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ABSTRACT

In this paper we derive some properties of a new geometric-topological invariant
defined in Swanson14 and Kwapisz-Swanson11 that measures the rotational com-
plexity of annulus maps, called asymptotic or rotational entropy. We completely
characterize this concept for circle maps of degree one as a linear function of the
diameter of the rotation interval. For annulus maps, the authors have proved
in prior work11 that Hölder C1 diffeomorphisms with nonvanishing asymptotic
entropy are isotopic rel a finite set to pseudo-Anosov maps. We provide a brief
description of the proof of that result. Finally, in this paper, we prove that
nonvanishing asymptotic entropy implies the existence of infinitely many peri-
odic orbits and a nontrivial rotation set. We apply the concept to billiard maps
to prove integrable billiard problems have continuous rotation numbers, and,
more significantly, rotation discontinuities force generalized rotary horseshoes in
billiard maps.

1. Introduction, definitions and main results

Smale horseshoes on the annulus may have trivial rotation sets, despite
their complicated dynamics. Horseshoes which give rise to rotation intervals of
positive length are called rotary horseshoes. When rotation numbers of periodic
orbits vary discontinuously in a precise sense, one can infer the existence of
pseudo-Anosov orbits: the original annulus map is pseudo-Anosov rel a finite
invariant set (Handel9). Asymptotic entropy, defined below, measures this kind
of rotational complexity very well. In the second section, devoted to circle
maps, we derive a formula for asymptotic entropy in terms of the diameter of
the rotation set. This is as it should be. For circle maps, the rotation interval
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completely describes the rotational behavior and is decisive for the existence of
rotary horseshoes.

On the annulus, the authors have proved11 that positive asymptotic en-
tropy implies rotational discontinuities for sufficiently smooth diffeomorphisms.
Homeomorphisms of the annulus that are pseudo-Anosov rel a finite set have a
nontrivial rotation interval relative to any boundary component. That result is
an important motivation for the study of this kind of entropy. It follows that
smooth annulus maps with positive asymptotic entropy have infinitely many pe-
riodic orbits corresponding to an interval of rotation numbers. The assumption
of smoothness may be unnecessary, but we cannot prove this yet.

However, for the homeomorphism case, we can prove in Section 3 that non-
vanishing rotational entropy implies a nontrivial rotation interval and, hence,
infinitely many periodic points, as in Section 3.

In the last section, we relate these results to the problem of characterizing
nonintegrability in billiard maps. We show that in the integrable case, evidently,
rotation numbers are well defined and vary continuously. If the rotation is ill-
defined or discontinuous — under the generic expectation that periodic points
are dense — then we can conclude the existence of pseudo-Anosov orbits.

1.1. The Definition of Asymptotic Entropy

Let A be the annulus S × [0, 1] i.e. the quotient of Ã = R × [0, 1] under
the action of Z by integer translation along R . We will refer to the quotient
map as π : Ã → A . On the strip Ã we have the Euclidean metric d̃. There is
a unique corresponding metric d on A .

From now on it will be assumed that we are given a homeomorphism f : A →

A , with f isotopic to the identity transformation. We also fix a lift F : Ã → Ã

of f . This lift determines the displacement function of F , φF : A → R
2,

obtained as the factor of (j ◦F − j ◦ id) : Ã → R
2 where j is the embedding of

Ã into R
2.

Definition 1.1 For n ∈ N . Define d̃n a metric on Ã by the formula:

d̃n(x, y) := max{d̃(F i(x), F i(y)) : 0 ≤ i ≤ n − 1}.

We will say that a set E ⊂ Ã is (d̃n, R)-separated if the distance between
any two points in E is at least R with respect to d̃n metric.

Definition 1.2 For a subset X of A and R > 0 we define :

s̃X(dn, R) = max # of (d̃n, R) − separated subset of π−1(X) ∩ [0, 1]2;



and the ‘R-entropy’:

h̃X(R) := lim sup
n→∞

1

n
log(s̃X(dn, R));

Definition 1.3 For a subset X of A topological entropy htop
X is defined as

htop
X = lim

R→0
hX(R)

and asymptotic entropy (called also rotational entropy) as

has
X = lim sup

R→∞

R · h̃X(R).

Remarks 1.4 The reader may be accustomed to defining htop
X directly in the

base space A , but the two formulations are easily seen to be equivalent.
Asymptotic entropy is independent of the choice of lift F and of fundamental

domain. The reader may prefer to define either kind of entropy using minimal
spanning sets, which is equivalent for topological entropy but may differ for
asymptotic entropy. However, the spanning version of asymptotic entropy is
positive if and only if the separated version is positive, the exact value being of
less importance.

What kind of invariant is asymptotic entropy? Technically, it is a geometric
invariant, as it depends on the choice of lift metric. If we fix the metric in
the lift, however, then rotational entropy is a true topological invariant like
topological entropy.

In the next section, we discuss some easy results about asymptotic entropy
for circle maps.

1.2. Asymptotic Entropy for Circle Maps

We want to prove the following:

Proposition 1.5 Let f : S
1 → S

1 denote a circle map of degree 1. Fix a lift
F of f . The asymptotic entropy of f is exactly

has(F ) = Diam ρ(F ) · log 2.

This means that for circle maps asymptotic entropy is indistinguishable from
knowledge of the rotation set diameter. Rotation sets for circle maps are always
closed intervals2 I. Thus, asymptotic entropy reduces to a well understood con-
cept for circles. In particular, positive asymptotic entropy implies the existence
of “rotary horseshoes”.

We will need the additivity property, which holds for circle or annulus maps:



Lemma 1.6 has
X (Fm) = m · has

X (F ).

Proof:
Clearly any (Fm, n, R)-separated pair x, y is (F,mn,R)-separated. So it is

easily verified that the “≤” part of the inequality is established. By uniform
continuity, there exists a constant Cm depending only on m and the choice of
metric such that for sufficiently large R,

d̃(x, y) ≤ R ⇒ d̃m(x, y) ≤ R + Cm.

Hence, if E(F, n,R) denotes a set of maximal cardinality comprised of (n,R)-
separated points in the same fundamental domain, we have

card E(F,mn,R + Cm) ≤ card E(Fm, n, R).

Therefore,

h̃(F,R + Cm) ≤
1

m
h̃(Fm, R),

which completes the proof of the lemma. 2

Now we return to the proof of the proposition. Since the subject is extremely
well known, we provide only a sketch of the ideas involved.

Proof: Suppose ρ(F ) = [α, β] ⊃ [p/q, r/q]. There exist disjoint intervals I0 =
[x0, y0] and I1 = [x1, y1] in [0, 1] such that the lift G := T−pF q of f q fixes x0

in I0 and F (y1) = y1 + (r − p). In fact, one can choose I0 and I1 so that their
images under G cover I0 ∪ I1 + (r − p). Points of I0 do not “go around the
circle”. Points of I1 go around essentially r − p times. This defines a rotary
horseshoe f q|Λ.

It is not hard to compute the asymptotic entropy of such a rotary horseshoe:

has
Λ = has

Λ (G) = (r − p) · log 2

We can illustrate the former in the special case, r = 1, p = 0, q = 1. Points in
I0 advance 0 units in R , while points of I1 move 1 unit. The shift based on the
Markov rectangles consisting of π(Ii), i = 0, 1 is the full two-sided two shift. Fix
a value of R > 0, and write n = kR + m, 0 ≤ m < R. Then a maximal (n,R)
separated set E is given by lifts of words of length kR which are a union of words
of length R consisting entirely of 1’s or 0’s. The remainder m is bounded and
makes no contribution to the exponential growth rate. The cardinality of E is
2k. The R-asymptotic entropy is h̃(R) = lim supn→∞

(k/n) · log 2 = (1/R) · log 2.
The additivity lemma above allows us to divide by q, if that is the common



denominator of the endpoints. The reverse inequality is established below in
Lemma 2.1. 2

2. Prior Results: Hölder diffeomorphisms and Pseudo-Anosov Be-
havior

Let F : Ã → Ã be a lift of an orientation preserving and boundary preserv-
ing homeomorphism f : A → A . Let X denote a compact subset of A . We
begin by finding an upper bound for has

X (f) in terms of the rotation set ρX(F ).
This bound is proved in Kwapisz-Swanson11, but it will be convenient to give
the proof here also.

Lemma 2.1 has
X (f) ≤ DIAM(ρX(F )) · log 2.

Proof: Let {F n(x) = x(n)} denote a positive trajectory of the the lift F ,
and pr1 is projection onto the first coordinate. Choose ρ+, ρ− ∈ R so that
ρ(f,X) ⊂ (ρ−, ρ+). Note that we get, for sufficiently high n :

(∗) ρ− ≤ pr1(x(n) − x(0))/n ≤ ρ+.

Therefore, there is a constant C > 0 such that for all n ≥ 1

(∗∗) ρ− − C/n ≤ pr1(x(n) − x(0))/n ≤ ρ+ + C/n.

In fact, by the compactness of the fundamental domain and periodicity of F n −
Id, C can be chosen independently of x(0).

Let R > 0 be as in the definition of asymptotic entropy.
Define

m = R/(ρ+ − ρ−).

If m is not already an integer, increase ρ− and decrease ρ+ so that m is now
an integer and (∗) is true for x(m) . We may have to increase R, but R is
independent of ρ± except for having to be sufficiently large. This may also
increase C in (∗∗). Now fix those values of m,R, and C.

Let D be an R-box; i.e., D := pr−1
1 (I) where I is an arbitrary interval of

length R. Let x(i), y(i) be two trajectories in the universal cover both originat-
ing in D.

Claim 2.2 For the above choice of m, the following holds:
(1) both x(m) and y(m) are in one of the two boxes D + mρ+ or D + mρ−;
(2) For n = 0, 1, 2, ...,m, d(x(n), y(n)) ≤ R + 2C + 2 .

Proof of Claim. (Part 1) From (∗) we get inf I +mρ− ≤ pr1(x(m)) ≤ sup I +
mρ+. That is, x(m) lies in a region swept out as we slide D +mρ− to D +mρ+.
But by the choice of m there is no gap between the two. 2



(Part 2) We consider the case when x(m) ∈ D+mρ+. The other case is similar.
Apply (∗∗) to the trajectory x(i) twice — once starting from x(0) and the second
time starting from x(m) and running back in time. We get:

pr1(x(n)) ≤ pr1(x(0)) + nρ+ + C;

pr1(x(n)) ≥ pr1(x(m)) − (m − n)ρ+ − C.

Since x(0) ∈ D and x(m) ∈ D + mρ+ we see that:

inf I + nρ+ − C ≤ pr1(x(n)) ≤ sup I + nρ+ + C.

Of course we have an analogous inequality for y(n). “Subtracting” the two,
yields pr1(x(n) − y(n)) ≤ R + 2C. Our claim follows. 2

The claim insures that we can match to each trajectory x(n) a sequence of
signs σi = ± so that x(i ·m) ∈ D+mρσ1 + ...+mρσi . Also this correspondence is
injective on (R+2C +2)-separated trajectories by (2). Trivial counting implies
that h̃(R + 2C + 2) ≤ log 2/m. The Lemma follows.

2

Let cl(Per(f)) denote the closure in A of the set of periodic points of f .
Handel has provided a somewhat technical criterion9, called the pA-Hypothesis,
for an annulus homeomorphism to be pseudo-Anosov rel a finite set. We have
proved elsewhere11 that an equivalent criterion is for the rotation number as-
signment π(x) 7→ ρ(F, x) to be either not well-defined or not continuous on the
set cl(Per(f)).

Theorem 2.3 (Handel’s Lemma9) Suppose that f : A → A satisfies the
pA-hypothesis. The f is isotopic rel a finite invariant set to a pseudo-Anosov
map φ. Moreover, the rotation set of f contains the rotation set of φ, with
respect to the original annulus covering space.

Theorem 2.4 (Theorem A.) Suppose that f is an annulus homeomorphism.
If we have has

cl(Per) > 0 then f satisfies the pA-hypothesis.

Theorem 2.5 (Theorem B.) If f is a C1+ǫ-smooth annulus diffeomorphism
then

has
cl(Per) ≥

1

2
· has.

If we assemble these latter three results, we get

Theorem 2.6 (Kwapisz-Swanson11) If f is a Hölder smooth annulus diffeo-
morphism isotopic to the identity and the asymptotic entropy of f is nonvan-
ishing, then f is isotopic rel a finite invariant set to a pseudo-Anosov map.



Remarks 2.7 The proof is too long and technical to be included here. The proof
proceeds by establishing that at least half the asymptotic entropy can be realized
on the supports of invariant measures with nonzero Lyapunov exponents. Such
measures are called hyperbolic. When f is a Hölder diffeomorphism hyperbolic
measures are supported in the closure of the periodic points by a result due to
Katok10.

3. The C0 case: asymptotic entropy implies periodic orbits

In this section we will prove that positive asymptotic entropy implies the
existence of a chain transitive set having a nontrivial rotation set. This, in
turn, by a result of J. Franks7, implies the existence of an interval of rotation
numbers and infinitely many periodic orbits in the annulus. This correlates well
with the Hölder smooth case and suggests that one might be able to remove the
smoothness requirement in Theorem A and obtain the pA hypothesis simply
given nonvanishing rotational entropy .

3.1. Asymptotic entropy and chain transitive components

There are many good references for chain recurrence, and we refer the reader
to any of those (e.g. Conley4) for detailed background information.

Definition 3.1 An f -periodic ǫ-chain is a sequence {x0, . . . , xn = x0} with
d(f(xi), xi+1) < ǫ for 0 ≤ i < n and n > 2. The point x is chain recurrent if
for every ǫ > 0, there exists a periodic ǫ chain containing x. Two points x and
y lie in the same chain transitive component C, if for all ǫ > 0, there exists a
periodic ǫ chain containing x and y.

As in Remark 2.7, at least one half of the total asymptotic entropy is attained
on the closure of the union of supports of the invariant measures of f . But every
invariant measure is supported in the closure of the set of f -recurrent points by
the Poicaré recurrence theorem (e.g. Walters18).

Therefore, we can conclude

Proposition 3.2 If asymptotic entropy is positive, then the asymptotic entropy
is positive on the chain recurrent set CR.

However, the following conjecture remains open:

Conjecture 3.3 Let f denote an annulus homeomorphism isotopic to the iden-
tity with chain recurrent set CR. If has

CR(f) > 0, then there exists a chain
transitive component C of CR such that has

C (f) ≥ (1/2)has
CR(f).



Such a result is not difficult for topological entropy , but scaling differences
between topological and asymptotic entropy require a new argument in the
case of asymptotic entropy. We will prove, however, that for arbitrary homeo-
morphisms isotopic to the identity, positive asymptotic entropy forces infinitely
many periodic orbits. To do this, we will need the following lemma, due to J.
Franks7:

Lemma 3.4 If a chain transitive set contains points x and y with rotation
numbers ρ(f, x) = r and ρ(f, y) = s, r < s, then

a) the full rotation set of f contains the interval [r, s], and
b) for each reduced rational p/q ∈ [r, s] there exists a periodic point of period q

and rotation number p/q.

We need two additional lemmas:

Lemma 3.5 Let X denote a chain transitive subset of f : A → A such that
ρ(f,X) ⊂ (a, b). then there exists a number δ > 0 such that if d(x,X) < δ, then
ρ(f, x) ⊂ (a, b).

Lemma 3.6 If every chain transitive set admits at most a single rotation num-
ber, then the rotation number mapping is continuous on the set of chain recur-
rent points.

For a proof of the first lemma, see Swanson15. where a slightly stronger
result is proved. The second lemma is a corollary of the first.

Theorem 3.7 If asymptotic entropy is nonvanishing, then there are infinitely
many periodic orbits corresponding to a nontrivial rotation interval.

Proof: If some chain component admits more than one rotation number then
the theorem follows from the result of Franks cited above. Otherwise, the
rotation number mapping is continuous on the chain recurrent set by the last
lemma. If so, for each δ > 0 there is finite cover of the chain recurrent set by
compact subsets Xi, i = 1, . . . , N whose rotation sets each have diameters less
than δ. However, one of Xi must support full asymptotic entropy h > 0. Since
by Lemma 2.1, h ≤ (log 2)δ, we arrive at a contradiction, since δ was arbitrary,
unless has = 0. 2

4. Area Preserving and Billiard Maps of the Annulus

Consider an area preserving diffeomorphism f : A → A . Such maps arise
naturally for billiard problems16 and in celestial mechanics. As J. Franks7 has
noted elsewhere, the area preserving case enjoys many advantages in rotation
number theory. The recurrent set is now the entire annulus. If the annulus map
admits two distinct rotation numbers, then the map realizes the full interval



of rotation numbers between those extremes, including infinitely many reduced
rationals corresponding to periodic orbits7.

From Section 2, we can easily infer the following theorem.

Theorem 4.1 Suppose that f : A → A is a C2 area preserving annulus
diffeomorphism, whose periodic points are dense. If this map is integrable, then
the rotation number map ρ : A → R is well-defined and continuous.

Proof: If the map ρ is not well-defined or is discontinuous, Handel’s criterion
is met for the pA-hypothesis (as in Theorem 2.1). As a consequence, there exist
finite pseudo-Anosov orbits and a compact set K such that f |K is semiconjugate
to a rotary horseshoe. No such map can be integrable. 2

If the conclusions of the last theorem hold, then we shall say that f admits
a generalized rotary horseshoe.

4.1. Billiard Maps

I would like to extend my thanks to the references8,19 for helpful conver-
sations concerning the material of this section. We remind the reader of the
reduction of billiard orbits to the study of area preserving annulus maps. Pa-
rameterize the convex table T by a circle coordinate p ∈ S

1 . Trajectories are
geodesics or lightrays which meet the table and exit at a common angle α.
Consider the space K := (0, π) × S

1 . The map f : K → K is such that
f(α, p) = (β, q), where β is the incident angle at point q in the elastic collision
immediately following the one at p. Now K is an open annulus. However, for
convex billiards we may compactify to a compact annulus and we shall assume
that this has been carried out, replacing K with A , the usual annulus.

The Aubry-Mather theorem asserts that the set of rotation numbers is pre-
cisely the interval whose endpoints are attained on the boundary circles. More
significantly, for each number in this interval there corresponds a periodic orbit
or, in the irrational case, a Denjoy minimal set or (minimal) invariant circle.

Sometimes called the Birkhoff conjecture, the assertion that a billiard map
is integrable iff the billiard table is an ellipse has long defied the most powerful
methods of analysis and topology.

For our purposes we will use the version due to S. Tabachnikov16:

Conjecture 4.2 (Birkhoff’s Billiards’ Conjecture) If a neighborhood of a
strictly convex smooth billiard curve is foliated by caustics, then the curve is an
ellipse.

The result then implies that the entire billiard disc is foliated by confocal
ellipses16.



We certainly will not resolve this problem in the present discussion! How-
ever, one can at least sharpen the problem a little by looking for pseudo-Anosov
orbits as in the previous theorem.

We make the following standing assumption:

(*) Suppose every nonempty open set of nonperiodic points of the billiard
transformation has a constant (irrational) rotation number.

In fact, it seems to be open whether there can be an open set of nonperiodic
points.

Theorem 4.3 For integrable billiard problems the rotation number is continu-
ous in a neighborhood of the annulus boundary curve corresponding to the billiard
table curve. If the rotation mapping is ill defined or discontinuous at some phase
cylinder point then, in fact, there is a generalized rotary horseshoe in the phase
space cylinder.

Proof: In the integrable case the phase cylinder is foliated into invariant curves.
The curves correspond to caustics in the billiard table. Such an invariant curve
has a constant rotation number, since that is true of homeomorphisms on cir-
cles. The rotation number varies continuously, for that is true of one-parameter
families of circle maps.

For area preserving twist maps an open set of nonperiodic points must have
a common irrational rotation number ω. It follows that if ρ is ill-defined or dis-
continuous on the annulus, then the rotation map is ill-defined or discontinuous
on the closure of the periodic orbits. 2

Conjecture 4.4 Suppose the billiard curve
is smooth and strictly convex. The asymptotic entropy of the billiard map is

positive iff the billiard table is not an ellipse. In other words either the system
is completely integrable or it admits a generalized rotary horseshoe.
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