finally if A = A, to get Xo N X; as a cocyclic subshift one can use  ® o
restricted to the diagonal in AN x AY. By abusing notation we still write for
it ®@® € End(V ® V)™ but now (v®7)(2®@®)(n,z) = v®(n,z) @ 6®(n, v)
forre AN, ne N. O

Another useful property is that cocyclic subshifts are closed under taking
powers and roots (of the shift map f). Recall, for a subshift X ¢ AN and
[ € N, the map ﬂi) : (2)ien = ([@]k—1)141,)ken conjugates fL: X — X to

what is called a power subshift X' c (AY)N

Proposition 3.1 (powers) Suppose that | € N and X C AN is a subshift.
Then X is cocyclic iff X® c (AYN is cocyclic.

Proof. One implication is simple. If X = X, then tautologically X =
Xy where 0 € End(V)™ is the power cocycle, oY .= @, for o € Al

For the opposite implication, let ® : N x (AYN — End(V) be a cocycle
realizing X as its support. Set V := EB ®l : Vi,; where V; ;’s are disjoint
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copies of V. The indexing is considered cyclic modulo [. For+=20,...,1 — 1,
k€N, and y € AN, let ¢;(k,y) € End(V) be given by

Oy if i =
di(k,y) = {q)(k’WA (y)) ifi=0,

Id otherwise.

Consider the cocycle ® : N x AN — End(V) that is given on simple tensors
by*

-1 -1 -1 -1
<@®Uzy> d'(1,y) = @ ®Ui+1,j¢i+j (mod 1) (1,9).

i=0 j=0 i=0 j=0
It is a routine calculation to verify that
(69 ®g 0”%]) '(n,y) =
D=0 @ vitngbiriin 1(Ly)Bijin oL, F171) iy (1, [ y).

Thus, for n = kl, k € N, we have exactly k& non-trivial ¢’s in the product
above (when i+ j = ¢ (mod [)) so that

-1 [—1 -1 -1
(69®w> ¥ (L, y) = D R vsgooll, 11 @000y (2)
i=0 j=0 i=0 j=0

Now, ify € X then also fH7=1 (med Uy ¢ X' 5o that ¢ (k, f7H71 (med Uy) £
0 for all i,j; and consequently, ®'(kl,y) # 0. Hence, X is contained in the
support of @',

On the other hand, if y ¢ X then ¢y(k,y) = ®(k,74(y)) = 0 for some
k € N. It follows that ®'(kl,y) = 0, because, for each i, we have a tensor
factor ¢o(k, fH7=1 (medy) = ho(k,y) = 0 for j = 1 — i mod . Hence, the
support of @' is contained in X. O

4The idea is to suspend ® by twisting the cyclic permutation of @i;é Vi,; with ® acting
on the —j* place. Also, the tensor product would be superfluous if not for the possibility
that © € X but fkz € X for some z € AN and k € N.
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4 Irreducibility and Topological Transitivity.

We start in this section our main theme of correlating the structure of Xg
with the algebraic properties of the cocycle ®.

The set of all blocks can be thought of as a free semigroup with the
concatenation as multiplication. (For o = (071, ...,0,) and 1 = (91, ..., D),
their concatenation is on = (01, ..., 0n, M1, .., Mm).) The semigroup of & C
End(V)™ is, by definition,

Go := {®P, : o is a block}

treated as a sub-semigroup of End(V') generated by the components of ®.
The map o — @, is a homomorphism between the two semigroups.

Less structured (and more penetrable) is the algebra of ®, by definition
equal to the linear span of Gg in End(V),

Ep = {Z 0Py : a, € C almost all zero} .

The algebra £ acts on V' on the right, which is a finite dimensional faithful
representation. A particularly nice situation arises if this representation is
irreducible, that is v€¢ = V for any non-zero v € V. Existence of such faith-
ful representation (primitivity) is equivalent to £ being simple (no proper
bi-ideals exist and €2 # 0). The Wedderburn-Artin theory (p 421 in [8] or
[6]) asserts that a simple algebra is the full endomorphism algebra over a di-
vision ring, which means that £, = End(V") because the field is algebraically
closed.

Definition 4.1 A cocycle ® € End(V)™ is irreducible iff V' # 0 and Ep =
End(V). A cocyclic subshift is irreducible iff it can be represented as X¢ for
some irreducible ®.

The definition differs from the one in [21] where simplicity of the semi-
group (not the algebra) is postulated®. This will ultimately allow for more

5The two are not equivalent: Z is not simple as a semigroup but has a primitive
representation as multiplication in C (with £ = C simple), and the cyclic multiplicative
semigroup Z, is simple but its faithful complex representations are all diagonizable (p.
443, [1]).
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complete description of the dynamics in terms of the underlying algebra. Re-
call that X¢ is topologically transitive iff the orbit {f"x},cn is dense in X
for some x € Xg. Also, if a block o has non-nilpotent ®,, then the infinite
concatenation x = 0™ (i.e. ¥; 1= 0; mod |o|) is @ periodic point in Xg; the
period is equal to |o| iff o is not a power (i.e. o = n' implies [ = 1). All
periodic points in X¢ arise in this way, and we will denote their union by
Per(Xq)).

Theorem 4.1 (transitivity) If ® is irreducible, then X¢ is non-empty,
topologically transitive, and the set of periodic points Per(Xg) is dense in
Xo.

The following frequently invoked lemma uncovers the mechanism behind
the theorem.

Lemma 4.1 (connecting) Suppose that ® is irreducible. If o and w are
two allowed blocks, that is ®,,®, # 0, then there is a block (3 for which
Q,50 # 0. Moreover, such 3 exists with

18] < max{0, dim(ker(®,)) — dim(im(®,)) + 1} < d = dim(V).

Note one easy corollary: all allowed blocks occur in Xg for irreducible ®.

Proof of Lemma 4.1. Let b be a finite set of blocks such that (®g)sep
forms a basis of £ = End(V) as a linear space over C. There is C' € End(V)
such that ®,C®, # 0, and so one must have ®,PzP,, # 0 for some 3 € b.
Note that |3| has an upper bound that is uniform in o and w — a fact that
suffices for much of what follows in this paper. The ”moreover part” needs
another argument though.

Suppose that ®,, = 0, as otherwise there is nothing to prove, and set
k :=min{|n|: ®,P,P, # 0, n a block}, k£ > 1. Consider n = (i, ..., ;) with
¢, P, P, # 0. Set Vi := ker(®,). Observe that

(2)1 1m(<I)gCI>ZkCI>Z1) ¢ Vi,
and, by minimality of k£, we have

(Zl)l lm(q)g@lk@”) cW, 1< [ < k,

12



since otherwise ®,®;, ...®; @, # 0. It follows that Vi1®; ¢ Vi, that is V5 :=
{veVi: v®;, € Vi} is properly contained in V;. A similar argument as for
Vi yields

(i) im(P,P;,...0;,) ¢ Vo,

and, by minimality of k, we have
(ZZ)Q lm(q)J(I)lk(I)”) C ‘/2, 2<I<k.

Again, V3 := {v € V4 : v®,;, € V4} must be strictly contained in V;. By
iterating this process, we get a strictly descending sequence of linear spaces
Vi D Vo D ... D Vi all of which contain im(®,). It follows that £k — 1 <
dim(V;) — dim(im(®,)), which ends the proof. O

For x € X, the eventual rank of x (with respect to ®) is defined as

¢(z) := lim rank(®(n,x)).

n—0o0

Clearly, the sequence stabilizes and {z € AN : ¢(x) > 0} coincides with Xg.

Proof of Theorem 4.1. To come up with a point y € X which trajectory
is dense in Xg, form a sequence including all the allowed blocks: wq,ws, ...,
®,. # 0 for 2 € N, and then use Lemma 4.1 repeatedly to get 7;’s such that
Y := withwane... belongs to Xg. (Allowed blocks exist by irreducibility, in
particular X¢ # 0).)

For density of Per(Xg), it is enough to prove that Per(Xg) accumulates
on the point y found above. Take n arbitrary but large enough to have
rank(®(n,y)) = ¢(y). Because (f™y)men fills Xo densely, there is m such
that o = [y], = [f™"y|, and so [y|n1min = ono for some n. If V :=
im(®,) = V®,, then

Im(Pyyo) = VoPyo = Vo®y®, C V.

In fact, the inclusion above must be equality because all the involved spaces
have dimension equal to ¢(y). Thus V;®,, =V and so ®,, is not-nilpotent,
which puts (no)® and z = (on)® in Per(Xg). Since d(z,y) < 27", we are
done by arbitrariness of n. O
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5 Spectral Decomposition.

Our next task is to represent the recurrent dynamics of a cocyclic subshift
as a union of irreducible cocyclic subshifts. This is analogous to the spectral
decomposition of a hyperbolic set ([17]) with an important caveat that the
union need not be disjoint, and the points in its complement need not be
wandering but merely transient in the following sense.

For amap f: X — X and k € N, we shall call a set U C X k-transient if

sup#{n e N: flfe e U} <k.

zeX

Actually, we are only interested in the case when X is a compact Hausdorff
topological space, f is continuous, and U is open (so that 1-transient U is
what normally is called a wandering neighborhood, [5].) By a transient U we
mean U that is k-transient for some k& € N, and the transient set of f is

T(f) = U{U : U is open and transient}.

While avoiding detailed discussion, we relate 7°( f) to the standard notions
of the non-wandering set Q(f) := ((J{U : U is open and wandering}) and the
(positively) recurrent set R(f) := cl{x € X : v € w(x)} — where ¢l stands for
the closure and w(z) is the accumulation set of (f"),en.

Proposition 5.1 (i) The wandering points, Q(f)¢, are dense in T(f).
(ii) The transient points are not recurrent: R(f) C T'(f)°.

We remark that R(f) = T'(f)¢ for cocyclic subshifts as will be apparent from
Theorem 5.1.

Proof. (i) Clearly, Q(f)¢ C T(f). For density, we exhibit a non-empty
wandering W in any non-empty transient U. As a function of z € X,
ky(z) := #{n € N: f"z € U} is lower-semicontinuous and bounded from
above. Thus, for kg := max,cy ky (), the set

W .= {CE elU: kU(JI) = ko}
is open. W is also wandering, as otherwise x, f"x € W for some n > 0 so

that ky(z) = ky(f"x) +1 > ko — which is a contradiction.
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(ii) It suffices to verify that (with &y (z) as in the proof of (7))
cl (U w(x)) = (U{U : U open and ky(z) < +oo for z € X})C.

zeX

(3)

Ify € w(z) for some x € X, then ky(x) = 400 for any neighborhood U of y —
the “C” inclusion follows. On the other hand, if ¥ has an open neighborhood
V' disjoint with w(x) for all z € X, then ky(z) < 400 for a neighborhood U
of y that is pre-compactly contained in V. The “2” inclusion follows. O

Returning to cocyclic subshifts, transient dynamics may appear in Xg
in the presence of nilpotent bi-ideals in €. If J C &g is such an ideal,
that is £3JE C J and J' = 0 for some ¢t € N, then any block o with
®, € J can repeat at most t — 1 times in any allowed block w. Indeed, if
W = 0Q0...000 41, then @, € Oy Jy,... P, C J' = 0. We refer to
such o as a transient block because o can occur at most |o| - ¢ times in any
x € Xg, so that #{n: f"x € U,} < |o|-t and U, is transient.

Assume that, for some non-zero linear spaces V1, ..., V,., we have a homo-
morphism R : €, — []I_, End(V;) satisfying the following hypothesis

(H) the kernel J of R is nilpotent and the components R; : £ — End(V}),
1 =1,...,r, are surjective.

For # € AN the homomorphism R determines the partial eventual ranks

¢i(x) :== lim rank(R;(®(n,x)), i=1,..,r,
n— 00

which add up to ¢;(x) := ), ¢i(x). Note that, if ¢, (z) = 0, then there is
n € N such that ®(x,n) € J(Ep), which makes [z], a transient block and
any x € U}, a transient point.

Theorem 5.1 (spectral decomposition) If X¢ is a cocyclic subshift, and
R : Eo — [], End(V;) satisfies the hypothesis (H), then the sets (Xo); == {2 €
AN gi(x) > 0} are irreducible cocyclic subshifts for irreducible cocycles

P, := (Rz(q)k))keA S End(‘/;)m
The union |J;_,(Xe); is a cocyclic subshift for

(R(®k))rea € End (@ Vi)
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and equals (Xo)y = {x € AN : ¢ (x) > 0}, which constitutes the set T'(Xg)°
of all non-transient points of Xe.

Proof. Checking that the cocycles determine the right subshifts is trivial.
The irreducibility follows immediately from the surjectivity in (H). That all
non-transient points are accounted for has already been observed. O

As noted before, the basic sets (X¢); need not be disjoint nor different,
a flaw that can be remedied by passing to an appropriate cocyclic subshift
that factors onto (X¢); (finite-to-one). Such is the cocyclic subshift with
the alphabet {(i,k) : i =1,..,r, Kk = 1,...,m} and the cocycle given by
(Ri(®k)) k), as it splits into disjoint transitive sets that are naturally conju-
gate to the (Xg);’s. This is reminiscent of the situation for sofic systems® that
lack spectral decomposition, but are factors of topological Markov chains that
have spectral decomposition ([5]). Also, that there may be non-wandering
points outside (Xg), can be seen in a sofic example’ given by the space of
sequences of 1’s and 2’s with at most two 1’s occurring in each sequence (take
®; nilpotent with ®? # 0 and ®3 = 0, and &, = Id). Here (Xg), = {2°°},
yet every symbolic sequence with exactly one occurrence of 1 represents a
non-wandering point (which is nevertheless 2-transient).

To supply a homomorphism R satisfying hypothesis (H) for any non-
empty Xg, one can use the Wedderburn-Artin theory. Recall (see IX.2 in
[8] or [6]) the Wedderburn (or Jacobson) radical J(£s) of the algebra &g is
the union of all nilpotent two-sided ideals in £ and is a nilpotent two-sided
ideal by itself. Thus, J(Ee)" = 0 for some minimal ¢ = tg; and J(Es) # Eo
given that X¢ # (. The quotient £¢/J(Es) is then a semisimple algebra
and, by the Wedderburn-Artin Theorem (Th 5.7, IX, [8]), it is isomorphic to
[I;_, End(V;) for some non-zero linear spaces V;, i = 1,...,7 = rp. Intrinsi-
cally, re is the number of simple ideals in £¢/J(Es) (c.f. Prop. 3.8, [8]) and
Yo, dim(V;) < dim(V) (see (5) ahead). (Irreducibility of X, which we do
not assume, translates to ro = 1.)

In order to obtain suitable R : £, — [[, End(V;), precompose the iso-
morphism with the canonical projection £ — E¢/J(Es). The collection of
cocyclic subshifts ((Xe););2; thus provided by Theorem 1 will be called the

8Think of the union of two full shifts: one on {1,2} and another one on {2,3}; they
share 2°°.
"suggested by the referee
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Wedderburn decomposition of X4. At this point we can record the following
converse of Theorem 1 (c.f. Corollary 7.1 and Question 4 in Section 6 of [21]).

Corollary 5.1 (irreducibility) A topologically transitive non-empty cocyclic
subshift is trreducible.

Proof. A union of compact invariant sets is topologically transitive only
if it coincides with one of the sets. Hence, for the Wedderburn spectral
decomposition of X¢, we have Xo = [J;(Xo); = (Xo); for some ¢, and the
subshift X¢ coincides with one of its irreducible components. O

Before leaving this section, we digress that the Wedderburn-Artin homo-
morphism R is not the only R satisfying hypothesis (H), but it is the simplest
such R. Let us illuminate this point and use the opportunity to record a few
useful algebraic facts. )

Consider another homomorphism that satisfies (H), R : £ — | End(V}).

Because R(J(E3)) C J(H’;:1 End(V})) = 0 (see Prop. 3.1.3 in [6]), we have

J(€s) C ker(R). From (H), the opposite inclusion holds so that J(Ep) =

ker(R). Thus R induces a monomorphism
p: [[End(Vi) — [ End(V))
i=1 =1

such that R = po R, and in this sense R is simpler than R.

Moreover, the structure of p is very transparent: The component homo-
morphisms p;; : End(V;) — End(V}) are either zero or isomorphisms because
End(V) is simple for any non-zero V' (see Schur’s lemma, [6]). Additionally,
if i) # iy, then py,4,; : End(V;,) x End(V;,) — End(V;) has a non-zero kernel
(by counting dimensions). The kernel must be equal to one of the two ideals
0 x End(V;,) or End(V;,) x 0, so that p; ; = 0 or p;,; = 0. In this way, for

each j there is a unique i with p;; # 0.® One immediate corollary is that

Z dim(V;) < Z dim(V;). (4)

8This essentially proves a standard fact (see [6]) that € ; V; is isomorphic as a module
over £ to @, k;Vi; here k; := #{i : ry; #0}.
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Finally, although optimal, R may not be best suited for practical calcu-
lations: it is more convenient to deal with R derived directly from the given
representation on V. The linear space V, as a right module over £, has a
composition series (p. 375 in [8])

O:WFCWfflc....CW():V,

where the quotients W}, /W}, have no proper submodules. One can construct
a (non-canonical) splitting of V' into linear spaces V = 69;:1‘71' so that
W; =V;®..® Vi For any map A € &, the component AW : V; — Vj is
deﬁned as the composition of A with the canonical 1nJect10n of V; and the
canonical projection onto V The map R : A — AUD) is a homomorphism.
It is either zero or it is onto End(V}) because V; ~ W;_1/W;, having no
proper submodules, is either zero or simple (over R; ((‘:@)). Since also A7)
VanisheSNfor i > j, the homomorphism R := Hje{j:izﬁéo} Rj has a nilpotent
kernel; R satisfies hypothesis (H).
Moreover, because » dim(V;) < dim(V'), inequality (4) yields

Z dim(V;) < dim(V). (5)

Also, on assumption that p;; :# 0, p;; : End(V;) — End(V}) being an iso-
morphism implies rank(AY7)) = ranky, (R;(A)) for any A € E (where the
subscript V; indicates that the rank is computed in the representation on V;).
It follows that

> " ranky, (Ri(A)) < Z rank (A7) < rank(A). (6)

i

We shall need (5) and (6) later in Sections 7 and 8.

6 Aperiodicity and Aperiodic Decomposition.

The Wedderburn-Artin decomposition can be refined so as to distinguish
within each transitive basic set finer aperiodic (primitive) components that
are cyclicly permuted by the dynamics. A more structured algebra than &g
serves this purpose.
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Recall (from Section 3), that for any [ € N, the iterate f': X — X is
naturally conjugate to the power subshift X which is the cocyclic subshift
Xon C (AYN supporting the cocycle

o) .= (®,),ca C End(V)™.

The corresponding algebra, denoted by &g), is generated by all ®, with |o|
divisible by [. Of particular importance is the tail algebra of ® given by

&%OO) = ﬂ &g).

leN

Observe that 5&,00) = keN &g’“) for I, := k!, and this is an intersection of a

descending sequence of linear spaces so £ = £S5 for some s € N. We will
write s¢ for the minimal s with this property. Of special interest is the case
when s¢ = 1, i.e. &g) = &g for all [ € N.

Definition 6.1 A cocycle ® € End(V)™ is called aperiodic iff V' # {0} and
its algebra coincides with its tail algebra, that is E¢ = 5‘;00). A cocycle ® s
called primitive iff it is irreducible and aperiodic, that is V' # {0} and £y =
5‘;00) = End(V). A cocyclic subshift is aperiodic iff it can be represented as
Xo for some aperiodic ®, and it is primitive if such ® exists that is primitive.

Note that from Egury C Egw for k, 1 € N, it follows that

£ =€) c €40y C €y 1EN.

As an immediate consequence we note the following.

Corollary 6.1 (i) If ® is aperiodic (primitive), then so is ®¥, [ € N.
(i) If @O is primitive for some | € N, then so is ®.

Note that, from (i), if a subshift is primitive cocyclic then its power
subshift is primitive cocyclic. The opposite implication (stronger than (ii)
above) will be proven only in the next section (see Corollary 8.2).

As in Section 5, to decompose an irreducible cocyclic subshift into aperi-
odic pieces, we use the (surjective) homomorphism M : Séoo) — [, End(W;)

that induces the isomorphism of £ /.J(€8”) and [ [, End(Wj), for some

19



non-zero linear spaces W;, j = 1,...,7g°. Here we should note that J(é’éoo)) #
EL because Per(Xe) # 0: given 0™ € Per(Xo), ®po € EFY = £ s
non-nilpotent. Again J(é’éoo))t = 0 for some ¢ € N, and let t3’ be the minimal
such ¢. M satisfies then the analogue of hypothesis (H) in Section 5,

(HH) the kernel J of M is nilpotent and the components M; : Séoo) —
End(W;), W; # {0}, are surjective.

Given = € AN, the appropriate partial eventual ranks are

¢;°(z) := lim rank(M;(®(ns, x))), s = se,
n— 00
with ¢°(z) == 3=, ¢7° ().
Any irreducible Xg is made of a cyclicly permuted aperiodic cocyclic
subshift, as described by the following result.

Theorem 6.1 (aperiodic decomposition) If® C End(V)™ is irreducible,
then there exists ¢ € N, ¢ < d := dim(V), such that X = Xy U ... U f771 X,
for some Xy C Xg that is invariant under f?, and f?: Xg — Xy is naturally
conjugate to a cocyclic subshift with a primitive power. In fact, if s = s, S0
that L = €Y, and M : €5 — [[_, End(W;) satisfies hypothesis (HH),
then Xg s the union of

(X¢)§m) = {zec AV : ¢°(x) >0}, j=1,...,m

which (acted upon by f*°) are naturally conjugate to the primitive cocyclic
subshifts of (A*)N that are given by the primitive cocycles

L) = Mj(q)(s)) = (M;(®,))seas C End(Wj)ms'

J

The set Xy, as well as each of its iterates fXo, ..., f7 X, can be found as

one of the (Xq>)(-°°) 's; moreover, ¢ < r < d and q divides s.

J

Remark 6.1 As it will become clear later (Corollary 8.2), f?: Xy — X
in the theorem is in fact a primitive cocyclic subshift, even though we show
now only that it has a primitive power. To exemplify the difficulty consider

¢ = (P)) with &, = <(1)(1)> so that ry = s¢ = 2 and X = {1°} =

(X)) = (X)5 = Xy primitivity of ) assures only that 2 : Xy — X,
15 primitive, not [ Xo — Xj.
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Proof of Theorem 6.1. That (Xq>)§.°°) arises from @;OO) is a tautology.

We first show that <I>§-°°) is primitive. Since M; is a homomorphism, we
have £, = M (&), But M;(EY)) = M; (L) = End(W;), which makes

<I>§.°°) irreducible. Moreover, not only & () = Mj(é'g)), but for the same
J

reason 55200) = Mj(é'és”), for all [ € N. By the definition of s, the right-
j
hand sides of the two last equalities coincide so 55200) = E4); consequently,
j J
5;‘?)) = 5q>§oo) = End(W;) and @5-00) is primitive.

Next, we argue that X = U;Zl(Xq))goo). (That r < d follows from (5) in
Section 5.) Periodic orbits are dense in X¢ (Theorem 1), so it suffices to show
that © € Per(Xg) and ¢°(x) = 0 implies a contradiction. Represent then x
as r = 0™ with |o| divisible by s. Since ¢3°(z) = 0, we have M;(®,~) = 0 for
some N and all j. Thus ®,~ € ker(M) = J(ELV) and Tyn € J(ELV) =0,
t =ty’, which contradicts z € Xo.

To finish the argument we will show that, upon reordering of the (Xq))g-oo)’s,
we have Xo = U ;o (Xo)™, where (Xo)$) oay = J(Xo) ohq , for
j = 1,...,q and some ¢ < r. Note that, for any j, there is ¢ such that

f(Xq))g-oo) C (X0)™; indeed, take z with its orbit under f* dense in (Xq))g-oo),
fz € (Xo)!™ determines the suitable 7. Of all the (Xq))g-oo)’s, let (X)),
cee (Xq>)7(;°°) be these maximal with respect to inclusion (after renumbering
perhaps) so that still X¢ = Ulgjg(X@)g-oo). These 7 sets are permuted by
f (because f° fixes them) and the permutation decomposes into cycles of
the form (X3)%? — (Xg) = .. = (X)) — (X)), where ¢ < 7,
q divides s, and all the maps are onto (by the maximality). The union of
the (X¢)§-°°)’s along such a cycle is a compact invariant subset of X¢. Being
transitive, X¢ must coincide with one such union, and X, = (X¢)§-T°)
then the conditions of the theorem. O

satisfies

In a similar fashion to the situation in Theorem 5.1, the family of primitive
pieces (Xq>)§~°°) may be very redundant, with some of them intersecting or
even coinciding. Partly to blame is the fact that we do not optimize ®
for the given cocyclic subshift; however, disjointness of the primitive pieces
is precluded by the very nature of the dynamics on X¢ — it breaks down
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already for sofic systems®. Of course all these problems vanish if one is willing
to take finite-to-one factors.

7 Specification and Intrinsic Ergodicity.

Our goal now is to see that primitivity of a cocyclic subshift is equivalent to
its topological mixing, or to a stronger property of specification. Intrinsic er-
godicity of topologically transitive cocyclic subshifts is one notable corollary.

Recall that a subshift X is topologically mixing iff, given two blocks o, and
09 that occur in X, there is ng so that n > ng implies that o,no, occurs in
X for some n with || = n. The specification property requires furthermore
that the gap length n is uniform: X has specification if there is ng such that
given two occurring blocks ¢; and oy, and n > ngy, oynoy occurs in X for
some 1 with |n| = n. This can be seen ([2]) as an equivalent formulation of
the following Bowen’s condition on existence (specification) of periodic orbits
(c.f. Def. 21.1 in [5]):

(S) for some ny € N, given a finite sequence of occurring blocks oy, ..., oy
and numbers [; > ng, i =1, ..., k, there are connecting blocks n;, |n;| =
l;, such that (oyn 091...061)>° € Per(Xg)

We postpone the proof of the following well known fact.

Fact 7.1 For a subshift X C AN, if its power subshift X9 C (A°)N has
specification for some ¢ € N, then X has specification.

Theorem 7.1 (specification) A primitive cocyclic subshift has specifica-
tion.

Specification guarantees for a subshift good statistical properties, partic-
ularly intrinsic ergodicity: by the theorem due to Bowen (Th. 22.15 in [5]),
(S) implies existence of a unique probability measure p of maximal entropy.
If X4 is not primitive but merely transitive the maximal entropy measure
still exists; it is the average of the measures on the primitive components
Xo, ..., f971 X provided by Theorem 6.1. Thus we can note the following
important corollary.

9Consider a graph with two vertices a,b and edges ab labeled 0, ab labeled 1
and ba labeled 1. The sequences starting with even number of 1’s form a primitive
piece which shares 1°° with its image under f.

22



Corollary 7.1 A transitive cocyclic subshift is intrinsically ergodic.

A construction of the maximal measure via an appropriate transfer operator
can be found in [11].

Proof of Theorem 7.1. Let X = Xg C AN for a primitive cocycle ® €
End(V)™. The argument is similar to that for density of periodic points in
the proof of Theorem 4.1. Let

¢o := min{rank(®,) : o is an allowed block, i.e. ®, # 0},

and let 7 be a fixed block with rank(®,) = go. Set V; := im(®,). The role
of minimality of ¢ is embodied by the following implication: if v is a block
with ®,,, # 0, then rank(®,,,) = ¢ and V;®,, = V. By irreducibility such
v exists (Lemma 4.1); choose one and set v :=wvn, ¢ := ||

In view of Fact 7.1, it suffices to prove specification for X (9. List all
blocks occurring in X with length divisible by ¢: oy, 09,.... For each k € N,
due to irreducibility of X4« (from Corollary 5.1), one can use Lemma 4.1 to
find blocks ay and 3 such that @4, 0,4, 7 0 and dc > |ay], |G| € ¢N. As
anticipated, the minimality of gy assures that Vo ®,, = Vi for py := agouB7,
as well as Vy®, = Vj. For any two blocks o4, and oj, and for [ > 0, we
have V(Jq)umlu; = V4 so that akﬂwl“ajaj occurs in X. In this way, we can
connect o with o; with any gap length n exceeding 2dc+ c. Hence, X© has
specification and so does X by Fact 7.1. O

Even though cocyclic subshifts are generally not uniformly hyperbolic, let
us observe that horseshoes are still the mechanism responsible for generating
all of the topological entropy (which is reminiscent of Katok’s theorem for
C*ediffeomorphisms of surfaces [9]). This hinges on the existence of a
synchronizing word, as the ~ in the proof of Theorem 7.1 above.

Theorem 7.2 (horseshoes) Suppose that Xg is a cocyclic subshift. For
any € > 0, there exist Nyn € N such that N > exp(n(h(f) — €)) and
" Xo — Xo has an embedded full N-shift; namely, {p piy... © 1; €
{1,...,N}, j € N} C Xg for some pairwise different blocks {p; Y1, of length
n.

Proof. 1t suffices to argue in the primitive case since the full entropy must

be carried on one of the mixing pieces (Xq>)§-°°) provided by Theorem 6.1.
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Assume then that 7, ¢ = ||, is a (synchronizing) block as in the beginning
of proof of Theorem 7.1. From the definition of topological entropy (via
separated sets, see [5]) conclude that, for arbitrarily large ny € c¢N, there
are N > exp(no(h(f) — €/2)) different blocks o7, ...,on of length ny with
®, #0,1=1,...,N. Set | = 2dc + c¢. As before we can get blocks p;
of the form y; := ;0;6;7%, d; € N, such that V,®,, = V; and |y, are all
equal to n := ng + [. These blocks can be freely concatenated: if v € AY is
concatenated from elements of the set {1, }en, then V@, # 0 so that v € X.
Since [ is independent of ny, we have N > exp(n(h(f) — €)) provided ny is
large enough. O

We append the proof of Fact 7.1 for completeness.

Proof of Fact 7.1. The blocks occurring in X correspond to the blocks
of X with length divisible by ¢. Thus specification for X(© means that there
is lp € N such that if 0y and o, with ¢ dividing |oy|, i = 1,2 occur in X
and [ > ly, then o110, occurs in X for some n with |n| = lc.

Suppose that n > lyc and py and py occur in X. Write n = lc + r with
[ >0and 0 <r < c¢. There are blocks €, €, and § with |§| = r, such that
o1 := €110 and oy 1= pses occur in X and ¢ divides |o;], ¢ = 1,2. (To find
€1, use f(X) = X — which follows from transitivity.)

Now, 01109 = €1 110np2€2 occurs in X for some n with |n| = lc by speci-
fication for X(©. Thus 7y, occurs in X, for v = én and |y| = n. O

8 Primitivity from Mixing, and Irreducibility
from Transitivity.

A primitive cocyclic subshift is mixing by Theorem 7.1. We set out to show
the opposite implication, which complements the already proven fact that a
transitive cocyclic subshift is irreducible (Corollary 5.1). In fact, we shall see
that, under suitable assumptions on a cocycle, transitivity and mixing of a
cocyclic subshift force, correspondingly, irreducibility and primitivity of the
cocycle.

It is instrumental to consider together with a cocycle ® € End (V)™ its ex-
terior powers @ = (/7)™ , € End(V"")™, where V" is the linear space of
antisymmetric tensors of degree r on V" and ®/ is the map induced on tensors
by ®;, i = 1,...,m. Since, for A € End(V'), rank(A4) > r iff rank(A"") > 1,
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X stratifies into
Xorr = {o € Xo ¢ rank(®p,) >r, forall ne N}, r=1,... dim(V).
In particular, if ry is the minimal rank of ®, by definition equal to
rop = minrank(®) := min{rank(®,) : @, # 0},

then
Xq; == Xqﬂ\ro

and the minimal rank of ®""° equals 1.

Proposition 8.1 (rank reduction) If X is a cocyclic subshift, then X =
Xy for some U of minimal rank 1. Moreover, if X is irreducible, then such
W exists that is irreducible.

Proof. The first assertion follows by passing to the ri® exterior power, as
explained above. For the moreover part, we may already assume then that
X = Xg for & with minimal rank 1. By Theorem 4.1, X3 is topologically
transitive. In the Wedderburn-Artin decomposition of Xg given by Theorem
5.1, X is equal then to some (every) basic set (Xg¢); (c.f. the proof of Corol-
lary 5.1). Since, ranky, (R;(A)) < ranky (A) for any A € £ (by (6) in Section
5), the minimal rank of R;(®) does not exceed that of ® — so it equals 1,
and U = R;(®) is the desired cocycle. O

Here is one advantage of reducing the minimal rank to one:

Theorem 8.1 If & € End(V)™ is such that E¢ has no radical, i.e J(Ep) =
{0}, and ® has minimal rank 1, then

(i) if Xo is transitive, then ® is irreducible;

(i1) if Xo is mizing, then ® is primitive.

We should note that J(Eg) = {0} for any irreducible ®. In fact, J(Ep) =
{0} means that £ is semisimple so that ® is a direct sum of irreducible
cocycles.

Corollary 8.1 (primitivity) A non-empty mizing cocyclic subshift is prim-
itive.
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Proof of Corollary 8.1. If X is a mixing cocyclic subshift, then it is
transitive and so it is irreducible by Corollary 5.1. The cocycle ¥ provided
by Proposition 8.1 satisfies then the hypothesis of Theorem 8.1 and so ¥ is
the desired primitive cocycle with X = Xy. O

Since mixing is preserved under taking roots, Proposition 3.1 and Corol-
lary 8.1 yield the following corollary, which shows that ultimately the X, in
Theorem 6.1 is primitive (c.f. Remark 6.1).

Corollary 8.2 If X is a subshift and its power X© is a primitive cocyclic
subshift for some l € N, then X s also a primitive cocyclic subshift.

Proof of Theorem 8.1.
(i): As in the proof of Corollary 5.1 or Proposition 8.1, Xg coincides with its
every irreducible component, X¢ = (Xg);, @ = 1,... ,rg. Since the inequality
(6) in Section 5 implies that

Zmin rank(R;(®)) < minrank(®),

we must have r¢ = 1, which means that & = £3/J(Es) = End(V;) for
1 =1=rg,ie. P isirreducible.
(ii): First note that if X¢ is mixing then it is topologically transitive under
any power of f, which makes X¢ equal to Xy in the aperiodic decomposition
given by Theorem 6.1. Thus X¢ has a primitive power, and so X¢ has
specification by Theorem 7.1 and Fact 7.1.

By the already proven (i), ® is irreducible. We have to show that ®

is primitive, i.e. that 5&? = End(V) for all [ € N, which is equivalent to
vé'g) =V for any non-zero v € V' (c.f. the beginning of Section 4). Fix then
v €V \ {0} and consider the subspaces

WO =lin{vd, : rank(®,) =1, [ divides |o|} C U&g), leN.

We note that W®)’s are invariant, W(l)é'g) C W®; and we claim that W® =
V,1€N. For [ =1, & = End(V) from irreducibility, and W) =V by the
invariance because W) # {0}. For [ > 1 we show that W® = W), Fix
a block o with rank(®,) = 1 and suppose that u := v®, # 0. Specification
supplies a block 7 such that ®,,, # 0 and [ divides |ono|. Hence v®,,, =
u®,, = c¢-u for some non-zero scalar ¢, which proves that u € w® . By

arbitrariness of o, W = W® = V; and vc‘:g) =V follows. O
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9 Zeta Function and the Zero Entropy Case.
Sections 5 and 6 give the following picture of a general cocyclic subshift.

Corollary 9.1 For ® € End(V)™, the non-transient set (Xg), of the co-
cyclic subshift X¢ is a union of at most dim(V') sets, each invariant under
some positive iterate of the shift map and conjugate to a primitive cocyclic

subshift.

The proof amounts to superimposing Theorem 6.1 onto Theorem 5.1:
by recognizing the simple components of the algebra £, pass to a number
of irreducible cocycles, and then further split each of these into primitive
cocycles according to the simple components of its tail algebra. The total
dimension of the representation spaces for all the cocycles involved in each
step does not exceed d = dim (V') (c.f. (5) in Section 5) — thus the estimate.

A primitive cocyclic subshift satisfies specification (Theorem 7.1) and so
it has positive topological entropy unless it is just one point (Prop. 21.6 in
[5]). This yields the following complement to Theorem 7.2.

Corollary 9.2 (zero entropy) A non-empty cocyclic subshift X¢ has zero
topological entropy iff its primitive pieces are single points; that is when the
non-transient set consists of at most dim(V') periodic points.

Sharpness of the estimate is confirmed by a trivial example.

Example. Take V' with a basis (ey, ..., e4) and rank-one ®; : V' — V with
e; — €41 (mod d), i = 1,...,d. Then Per(Xs) is readily seen to be a single
periodic orbit of period d. (Also £ = End(V'), while 5&,00) ~ C%)

In applying the Conley index methods to proving chaos ([15, 20, 18, 3]),
the issue of recognizing whether X¢ has positive entropy becomes particularly
important because then a power of X¢ (by Theorem 7.2) factors onto the
full two-shift'", and so does the original dynamical system by the algebraic
topology of the Conley index (see [3]). In view of our structure theory, the
problem is completely resolved through inspection of the semisimple algebras
Es/J(Es) and ELV 1 T(ES).

10i.e. a continuous h : X¢ — {1,2}N exists such that ho f*¥ = f, o h for some k € N,
where f, is the shift map on {1,2}N
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Corollary 9.3 A cocyclic subshift f : Xo — Xo is chaotic, t.e. [ has
positive entropy and f* continuously factors for some k onto the full two-
shift iff Xo has a primitive component that is not a point.

Proof. 1f all primitive components are points then we are in the situation
of Corollary 9.2 and the entropy is zero which precludes existence of the factor
map. If one of the primitive components is not a point then specification
implies positive entropy, and the factor map exists via Theorem 7.2. O

With some additional work, Corollary 9.3 leads to efficient numerical al-
gorithms. Without slowing down to discuss the details (relegated to the
appendix), we turn to a sufficient condition for chaos in X¢ readily verifiable
by inspecting ®. The way leads through a certain zeta function, an approach
that we developed for the proof of a conjecture due to K. Mischaikow and
M. Mrozek. In our language, the conjecture reads:

For some power of a cocyclic subshift Xe to factor onto the full shift
{0, 1}N, it suffices that either of the two hypotheses below is satisfied

irank"o(@i) > rank™ (i <I>Z~> :
i=1

1=1

irankoo(@i) = rank™ (i <I>i> -1,
i=1

i=1
where rank™(A) := lim,,_,,, rank(A™).

Based on a different approach, special cases were established by A. Szym-
czak who, arguing under the first hypothesis only, required that m = 2,
rank™(®y) = 1, and rank™(®; + ®;) = 0 ([20]). In a subsequent refinement,
M. Carbinatto allowed for rank™ (®) > 1 (private communication). Observe
that, in view of Theorem 7.2, the conjecture addresses exactly the problem
of verifying positive topological entropy on Xeg.

With a periodic orbit P C Per(Xg) associate a rational function

-1 —~

Cp(z) = det(I — 2"y, , 2 € C,

p(w))
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where # € P and p(z) is the period (and recall that [z],m) = (21, ..., Tp@)))-
This is the restriction to the diagonal in C" of a more natural'! function

Cp(z1, oy 2m) = det(I — z’fl(x) L zﬁlm(x)@[x]p(z))_l, 21, s Z2m € C,

where x € P and p;(x) is the number of times ¢ occurs in the block [#]() so
that pi(x) + ... + pm(z) = p(x). Note that, the definitions do not depend on
x € P because det(/ — AB) = det(I — BA) for any matrices A, B. Also, we
include the exponent —1 to stress the analogy with the classical zeta function
— although working with polynomials, not their reciprocals, is usually more
convenient.

The arrangement of the periodic orbits in X¢ is to some extent governed
by an explicit function

Co(21y 0y 2m) = det(l — 2@y — ... — 2, @) h

Theorem 9.1 (zeta function) For a cocyclic subshift Xe C {1,...,m}N,

Colz,mnzm) =[] Crlzr o zm) (7)

PCPer(Xg)

where the product is taken over all periodic orbits P and converges absolutely
for (21, ..., zm) in a neighborhood of the origin in c".

Proof of Theorem 9.1. This is a version of the standard zeta function
trick. We carry out only the formal calculation leaving the convergence as a

simple exercise. Also, no generality is lost in assuming that z; = 1. For any
A € End(V),

itraee(Ak)zk/k = —Indet(/ — zA). (8)

k=1

Hence,

Z Z trace(®P,,...0,,)/n = thrace((q)l + ..+ P,,)") /0,

n=1 g A"

Hreflecting the fact that the projective action of the cocycle solely determines its sup-
porting subshift.
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which is In(the left side of (7)). On the other hand, the above sum can be
calculated over periodic points to give

Z iltrace (@fx}p(x) [(kp(x)) = Z b itrace (@fx}p(x) /k,

z€Per(Xg) k= z€Per(Xg) p(l‘) k=1

which is In(the right side of (7)). O

Proof of the conjecture. Observe that rank™(A) is the degree of det(I —
zA) as a polynomial in z for any A € End(V'). Due to Theorem 7.2, it suffices
to prove non-vanishing of topological entropy on Xg. Suppose the entropy
is zero. By Corollary 9.2, Per(Xg) is finite and the reciprocals of both sides
in the formula (7) are polynomials in z = z; = ... = z,,. Each fixed point
xr =1%,1=1,...,m, contributes to the product the characteristic polynomial
det(1 — 2®;), which implies that >, rank™(®;) < rank>(®; + ... + ®,,) and
contradicts the first hypothesis. If the inequality above is strict, this is due
to some x € Per(Xg) with the period p(z) > 1. The periodic orbit P
of z contributes a polynomial factor (' of degree at least p(z). Thus the
discrepancy between the two sides must be at least two; the second hypothesis
is contradicted. O

10 Sofic and Non-Sofic Cocyclic Subshifts.

As indicated in the introduction, cocyclic subshifts include sofic systems.
This can be seen in at least two ways: algebraic (Theorem 10.1) and graph
theoretic (Theorem 10.2). The main purpose of this section is to point out
that the inclusion is proper and to give a concrete example of an interesting
cocyclic subshift.

Recall that a sofic system, as introduced to ergodic theory by [21], is
a subshift Xg of the full shift on AN, A = {1,...,m}, where G is a finite
semigroup with a fixed set of generators {gi,...,gm} and (z;)32, € Xg iff
Gz, -9z, 7 0 for all n € N. Sofic systems and their applications have a
considerable amount of literature devoted to them — consult [4, 10, 12] and
the references therein (see also Section 12).

Theorem 10.1 (i) Every sofic system is a cocyclic subshift.
(i1) There exists a cocyclic subshift that is not sofic.
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A simple sufficient condition for X4 to be sofic is positivity of the cocycle.

Theorem 10.2 If ® = (D;);c4 where ®;’s are represented by matrices with
non-negative entries, then Xe is a sofic system. Any sofic system arises in
this way.

We will prove Theorem 10.1 now and Theorem 10.2 in the next section.

Proof of Theorem 10.1, part (i). This amounts to the standard task of
representing G by linear transformations. Append the unity to G if necessary
to get a semigroup with unity G. Take for the linear space V' the semigroup
algebra of G, V := ®geé C, and associate to each 7 € A the linear transfor-
mation ®; induced on V' by the right multiplication by ¢;. If ® = (®;);c4,
then @, ) =0iff g;,...9,, = 0 — as a result Xo = Xg. O

For a proof of (ii) consider the following example.

Example (of a cocyclic subshift that is not sofic).
Take two copies V; and V; of R* and linear maps ®;; : V; — V; given by the
matrices (acting on the right)

20 1 1 10 13
o= (o) ) ea= (L ) e () )ea=(07)-

Let V.=Vi®d Vs, Set &1 : vy Dy — 0P D v1P15 and @y 1 v1 B v9 —
V9®P9) B v9Pgy. Take & := (Py,Py). By definition, (z1,x9,...) € Xg iff
®,,..0,, : V — V is not vanishing for all n € N. Observe that this is
equivalent to @, 4,... Py, 2, : Vi, — Vi, being nonzero for all n € N, which
is why the block representation of ®; and ®, is so convenient, and why we
can abuse notation by writing ®,, .. for &, ,,.. 0, .. .

To determine the sequences of 1’s and 2’s forming X4, we will look then
at the projective action in V;, ¢ = 1,2. The diagram on Figure 1 conveniently
encodes all the relevant data (c.f. Section 12).

Note that all the ®;;’s are nondegenerate matrices with the exception of
®,5, which has the line W of slope s = 1, W := {(z,y) € R* : x = y},
for both its kernel and its image. The action of ®;; and Py on the slope
s :=y/x is given by ¢11(s) = s/2 and ¢aa(s) = s+ 3 respectively. For ®onm,
it is ¢gnim (s) = (s+3(n—1))/20"Y m,n € N. Hence, we have ®yn1my = 0,
if

1+3n—-1)=2"1 (9)
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s s/2

S S

Figure 1: Graph with propagation of a nonsofic cocyclic subshift. A path
in the graph determines a sequence of 1’s and 2’s, which is in Xg iff the
corresponding product of matrices over the edges is non-zero (equivalently, s
does not get mapped to x).

and otherwise ¢onima(s) = 1 for all slopes s. It follows that, for @ =
2mmignz1m2 - d, does not vanish iff 1+ 3(n; — 1) # 2™~ 4 =2,3,4....
Note that no restrictions are put on n; and m4, as the slope did not stabilize
to s = 1 at the outset. Accounting for the sequences terminating with 1 or
2% and those starting with 1 leads to the following formula for Xe:

Xo = {2™M1™2™21™2 0 my,ny € NU{0,00}, and m;,n; € NU {co}, with
1+3(n;—1)#£ 2™ fori=2,34,..}.

As a side remark, let us indicate that Xg is primitive. A simple calculation
with Mathematica confirmed that the linear span of {®, : |o| = 4} is the
whole End(V); in particular, it contains the identity so that End (V') = 5;4) =
1d/41el c € for all I € AN. Hence, £ = EL® = End(V).

Proof of Theorem 10.1, (ii). For a block o, the set of w for which ow

occurs in some = € Xg is called the follower set of 0. To see that X4 (from
the example) is not a sofic system, it is enough to establish that there are
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infinitely many different follower sets (see [21] or page 252 in [5]). To this
end, let (mg,ny) for & € N be different solutions to (9), say my := 2k + 1
and ny := (2% 4 2)/3. The block 1™2% is a follower of 127 iff k # [. Thus
the follower sets of 12", 12"2 ... are different from each other. O

11 Factors of Cocyclic Subshifts and Beyond.

We turn our attention briefly to factor subshifts of cocyclic subshifts and show
that they do not exhaust the whole class of subshifts with specification. (In
particular, a subshifts with specification need not be cocyclic.)

Recall that, given a cocyclic subshift X¢ C AN amap h: Xo — AN is
a factor map if it is continuous and ho f = f o h with f equal to the shift
on AN. The subshift Y := h(Xg) is referred to as the factor of X¢ (via h).
For example, if one identifies symbols via a surjective map A : A— A, then
h: (x;) — (Mx;)) is a factor map. Actually, as observed already by Hedlund
(see [5]), any factor map h has this form provided one is willing to replace X
with its (conjugate) r-block presentation Xo" for some r € N (see Section
3 for definitions).

For convenient algebraization of factors of cocyclic subshifts, we abandon

End(V) in favor of a new larger semigroup made of all linear subspaces in
End(V).

Definition 11.1 For a linear space V', the semigroup of linear subspaces of
End(V'), which we also call the subspace semigroup* of End(V), is

End(V) :={W C End(V) : W is a linear subspace}
with the product of W and W € End(V) defined as
W-W:=lin{AA: AcWw, AcW}.

It is easy to see that End(V) is indeed a semigroup with the zero subspace
{0} serving as the zero element denoted by 0. Thus given V € End (V)™ we
have the corresponding cocycle and the supporting it subshift is

Xy={zcAN: V, -..-V,, #0, ¥n € N} c AN

12This name has been coined in [16].
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Proposition 11.1 (factor) A subshift Y C AN is a factor of a cocyclic
subshift iff there is a finite dimensional linear space V and V € End(V)™
such that Y = X,.

Proof. Suppose that X = X¢ C AN, ® € End(V)™, is a cocyclic subshift
and Y = h(X) C AN is its factor via h. We may assume that h is given by
a symbol identification A : A — A since we can always replace X with its
r-block presentation for some r € N, which is also cocyclic by Theorem 3.1.
Setting V; :=lin{®; : i € A"1(j)}, j € A, easily yields Y = Xy.

For the opposite implication, given V € End(V)™, select a basis in each
Vj, so that V; = lin{®; : i € I;} where ®; € End(V') and I,’s are disjoint
index sets, 7 = 1,...,m. Then X, is a factor of a cocyclic subshift X¢ with
q) == (q)i)iEUjIj' O

Proposition 11.1 reveals little. Confronted with the exotic End(V'), we
are left eluded by the obvious problem:

Question 1: Are factors of cocyclic subshifts cocyclic?
From an algebraic standpoint, one may rather ask a weaker question.

Question 2: Can any finitely generated sub-semigroup G C End(V') be
realized as a matrix semigroup? Precisely, is there a finite-dimensional linear
space V' and a homomorphism ¢ : G — End (V") such that ¢='(0) = 0?

Such representation ¢ does not exist for G = End(V') as pointed out in
[16] — a work sparked by our inquiry about the nature of End(V"). Question
1 aside, the theory of cocyclic subshifts sheds some light on their factors. We
mention only one such easy corollary without proof.

Corollary 11.1 Suppose that Y is a factor of a cocyclic subshift.
(i) If Y is topologically transitive, then Y is intrinsically ergodic.
(i) If Y is mizing, then Y has specification.

To exhibit examples of subshifts that are not cocyclic, one can use the
following result in the spirit of the pumping lemma, see [12].

Theorem 11.1 (pumping) If a subshift X is a factor of a cocyclic subshift,
then there exists ng € N such that, for any finite blocks o, o, and an infinite
block (3, sup{n € N : ao" € X} is either infinite or less than ny.
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The context free shift over the alphabet {0,1,2} is defined by disallowing
the blocks 01™2"0 where m # n € N. This is a standard example of a
subshift that is not sofic but has specification (see [12]).

Corollary 11.2 (non-cocyclic specification) The context free shift is not
a factor of a cocyclic subshift.

Proof of Corollary 11.2. Otherwise take ny as in Theorem 11.1 and fix
m > ng. The sequence 0120 is disallowed for all n > m so, by Theorem

11.1, it is disallowed for all n > ngy and thus for n = m — a contradiction.
(I

Theorem 11.1 depends on the following fact.

Fact 11.1 Suppose that V € End(V). If n > ng := dim(V)?, then V" C
lin{V*: k > ny} for any n, € N.

Proof. In End (V') we have a descending sequence of linear spaces M,, :=
lin J{V*: k >n} € End(V), n € N. There is then n, < dim(End(V)) =
dim(V)? such that M,,, = M,,, ;. Since M,,;; = M,, -V, n € N, we have
Mook = M, VF= M, for all k € N, and the fact follows. O

Proof of Theorem 11.1. By Proposition 11.1, X = X,, for some V €
End(V)™. Consider the kernel of Vg, that is Kz := {A € End(V) : AVjg, =
0, In € N}, (where AVjg, := {AW : W € V), }). Clearly, ao™p ¢ X if
and only if V, V' C K. If the supremum in the theorem is finite and equal
to m; then the inclusion holds for all n > n;, and Fact 11.1 (with V = V,)
guarantees the inclusion for all n > ng := dim(V)2. Thus n; < ng. O

We see from the proof that, if X is presented in End(V'), then one can
take ng = dim(V')? in Theorem 11.1. If X is cocyclic, already ny = dim(V)
suffices by the following remark.

Remark 11.1 In the cocyclic case, i.e. if V = lin(L) for some L € End(V),
the assertion of Fact 11.1 holds for ng = dim(V), i.e. L™ € lin{L¥ : k > n;}
for n > ngy and any n; € N.

Proof. It suffices to consider n; > n > dim(V). Set V := im®(L) :=
Meen im(LF).  From the Jordan theorem, for n > dim(V), rank(L") =

rank® (L) := limy_,o0 rank(LF), and L := Lljyy> ) is a self isomorphism
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of V. In order that L™ € lin{L* : k > n,}, it is enough that L™ € W :=
lin{L* : k > n} C End(V) because all maps L* for k > n, agree with
L precomposed with the projection along ker™ (L) := [Jyen ker(L*) onto
V. Clearly, WL C W (mind that the endomorphisms act on the right).
However, since L is an isomorphism, WL =W, and W = WL!. Thus
Lr=prpm—nL-m=m e W, O

12 Graphs with Propagation.

Another way to cast cocyclic subshifts and their factors is by generalizing
the graph theoretic description of sofic systems. We value this approach as
it makes working with concrete examples so much more pleasurable.

Think of the elements of the alphabet A = {1, ...,m} as encoding colors.
Suppose G is a directed graph with colored edges: V is the set of vertices,
E is the set of edges, and the colors are assigned to the edges by [ : E — A.
A sequence of edges (¢;) is a path in G iff ¢ = e, where ¢~ and e®
stand for the head and the tail of the edge e, respectively. Each finite path
a = (ey, ..., e,) determines a block o = (l(ey), ..., {(e,)); we say that o is the
coloring of a. The sofic system of the labeled directed graph G is the subshift
defined by allowing only the blocks that are colorings of some path, that is
Xg = {(l(e;))ien : (€i)ien a path in G} C AN. All sofic systems arise in
this way and this characterization was introduced in [7].

For an analogous description of cocyclic subshifts, one needs multiplica-
tive matrix weights along the edges of G. More precisely, by a colored graph
G with propagation T’ we understand a colored directed graph G (as above)
that has each vertex v € V equipped with a linear space V, and each edge
e € E equipped with a linear transformation I'y : V- — Vo+; T = (I'¢)ccE-
Denote the pair (G,I') by P. For a path a = (ey, ..., e,), write [’y := T, ...T¢,
and say that a propagates iff I'; # 0. By definition, a finite block of colors
o = (01, ...,0,) is allowed iff it is a coloring of some propagating path a; an
infinite block is allowed if its every finite sub-block is allowed.

We claim that the set of all infinite allowed blocks, Xp := {(I(¢&;))ien :
(€;)ien allowed path in P}, is a factor of a cocyclic subshift. To see that, set
V= EBUE\, Vy,. Let P, : V — V, and J, : V,, = V be the canonical projection
and injection, respectively; and put ¥, := P,-T".J.+ for each edge e (where as
usual we compose linear maps on the right). The cocyclic subshift Xy C EN
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for ¥ := (¥,).ecr factors onto Xp under the symbol identification given by
the coloring [ of G. In fact, every factor of a cocyclic subshift can be obtained
as Xp for some P.

[t is an open problem (see Question 1 in Section 11) when Xp is actually
cocyclic. We mention only a simple sufficient condition. A colored graph G is
right (left) resolving, if no two edges with tails (heads) at the same vertex have
the same color, i.e. if e~ = ¢~ and I(e) = [(€) then e = € for any e, € € E(G).
A colored graph with propagation P = (G,T) is right (left) resolving iff G
is right (left) resolving. The right and left resolving are dual notions, where
the dual P* of P is obtained by inverting all edges and replacing I'.’s with
their adjoints I'}’s. (Note that reading an allowed block of P* in the reverse
order gives an allowed block of P, and vice versa.)

Proposition 12.1 If P = (G,T) is right (left) resolving, then Xp is a co-
cyclic subshift.

Proof. Set V := @, .y Vo. To define a cocycle ® € End(V)™, set 2®; =
Y eck: ey tle for v € V and z € V, (naturally embedded in V), i =
1,...,m. In the right resolving case, Xp = X¢ follows from the fact that
x®; = 2T, where e is the (only) vertex colored ¢ with e~ = v, or 2®; = 0
if such an edge does not exist. In the left resolving case, that Xp = Xg
is best seen via duality: the adjoint operator to ®; is given by z*®; =
Y ecE: ety T for any z* € V7. By left resolving, the sum has at most one
non-zero term, and one can argue as in the right resolving case. O

We should stress that any cocyclic subshift X¢ C AN arises trivially from
a graph with only one vertex and a loop for each ®;, i € A. Nevertheless,
by choosing a more complicated graph one can gain better insight into the
structure of the subshift. The diagram in Section 10 may serve as an example.
Also, note that the sofic system Xg may be cast as a cocyclic subshift by
associating with each vertex of G a copy of R and with every edge the
identity R — R. However, even for an irreducible aperiodic topological
Markov chain, the resulting cocyclic subshift may fail to be irreducible. As
an example one can take the Markov chain associated with the edge graph
of the full graph over two vertices — the edges, all with different colors, are:
(1,1), (1,2),(2,3), (2,4), (3,3), (3,4), (4,1), (4,2). The subshift is conjugate
to the full two-shift, but £ # End (V). In fact, a straightforward calculation
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(with the aid of Mathematica) confirmed that £ is of co-dimension 8 in
End(V).

Finally, we turn to the proof of Theorem 10.2.
Proof of Theorem 10.2. First we show that Xg is a sofic system for positive ®
by producing a colored graph G for which X4 = Xq. Let ®; be represented

by a matrix (a,(j})gyl:l with non-negative entries. Take {1, ...,d} for vertices.

For each positive agfl), k,l=1,....d,i € A, span an edge of color i from k to

[ with the weight A; = a,(;l) over it. The positivity of weights over all edges
guarantees that if o is a coloring of a path then ¢ is allowed and ®, # 0.
Since the opposite implication always holds, it follows that indeed X = X¢.

For the second assertion of the theorem, invert the above construction to
obtain from a colored graph (with weights defaulted to 1) a suitable positive
cocycle. For a fixed color ¢, the corresponding matrix ®; is just the incidence
matrix of the graph obtained from G by removing all the edges of color
different than ¢. O

A Implementing Chaos Detection.

Section 9 spells out sharp criteria for chaos in Xg but ignores the issues
of numerical implementation. Short of writing the actual code, we sketch
here possible algorithms based on the dichotomy: X is either chaotic with
positive entropy and has the full two-shift as a factor (of some power), or
Xg has a zero entropy with all non-transient dynamics limited to at most
d = dim(V) periodic orbits. The proposed algorithms can be integrated
with Szymczak’s Conley index methods for efficient chaos detection in the
spirit of [3].

To start with the simplest case of irreducible ® € End(V)™, whether Xy

is chaotic can be decided simply by testing if X¢ is a single periodic orbit of
period p < d := dim(V’). Roughly, one can do the following:
Recursively construct sets By := {o : o allowed and |o| = k} starting with
k= 1. If #Bx > d for some k, then X 1s chaotic — stop; otherwise,
continue to get By. Now, set p := #By (the potential period), and see if all
initial p-segments of blocks in By coincide up to a cyclic permutation. If it
is not so, then X¢ is chaotic; otherwise, X¢ has zero entropy (and we have
found the only periodic orbit that constitutes Xg ).

The case of a general ® € End(V)™, in principle, reduces to irreducible
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cases via the spectral decomposition. Yet this involves solving for eigenvec-
tors of d x d matrices, which seldom can be done exactly — so we follow a
more direct path.

To fix notation, for a block o, let us call p € N a period of o iff, for some
block a with [a] = p, o is an initial sub-block of o™, i.e 0 = (af®, ..., o).
For the minimal such period we write p(o). Clearly, p(o) < |o|; and note the
usual uniqueness property of p(co): if o = o! with || = p(0) and o = 3F,
then # = o™ for some m.

Theorem A.1 (chaos detection) For ® € End(V)™, d := dim(V), Xo
has zero entropy iff any non-transient allowed block o of length d? + 1 has
minimal period p(c) < d. Moreover, then there are at most d such blocks.

Recall from Section 5 that o is called non-transient iff &, ¢ J where J
is the Jacobson radical of End(V’). This, in fact, can be decided without
determining J and at a modest cost of d multiplications in the subspace
semigroup End(V) (c.f. Definition 11.1):

Fact A.1 A block o is non-transient iff W # 0 for W := ®,E4 € End(V).

Before we give proofs, let us note that Theorem A.1 (coupled with Fact A.1)
can be implemented as a finite calculation:

Compute recursively By := {0 : o allowed and non-transient, |o| = k} start-
ing with k = 1; weed out transient blocks at each stage via Fact A.1. If
#By, > d for some k, then X¢ 1s chaotic — stop; otherwise, continue to get
Bgzy 1. Finally, check whether p(o) < d for each 0 € B, i. If yes, X¢ has
zero entropy; if not, X¢ is chaotic.

The algorithm would require a polynomial (in d) number of matrix multi-
plications; however, exact arithmetic of evaluating ®, may bare exponential
cost even for integer cocycles. That the algorithm is correct we again leave
to the reader.

Proof of Fact A.1. If o is transient, i.e. ®, € J, then W C JE C J so
that W¢ C J¢ = 0. On the other hand, if o is non-transient then ®, has
a non-zero irreducible component R;(®,) in the Wedderburn-Artin spectral
decomposition (Theorem 5.1) and o can be extended to z € (X ); via Lemma
4.1, so that o = [z],, for n := |o|. By approximating « with a periodic point
(Theorem 5.1), we get (ca)® € Xg for some a. Hence, (®,P,)? # 0, and so
Wi £0. 0
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Lemma A.1 Ford € N and x € AN, if every sub-block o of x with length
lo| = d? + 1 has its period p(o) < d, then x is periodic (with period p < d).

Proof of Lemma A.1. Set o, := (xy, ..., Tprq2) and p, := p(oy,). Let ay,
|| = p(0n), be such that o, is the initial segment of af°. It suffices to see
that, for n € N, p,,.1 = p,, and that a,,,1 = @, where @, is the cyclic shift of
ay, by one place to the left. The block i := (241, ..., Tngpup,,) 1S a sub-block
of both ¢, and 0,41 because p,,p,+1 < d. Thus p = a;,Pr+t = af;’jrl, and the
uniqueness property of the minimal period implies that p,.1 = p, and that
Qpi1 = Q. U

Proof of Theorem A.1. If X4 has zero entropy, then by Corollary 9.2 the
non-transient set (Xg¢); of Xg consists of at most d periodic points. The
assertion on non-transient blocks follows as they can occur as sub-blocks of
non-transient points.

In the other direction, if every non-transient block o of length d? + 1
has p(o) < d, then every non-transient point must be periodic of period
not exceeding d by Lemma A.1. Hence, (Xg)4 is finite and thus carries no
entropy. [
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