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Abstract

We investigate periodic and chaotic solutions of Hamiltonian systems inR4
which arise in the study of stationary solutions of a class ofbistable evolution
equations. Under very mild hypotheses, variational techniques are used to show
that, in the presence of two saddle-focus equilibria, minimizing solutions respect
the topology of the configuration plane punctured at these points. By considering
curves in appropriate covering spaces of this doubly punctured plane, we prove
that minimizers of every homotopy type exist and characterize their topological
properties.

1 Introduction

This work is a continuation of [5] where we developed a constrained minimization
method to study heteroclinic and homoclinic local minimizers of the action functionalJI [u] = ZI j(u; u0; u00) dt = ZIh
2 ju00j2 + �2 ju0j2 + F (u)idt; (1.1)

which are solutions of the equation
u0000 � �u00 + F 0(u) = 0 (1.2)

with 
; � > 0. This equation with a double-well potentialF has been proposed in
connection with certain models of phase transitions. For brevity we will omit adetailed
background of this problem and refer only to those sources required in the proofs of the
results. A more extensive history and reference list are provided in [5], to which we
refer the interested reader.

The above equation is Hamiltonian withH = �
u000u0 + 
2 ju00j2 + �2 ju0j2 � F (u): (1.3)�This work was supported by grants ARO DAAH-0493G0199 and NIST G-06-605.
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The configuration space of the system is the(u; u0)-plane, and solutions to(1:2) can be
represented as curves in this plane. Initially these curves do not appear to berestricted in
any way. However, the central idea presented here is that, when(�1; 0) are saddle-foci,
the minimizers ofJ respect the topology of this plane punctured at these two points,
which allows for a rich set of minimizers to exist. Using the topology of the doubly
-punctured plane and its covering spaces, we describe the structure of all possible types
of minimizers, including those which are periodic and chaotic. Since the action ofthe
minimizers of these latter types is infinite, a different notion of minimizeris required
that is reminiscent of the minimizing (Class A) geodesics of Morse [8]. Such minimizers
have been intensively studied in the context of geodesic flows on compact manifolds or
the Aubry-Mather theory (see e.g. [1] for an introduction). A crucial difference isthat
we are dealing with a non-mechanical system on a non-compact space. Nevertheless,
we are able to emulate many of Morse’s original arguments about how the minimizers
can intersect with themselves and each other. For a precise statementof the main results
we refer to Theorem 4.2 and Theorem 6.8. For related work on mechanical Hamiltonian
systems we refer to [9, 2] and the references therein.

Another important aspect of the techniques employed here and in [5] is the mild-
ness of the hypotheses. In particular, our approach requires no transversality or non-
degeneracy conditions, such as those found in other variational methods and dynamical
systems theory, see [5]. Specifically, we will assume the following hypothesis onF :

(H): F 2 C2, F (�1) = F 0(�1) = 0, F 00(�1) > 0, andF (u) > 0 for u 6= �1.
Moreover there are constantsc1 andc2 such thatF (u) � �c1 + c2u2.

We will also assume for simplicity of the formulation thatF is even, but many analogous
results will hold for nonsymmetric potentials, c.f. [5]. Finally, we assume that the
parameters
 and� are such thatu = �1 are saddle-foci, i.e.4
=�2 > 1=F 00(�1). An
example of a nonlinearity satisfying these conditions isF (u) = (u2 � 1)2=4, in which
case (1.2) is the stationary version of the so-called extended Fisher-Kolmogorov (EFK)
equation.

In [5] we classify heteroclinic and homoclinic minimizers by a finite sequenceof
even integers which represent the number of times a minimizer crossesu = �1. More
general minimizers can be similarly classified by infinite and bi-infinitesequences, as
described in Section 2. A more general notion of minimizer for these types is defined in
Section 3, and in Section 4 we prove that such minimizers exist.

In Sections 5 and 6 we show that many properties of these symbol sequences such as
symmetry and periodicity are reflected in the corresponding minimizers. Inparticular,
we show that for any periodic type, there exists a periodic minimizer of that type.The
classification of minimizers by symbol sequences has other properties in common with
symbolic dynamics; for example, if a type is asymptotically periodic in both directions,
then there exists a minimizer of that type which is a heteroclinic connection between
two periodic minimizers.

The minimizers discussed here all lie in the 3-dimensional ‘energy-manifold’M0 =f(u; u0; u00; u000) j H((u; u0; u00; u000) = 0g. Exploiting certain properties of minimizers
that are established in this paper, we can deduce various linking and knotting character-
istics when they are represented as smooth curves inM0. However, we will not address
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this issue in this paper. The minimizers found in this paper are also used in [13]to
construct stable patterns for the evolutionary EFK equation on a bounded interval.

Some notation used in this paper was introduced previously in [5]. While we have
attempted to present a self-contained analysis, we have avoided reproducing details (par-
ticularly in Section 5.1) which are not central to the ideas presented here, and which are
thoroughly explained in [5].

2 Types and function classes

A functionu : R ! R can be represented as a curve in the(u; u0)�plane, and the asso-
ciated curve will be denoted by�(u). Removing the equilibrium points(�1; 0) from the(u; u0)�plane (the configuration space) creates a space with nontrivial topology, denoted
byP = R2nf(�1; 0)g. In P we can represent functionsu which have the property thatu0 6= 0 whenu = �1, and various equivalence classes of curves can be distinguished.
For example, in [5] we considered classes of curves that terminate at the equilibrium
points(�1; 0). Another important class consists of closed curves inP, which represent
periodic functions. We now give a systematic description of all classes to be considered.

Definition 2.1 A type is a sequenceg = (gi)i2I with gi 2 2N [ f1g, where1 acts as
a terminator. To be precise,g satisfies one of the following conditions:

i) I = Z, andg 2 2NZ is referred to as abi-infinite type .
ii) I = f0g [ N , andg = (1; g1; g2; :::) with gi 2 2N for all i � 1, orI = �N [ f0g, andg = (:::; g�2; g�1;1) with gi 2 2N for all i � �1.

In these casesg is referred to as asemi-terminated type.
iii) I = f0; :::; N + 1g withN � 0, andg = (1; g1; :::; gN ;1) with gi 2 2N.

In this caseg is referred to as aterminated type.

These types will define function classes using the vectorg to count the crossings ofu at the levelsu = �1. Since there are two equilibrium points, we introduce the notion
of parity denoted byp, which will be equal to either0 or 1.

Definition 2.2 A functionu 2 H2loc(R) is in theclassM(g;p) if there are nonempty
setsfAigi2I such that
i) u�1(�1) = Si2I Ai,
ii) #Ai = gi for i 2 I,
iii) maxAi < minAi+1,
iv) u(Ai) = (�1)i+p+1, and
v)

Si2I Ai consists of transverse crossings of�1, i.e.,u0(x) 6= 0 for x 2 Ai.
Note that by Definition 2.1, a functionu in any classM(g;p) has infinitely many

crossings of�1. Definition 2.2 is similar to the definition of the classM(g) in [5]
except that here it is assumed that all crossings of�1 are transverse. Only finitely
many crossings were assumed to be transverse in [5] so that the classesM(g) would
be open subsets of� +H2(R). Since we will not directly minimize overM(g;p), we
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now require transversality of all crossings of�1 to guarantee that�(u) 2 P. However,
note that the minimizers found in [5] are indeed contained in classesM(g;p) as defined
above, where the typesg are terminated.

The classesM(g;p) are nonempty for all pairs(g;p). Conversely, any functionu 2 H2loc(R) is contained in the closure of some classM(g;p) with respect to the
complete metric onH2loc(R) given by �(u; v) = Pi 2�iminf1; ku � vkH2(�i;i)g, cf.
[10]. That is, if we defineM(g;p) := fu 2 H2loc(R) j 9un 2 M(g;p), with un ! u
in H2loc(R)g, thenH2loc(R) = [(g;p)M(g;p). Note that the functions in@M(g;p) :=M(g;p)n int(M(g;p)) have tangencies at�1 and thus are limit points of more than one
class. In the case of an infinite type, shifts ofg can give rise to the same function class.
Therefore certain infinite types need to be identified. Let� be the shift map defined by�(g)i = gi+1 and the map� : f0; 1g ! f0; 1g be defined by�(p) = (p + 1)mod 2 =jp � 1j. Two pairs (infinite types)(g;p) and(g0;p0) are equivalent ifg0 = �n(g) andp0 = �n(p) for somen 2 Z, and this impliesM(g;p) = M(g0;p0).
3 Definition of minimizer

When the domain of integration isR, the actionJ [u] given in (1.1) is well-defined only
for terminated typesg andu 2M(g;p)\f�p+H2(R)g, where�p is a smooth function
from (�1)p+1 to (�1)p. For semi-terminated types or infinite types the actionJ is
infinite for everyu 2 M(g;p). We will define an alternative notion of minimizer in
order to overcome this difficulty.

For every compact intervalI � R the restricted actionJI is well-defined for all
types. When we restrictu to an intervalI, we can define itstype and parity relative
to I, which we denote by(g(ujI);p(ujI)). Namely, letu 2 M(g;p). It is clear that(u; u0)j@I 62 (�1; 0) for any bounded intervalI. Theng(ujI) is defined to be the finite-
dimensional vector which counts the consecutive instances ofujI = �1, andp(ujI)
is defined such that the first timeujI = �1 in I happens at(�1)p+1. Note that the
components ofg(ujI) are not necessarily all even, since the first and the last entries may
be odd. We are now ready to state the definition of a (global) minimizer inM(g;p).
Definition 3.1 A functionu 2 M(g;p) is called aminimizer for J over M(g;p) if
and only if for every compact intervalI the numberJI[ujI ] minimizesJI0[vjI0] over all
functionsv 2 M(g;p) and all compact intervalsI 0 such that(v; v0)j@I0 = (u; u0)j@I and(g(vjI0);p(vjI0)) = (g(ujI);p(ujI)).

The pair(g(ujI);p(ujI)) defines a homotopy class of curves inP with fixed end
points (u; u0)j@I. The above definition says that a functionu, represented as a curve�(u) in P, is a minimizer if and only if for any two pointsP1 andP2 on �(u), the
segment�(P1; P2) � �(u) connectingP1 andP2 is the mostJ-efficient among all
connectionse�(P1; P2) betweenP1 andP2 that are induced by a functionv and are of
the same homotopy type as�(P1; P2), regardless the length of the interval needed to
parametrize the curvee�(P1; P2). As we mentioned in the introduction, this is analogous
to the length minimizing geodesics of Morse and Hedlund and the minimizers in the
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Aubry-Mather theory. The set of all (global) minimizers inM(g;p) will be denoted byCM(g;p).
Lemma 3.2 Letu 2 M(g;p) be a minimizer, thenu 2 C4(R) andu satisfies equation
(1.2). Moreover,u satisfies the relationH(u; u0; u00; u000) = 0, i.e. the associated orbit
lies on the energy levelH = 0.

Proof. From the definition ofM(g;p), on any bounded intervalI � R there exists�0(I) > 0 sufficiently small such thatu+� 2M(g;p) for all � 2 H20 (I), with k�kH2 <� � �0. ThereforeJI[u + �] � JI [u] for all such functions�, which implies thatdJI [u] = 0 for any bounded intervalI � R, and thusu satisfies (1.2).
To prove the second statement we argue as follows. Sinceu 2M(g;p), there exists

a bounded intervalI such thatu0j@I = 0. Introducing the rescaled variables = t=T withT = jIj andv(s) = u(t), we haveJI[u] = J [T; v] � Z 10 � 1T 3 
2 jv00j2 + 1T �2 jv0j2 + TF (v)�ds; (3.1)

which decouplesu andT . Sinceu0j@I = 0 we see from Definition 3.1 thatJ [T � �; v] �JT [u] = J [T; v]. The smoothness ofJ in the variableT > 0 implies that @@� J [�; v]����=T=0. Differentiating yields@@� J [�; v] = Z 10 ����4 32
jv00j2 � ��2�2 jv0j2 + F (v)�ds= ��1 Z �0 ��32
ju00j2 � �2 ju0j2 + F (u)�dt= ���1 Z �0 H(u; u0; u00; u000)dt � �E;
ThusE = 0, andH(u; u0; u00; u000) = 0 for t 2 I. This immediately implies thatH = 0
for all t 2 R.

The minimizers forJ found in [5] also satisfy Definition 3.1, and we restate one of
the main results of [5].

Proposition 3.3 SupposeF is even and satisfies(H), and�; 
 > 0 are chosen such that�1 are saddle-focus equilibria. Then for any terminated typeg with parity either0 or 1
there exists a minimizeru 2M(g;p) of J .

From Definition 2.2, the crossings ofu 2M(g;p) with�1 are transverse and hence
isolated. We adapt from [5], the notion of a normalized function with a few minor
changes to reflect the fact that we now require every crossing of�1 to be transverse.

Definition 3.4 A functionu 2 M(g;p) is normalized if, between each pairu(a) andu(b) of consecutive crossings of�1, the restrictionuj(a;b) is either monotone oruj(a;b)
has exactly one local extremum.
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Clearly, the case ofuj(a;b) being monotone can occur only between two crossings at
different levels�1, in which case we say thatu has atransition on [a; b].
Lemma 3.5 If u 2 CM(g;p), thenu is normalized.

Proof. Sinceu 2 M(g;p), all crossings ofu = �1 are transverse, i.e.u0 6= 0. Thus
for any critical pointt0 2 R, u(t0) 6= �1, and the Hamiltonian relation from Lemma 3.4
implies that
u00(t0)2=2 = F (u(t0)) > 0. Thereforeu is a Morse function, and between
any two consecutive crossings of�1 there are only finitely many critical points. Now
on any interval between consecutive crossings whereu is not normalized, the clipping
lemmas of Section 3 in [5] can be applied to obtain a moreJ-efficient function, which
contradicts the fact thatu is a minimizer.

4 Minimizers of arbitrary type

In this section we will introduce a notion of convergence of types which will be usedin
Section 6.2 to establish the existence of minimizers in every classM(g;p) by building
on the results proved in [5].

Definition 4.1 Consider a sequence of types(gn;pn) = ((gni )i2In;pn) and a type(g;p) = ((gi)i2I ;p). The sequence(gn;pn) limits to the type(g;p) if and only if
there exist numbersNn 2 2Z such thatgni+Nn+pn�p ! gi for all i 2 I asn ! 1. We
will abuse notation and write(gn;pn)! (g;p).

We should point out that a sequence of types can limit to more than one type. For ex-
ample the sequence(gn; 0) = ((1; 2; 2; n; 4; 4; 4; 4; n; 2; 2; 2; :::); 0) limits to the types((1; 2; 2;1); 0), ((1; 4; 4; 4; 4;1); 1) and((1; 2; 2; 2; :::); 0).
Theorem 4.2 Let (gn;pn) ! (g;p) and un 2 CM(gn;pn) with kunk1;1 � C for
all n. Then there exists a subsequenceunk such thatunk ! bu 2 M(g;p) in C4loc(R),
andbu is a minimizer in the sense of Definition3.1, i.e. bu 2 CM(g;p).

Proof.This proof requires arguments developed in [5] to which the reader is referred
for certain details. The idea is to take the limit ofun restricted to bounded intervals.
We define the numbersNn as in Definition 4.1, and we denote the convex hull ofAi byIi = conv(Ai). Due to translation invariance we can pin the functionsun so thatun(0) =(�1)p+1, which is the beginning of the transition betweenInNn+pn�p andIn1+Nn+pn�p.
Due to the assumed a priori bound and interpolation estimates which can be found in the
appendix to [7], there is enough regularity to yield a limit functionbu as aC4loc–limit ofun, after perhaps passing to a subsequence. Moreoverbu satisfies the differential equation
(1.2) onR. The question that remains is whetherbu 2M(g;p).

To simplify notation we will now assume thatNn = 0 andpn = p = 0. Fixing
a small� > 0, we defineIni (�) � Ini as the smallest interval containingIni such thatuj@Ini (�) = (�1)i+1� (�1)i+1�: If g is a (semi-)terminated type thenIni (�) is a half-line.
The interval of transition betweenIni (�) andIni+1(�) is denoted byLni (�). To see that
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bu 2 M(g;p), the goal is to eliminate the two possibilities that a priori may lead to the
loss or creation of crossings in the limit so thatbu 62 M(g;p): the distance between two
consecutive crossings inun could grow without bound orbu could posess tangencies atu = �1.

Due to the a priori estimates inW 1;1 we have the following bounds onJ :J [unjIni (�)] � C; (4.1)

and J [unjLni (�)] � C 0;
whereC andC 0 are independent ofn andi. Indeed, note that forn large enough the
homotopy type ofun on the intervalsIni (�) is constant by the definition of convergence
of types. Since the functionsun are minimizers,J [unjIni (�)] is less than the action of any
test function of this homotopy type satisfying the a priori bounds onu andu0 on@Ini (�)
(see [5], Section 6, for a similar test function argument). The estimatejLni (�)j � C(�)
is immediately clear from Lemma 5.1 of [5]. We now need to show that the distance
between two crossings of(�1)i+1 within the intervalIni (�) cannot tend to infinity.

First we will deal with the case whengni is finite for alln. Suppose that the distance
between consecutive crossings of(�1)i+1 in Ini (�) tends to infinity asn ! 1. Due
to Inequality (4.1) and Lemma 3.5, minimizers have exactly one extremum between
crossing of(�1)i+1 for any� > 0, and hence there exist subintervalsKn � Ini (�) withjKnj ! 1, such that0 < jun� (�1)qn j < � onKn whereqn 2 f0; 1g, andju0j@Knj < �.
Taking a subsequence we may assume thatqn is constant.

We begin by considering the case whereqn = i + 1. Now � can be chosen small
enough, so that the local theory in [5] is applicable inKn. If jKnj becomes too large thenun can be replaced by a function with lower action and with many crossings of(�1)i+1.
Subsequently, redundant crossings can be clipped out, thereby lowering the action. This
implies thatun is not a minimizer in the sense of Definition 3.1, a contradiction.

The case whereqn = i must be dealt with in a different manner. First, there are
unique pointstn 2 Kn such thatu0n(tn) = 0, and for these pointsun(tn) ! (�1)i asjKnj ! 1. Let un(sn) be the first crossing of(�1)i+1 to the left ofKn. Taking the
limit (along subsequences) ofun(t�sn) we obtain a limit functioneu which is a solution
of (1.2). If jtn � snj is bounded theneu has a tangency tou = (�1)i at somet� 2 R. Allun lie in fH = 0g (see (1.3)) and so doeseu, henceeu00(t�) = 0. Moreovereu000(t�) = 0,
becauseeu(t�) is an extremum. By uniqueness of the initial value problem this implies
thateu � (�1)i, contradicting the fact thateu(0) = (�1)i+1. If jtn � snj ! 1, theneu is
a monotone function on[0;1), tending to(�1)i asx ! 1, and its derivatives tend to
zero (see Lemma 3 in [11] or Lemma 1 part (ii) in [7] for details). This contradicts the
saddle-focus character of the equilibrium point.

In the case thatgni = 1 we remark that (4.1) also holds whenIni is a half-line.
It follows from the estimates in Lemma 5.1 in [5] thatuni ! (�1)i+1 asx ! 1 orx ! �1 (whichever is applicable). From the local theory in Section 4 of [5] and the
fact thatun is a minimizer, it follows that the derivatives ofun tend to zero. The analysis
above concerning the intervalsKn and the clipping of redundant oscillations now goes
on unchanged.
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We have shown that the distance between two crossings of�1 is bounded from
above. Next we have to show that the limit function has only transverse crossings of�1.
This ensures that no crossings are lost in the limit. Whenbu would be tangent to(�1)i+1
in Ii, then we can construct a function inv 2M(g;p) in the same way as demonstrated
in [5] by replacing tangent pieces by moreJ-efficient local minimizers and by clipping.
The functionv still has a lower action thanbu on a slightly larger interval (the limit
function bu also obeys (4.1), so that the above clipping arguments still apply). Sinceun ! bu in C4loc it follows thatJI [un]! JI[u] on bounded intervalsI. This then implies
that forn large enough the functionun is not a minimizer in the sense of Definition 3.1,
which is a contradiction.

The limit functionbu could also be tangent to(�1)i for somet0 2 Ii. As before,
such tangencies satisfybu(t0) � (�1)i = bu0(t0) = bu00(t0) = bu000(t0) = 0, which leads to
a contradiction the uniqueness of the initial value problem.

Finally, crossings of�1 cannot accumulate since this would imply that at the accu-
mulation point all derivatives would be zero, leading to the same contradictionas above.
In particular, ifgni ! 1 for somei, thenjIni j ! 1 and the crossings inAnj for j > i
move off to infinity and do not show inbu, which is compatabile with the convergence of
types.

We have now proved thatbu 2 M(g;p) and, sincebu is theC4loc–limit of minimizers,bu is also a minimizer in the sense of Definition 3.1.

Remark 4.3 It follows from the estimates in Theorem 3 of[7] that in the theorem above
we in fact only need anL1-bound on the sequenceun.

Remark 4.4 It follows from the proof of Theorem4.2 that there exists a constant�0 > 0
such that for all uniformly bounded minimizersu(t) it holds thatju(t)� (�1)i+pj > �
for all t 2 Ii and all i 2 I. This means that the uniform seperation property discussed
in [5] is uniformly satisfied by all minimizers.

Remark 4.5 In order to take a limit of the sequenceun 2 CM(gn;p) in the above
theorem, we need the a priori estimatekunk1;1 � C for all n. We will show in Section 6
that this estimate will be satisfied for many sequencesgn, see Corollary 6.2 and Theorem
6.3 below. Note that for the special case whereF (u) � jujs asjuj ! 1 for somes > 2,
an a prioriL1 bound on the set of all solutions of(1.2)with domain of existenceR can
be obtained[4].

5 Periodic minimizers

An bi-infinite typeg is periodic if there exists an integern such that�n(g) = g. The
(natural) definition of the period ofg is minfn 2 2N j �n(g) = gg. We will writeg = hri wherer = (g1; :::; gn) andn is even. Cyclic permutations ofr with possibly
a flip of p give rise to the same function classM(hri;p). In reference to the typehri
with parity p we will use the notation(r;p). Any such type pair(r;p) can formally
be associated with a homotopy class in�1(P; 0) in the following way. Lete0 ande1 be
the clockwise oriented circles of radius one centered at(1; 0) and(�1; 0) respectively,
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so that[e0] and[e1] are generators for�1(P; 0). Defining�(r;p) = ern=2�n(p) � : : : � er1=2p ,
the map� : [k�12N2k � f0; 1g ! �1(P; 0) is an injection, and we define�+1 (P; 0) to
be the image of� in �1(P; 0). Powers of a type pair(r;p)k for k � 1 are defined by
concatenation ofr with itself k times, which is equivalent to(r;p)k = ��1((�(r;p))k).
Definition 5.1 Two pairs(r;p) and(br; bp) areequivalent if there are numbersp; q 2 N
such that(r;p)p = (br; bp)q up to cyclic permutations. This relation,(r;p) � (br; bp), is
an equivalence relation.

Example: if(r;p) = ((2; 4; 2; 4); 0) and(br; bp) = ((4; 2; 4; 2; 4; 2); 1), then�(r;p)3 =�(br; bp)2. The equivalence class of(r;p) is denoted by[r;p]. A type(r;p) is a minimal
representative for[r;p] if for each(br; bp) 2 [r;p] there isk � 1 such that(br; bp) = (r;p)k
up to cyclic permutations. A minimal representative is unique up to cyclic permutations.
It is clear that in the representation of a periodic typeg = hri, the typer is minimal if
the length ofr is the minimal period. Due to the above equivalences we now have thatM(hri;p) = M(hbri; bp); 8 (br; bp) 2 [r;p]:
It is not a priori clear that minimizers inM(hri;p) are periodic. However, we will see
that among these minimizers, periodic minimizers can always be found.

For a given periodic typehri we consider the subset of periodic functions inM(hri;p), Mper(hri;p) = fu 2M(hri;p) j u is periodicg:
For anyu 2 Mper(hri;p) and a periodT of u, �(uj[0;T ]) is a closed loop inP whose
homotopy type corresponds to a nontrivial element of�+1 (P; 0). In this correspon-
dence there is no natural choice of a basepoint. For specificity, we will describehow
to make the correspondence with the origin as the basepoint and thereafter omit itfrom
the notation. Translateu so thatu(0) = 0. Let 
 : [0; 1] ! P be the line from0
to (0; u0(0)), and let
�(t) = 
(1 � t). Then e�(uj[0;T ]) = 
� � �(uj[0;T ]) � 
, and[e�(uj[0;T ])] 2 �+1 (P; 0). Now define[�(uj[0;T ])] � [e�(uj[0;T ])]. Thus there exists a pair��1[�(uj[0;T ])] = (br; bp) 2 [r;p], with br = rk for somek � 1. Therefore we define for
any(br; bp) 2 [r;p]Mper(br; bp) = fu 2Mper(hri;p) j [�(uj[0;T ])] � �(br; bp) 2 �1(P) for a periodT of ug:
The typebr = g(uj[0;T ]), with g = hri, is the homotopy type ofu relative to a periodT . This type has an even number of entries. It follows thatMper(r;p) � Mper(br; bp)
for all (br; bp) = (r;p)k, k � 1. FurthermoreMper(hri ;p) = [(br;bp)2[r;p]Mper(br; bp). In
order to get a better understanding of periodic minimizers inM(hri;p) we consider the
following minimization problem:Jper(r;p) = infu2Mper(r;p) JT [u] = infMTper(r;p)T2R+ JT [u]; (5.1)

whereJT is action given in (1.1) integrated over one period of lengthT , andMTper(r;p)
is the set ofT -periodic functionsu 2 Mper(r;p) for which g(uj[0;T ]) = r. Note that
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T is not necessarily the minimal period, unlessr is a minimal representative for[r]. It
is clear that for
; � > 0 the infimaJper(r;p) are well-defined and are nonnegative for
any homotopy typer. At this point it is not clear, however, that the infimaJper(r;p)
are attained for all homotopy typesr. We will prove in Section 6 that existence of
minimizers for (5.1) can be obtained using the existence of homoclinic and heteroclinic
minimizers already established in [5].

Lemma 5.2 If Jper(r;p) is attained for someu 2Mper(r;p) thenu 2 C4(R) and satis-
fies(1.2). Moreover, sinceu is minimal with respect toT we haveH(u; u0; u00; u000) = 0,
i.e. the associated periodic orbit lies in the energy surfaceH = 0.

Proof. SinceJper(r;p) is attained by someu 2 Mper(r;p) for some periodT , we
have thatJT [u + �] � JT [u] � 0 for all � 2 H2(S1; T ) with k�kH2 � �, sufficiently
small. This implies thatdJT [u] = 0, and thusu satisfies (1.2). The second part of this
proof is analogous to the proof of Lemma 3.2.

We now introduce the following notation:CM(hri;p) = fu 2 M(hri;p) j u is a minimizer according to De�nition 3:1g;CMper(hri;p) = fu 2 CM(hri;p) j u is periodicg;CMper(r;p) = fu 2Mper(r;p) j u is a minimizer for Jper(r;p)g:
5.1 Existence of periodic minimizers of typer = (2; 2)k
If we seek periodic minimizers of typer = (2; 2)k, the uniform separation property
for minimizing sequences (see Section 5 in [5]) is satisfied in the classMper(r). Note
that the parity is omitted because it does not distinguish different homotopy types here.
The uniform separation property as defined in [5] prevents minimizing sequences from
crossing the boundary of the given homotopy class. For any other periodic type the
uniform separation property is not a priori satisfied. For the sake of simplicitywe begin
with periodic minimizers of type(2; 2) and minimizeJ in the classMper((2; 2)).

Minimizing sequences can be chosen to be normalized due to the following lemma,
which we state without proof. The proof is analogous to Lemma 3.5 in [5].

Lemma 5.3 Let u 2 Mper((2; 2)) andT be a period ofu. Then for every� > 0 there
exists a normalized functionw 2 Mper((2; 2)) with periodT 0 � T such thatJT 0 [w] �JT [u] + �.

The goal of this subsection is to prove that whenF satisfies (H) and�; 
 > 0 are
such that�1 are saddle-foci, thenJper((2; 2)) is attained, Theorem 5.5 below. The proof
relies on the local structure of the saddle-focus equilibria�1 and is a modification of
arguments in [5]; hence we will provide only a brief argument. The reader is referred to
[5] for further details.

In preparation for the proof of Theorem 5.5, we fix�0 > 0; �0 > 0; and� > 0 so that
the conclusion of Theorem 4.2 of [5] holds, i.e. the characterization of the oscillatory
behavior of solutions near the saddle-focus equilibria�1 holds. Letu 2 MTper((2; 2))
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be normalized, and lett0 be such thatu(t0) = 0. Thent0 is part of a transition from�1
to �1. Assume without loss of generality that this transition is from�1 to 1. Definet� = supft < t0 : ju(t) + 1j < �g andt+ = infft > t0 : ju(t) � 1j < �g. Then
let S(u) = ft : ju(t) � 1j < �g andB[u; T ] = jS(u) \ [t+; t� + T ]j, and note that[t0; t0 + T ] = fS(u) \ [t+; t� + T ]g [ fS(u)c \ [t0; t0 + T ]g. With these definitions we
can establish the following estimate (c.f. Lemma 5.4 in [5]). For allu 2 Mper((2; 2))
with JT [u] � Jper((2; 2)) + �0kuk2H2 � C(1 + Jper((2; 2)) +B[u; T ]): (5.2)

First,ku0k2H1 � C(Jper((2; 2))+�0), and second ifju�1j > � thenF (u) � �2u2, which
implies thatkuk2L2 � 1=�2 R t0+Tt0 F (u) dt + (1 + �)2B[u; T ] � C(JT [u] + B[u; T ]).
Combining these two estimates proves (5.2).

For functionsu 2 MTper((2; 2)) that satisfyJT [u] � Jper((2; 2)) + 1, it follows
from Lemma 5.1 of [5] that there exist (uniform inu) constantsT1 andT2 such thatT2 � jS(u)c \ [t0; t0 + T ]j � T1 > 0 and thusT > T1. The next step is to give an a
priori upper bound onT by considering the minimization problem (c.f. Section 5 in [5])B� = inffB[u; T ] j u 2MTper((2; 2)) normalized; T 2 R+ ;and JT [u] � Jper((2; 2)) + �g:
Lemma 5.4 There exists a constantK = K(�0) > 0 such thatB� � K for all 0 <� < �0. Moreover, ifT0 � K + T2, then for any0 < � < �0, there is a normalizedu 2MTper((2; 2)) with JT [u] � Jper((2; 2)) + 2� andT1 < T � T0.

Proof. Let (un; Tn) 2 MTnper((2; 2)) � R+ be a minimizing sequence forB�, with
normalized functionsun. As in the proof of Theorem 5.5 of [5], in the weak limit this
yields a pair(bu; bT ) such thatB[bu; bT ] � B�. We now defineK((2; 2); �0) = 8((2�0 +2) + 2). This gives two possibilities forB[bu; bT ], eitherB[bu; bT ] > K or B[bu; bT ] � K.
If the former is true then we can construct (see Theorem 5.5 of [5]) a pair(bv; bT 0) 2M bT 0per((2; 2))� R+ , with bv normalized, such thatJ bT 0[bv] < J bT [bu] � Jper((2; 2)) + � and B[bv; bT 0] < B[bu; bT ] � B�;
which is a contradiction excluding the first possibility. In the second case, whereB[bu; bT ] � K, we can construct a pair(bv; bT 0) with bv normalized such thatJ bT 0[bv] < J bT [bu] + � � Jper((2; 2)) + 2�; and B[bv; bT 0] < B[bu; bT ] � K;
which implies thatT1 < bT 0 < bT � K + T2 = T0 and concludes the proof. For details
concerning these constructions, see Theorem 5.5 in [5].

Theorem 5.5 Suppose thatF satisfies(H) and�; 
 > 0 are such that�1 are saddle-
foci, thenJper((2; 2)k) is attained for anyk � 1. Moreover, the projection of any
minimizer inCMper((2; 2)) onto the(u; u0)–plane is a simple closed curve.
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Proof. By Lemma 5.4, we can choose a minimizing sequence(un; Tn) 2MTnper((2; 2))�R+ , with un normalized and with the additional properties thatkunkH2 �C andT1 < Tn � T0. Since the uniform separation property is satisfied for the type(2; 2) this leads to a minimizing pair(bu; bT ) for (5.1) by following the proof of Theorem
2.2 in [5]. As for the existence of periodic minimizers of typer = (2; 2)k the uniform
separation property is automatically satisfied and the above steps are identical.

Lemma 3.5 yields that minimizers are normalized functions and the projection of a
normalized function inMper((2; 2)) is a simple closed curve in the(u; u0)–plane.

We would like to have the same theorem for arbitrary periodic typeshri. For homo-
topy types that satisfy the uniform separation property the analog of Theorem 5.5 canbe
proved. However, in Section 5 we will prove a more general result using theinformation
about the minimizers with terminated types (homoclinic and heteroclinic minimizers)
which was obtained in [5].

Remark 5.6 The existence of a(2; 2)-type minimizer is proved here in order to obtain
a priori W 1;1-estimates for all minimizers (Section 6). However, ifF satisfies the ad-
ditional hypothesis thatF (u) � jujs, s > 2 as juj ! 1, then such estimates are
automatic (c.f. [7], [4]). In that case the existence of a minimizer of type(2; 2) follows
from Theorem 5.14 below. To prove existence of minimizers of arbitrary typer we will
use an analogue of Theorem 5.14 (see Lemma 6.7 and Theorem 6.8 below).

5.2 Characterization of minimizers of typeg = h(2; 2)i
Periodic minimizers associated with[e0] or [e1] are the constant solutionsu = �1 andu = 1 respectively. The simplest nontrivial periodic minimizers are those of typer =(2; 2)k, i.e. r 2 [(2; 2)]. These minimizers are crucial to the further analysis of the
general case. The typer = (2; 2) is a minimal type (associated with[e1e0]), and we want
to investigate the relation between minimizers inM(h(2; 2)i) and periodic minimizers
of type(2; 2)k.

Considering curves in the configuration spaceP is a convenient method for studying
minimizers of type(2; 2). For example, minimizers inCM(h(2; 2)i) andCMper((2; 2))
all satisfy the property that they do not intersect the line segmentL = (�1; 1)�f0g inP.
If other homotopy typesr are considered, i.e.r 62 [(2; 2)]; then minimizers represented
as curves inP necessarily have self-intersections and they must intersect the segmentL,
which makes their comparison more complicated. We will come back to this problem
in Section 6. Note that for aC1-functionu the associated curve�(u) is a closed loop if
and only ifu is a periodic function.

Lemma 5.7 For any non-periodic minimizeru 2 CM(h(2; 2)i) and any bounded in-
terval I the curve�[ujI] has only a finite number of self-intersections. For periodic
minimizersu 2 CMper(h(2; 2)i) this property holds when the length ofI is smaller than
the minimal period.

Proof. Fix a time intervalI = [0; T ]. If u is periodic,T should be chosen smaller
than the minimal period ofu. Let P = (u0; u00) be an accumulation point of self-
intersections ofujI. ThenP is a self intersection point, and there exists a monotone
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sequence of times�n 2 I converging tot0 such that�(u(�n)) are self-intersection points
and�(u(t0)) = P . Also there exists a corresponding sequence�n 2 I with �n 6= �n
such that�(u(�n)) = �(u(�n)). Choosing a subsequence if necessary,�n ! s0 mono-
tonically. Sinceu is a minimizer inCM(h(2; 2)i), the intervals[�n; �n] must contain a
transition, and hencej�n � �nj > T0 > 0. Therefore,s0 6= t0, and we will assume thats0 < t0 (otherwise change labels). The homotopy type of�(uj[s0;t0]) is (2; 2)k for somek � 1 (sinceI is bounded).

Assume that�n and �n are increasing; the other case is similar. Using the times�n < s0 < �n < t0, the curve�� = �[uj[�n��;t0+�]], for � sufficiently small, can be
decomposed as�� = a � �2 � 
 � �1 � b whereb = �(uj[�n��;�n]); 
1 = �(uj[�n;s0]); 
 =�(uj[s0;�n]); 
2 = �(uj[�n;t0]); anda = �(uj[t0;t0+�]). Forn sufficiently large,
1 and
2
have the same homotopy type, and
1 6= 
2, since otherwiseu would be periodic with
period smaller thant0 � �n < T . We can now construct two more paths�1 = a � 
1 � 
 � 
1 � b and �2 = a � 
2 � 
 � 
2 � b
which have the same homotopy type forn sufficiently large. SinceJ [��] is minimal,J [�1] � J [��] andJ [�1] � J [��], and thusJ [
1] � J [
2] andJ [
2] � J [
1] which
implies thatJ [
1] = J [
2]. ThereforeJ [��] = J [�1] = J [�2], and�1;�2 and�� are
all distinct minimizers with the same homotopy type and same boundary conditions.
Since these curves all coincide along
, the uniqueness of the initial value problem is
contradicted. An argument very similar to the one above is also used in the proofof
Lemma 5.12 and demonstrated in Figure 5.1.

Lemma 5.8 If r = (2; 2)k with k > 1, thenCMper(r) = CMper((2; 2)) andJper(r) =k � Jper((2; 2)).
Proof. Let u 2 CMper(r) with r = (2; 2)k for k > 1, and letT be the period such

that the associated curve inP, �(uj[0;T ]), has the homotopy class of�((2; 2)k). First we
will prove that�(uj[0;T ]) is a simple closed curve inP, and henceu 2 Mper((2; 2)).
Suppose not, then by Lemma 5.7 the curve�(uj[0;T ]) can be fully decomposed intok
distinct simple closed curves�i for i = 1; : : : ; k (just call the inner loop�1, cut it
out, and call the new inner loop�2, and so on). Denote byJi the action associated
with loop �i, then

Pi Ji = JT [u]. Let vi 2 Mper((2; 2)k) be the function obtained
by pasting togetherk copies ofu restricted to the loop�i. If vi were a minimizer inMper((2; 2)k), then by Lemma5:2 the functionsu andvi would be distinct solutions to
the differential equation(1:2) which coincide over an interval. This would contradict the
uniqueness of solutions of the initial value problem, and hencevi is not a minimizer, i.e.J bT [vi] = k � Ji > Jper((2; 2)k): ConsequentlyJper((2; 2)k) = Pi Ji > Jper((2; 2)k),
which is a contradiction. Thusu 2Mper((2; 2)) and�(uj[0;T ]) is a simple loop traversedk times.

Now we will show thatu 2 CMper((2; 2)). Since�(u) is the projection of a func-
tion into the (u; u0)–plane,u traverses the loop once over the interval[0; T=k], andJper((2; 2)k) = k � JT=k[u]. SupposeJT=k > Jper((2; 2)). Then we can construct a
function inMper((2; 2)k) with action less thanJ [u] = Jper((2; 2)k) by gluing togetherk
copies of a minimizer inMper((2; 2)), which is a contradiction.
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Lemma 5.9 For anyk � 1; CMper((2; 2)k) = CMper((2; 2)) = CMper(h(2; 2)i).
Proof. We have already shown in Lemma 5.8 thatCMper((2; 2)k) = CMper((2; 2)).

We now first prove thatCMper((2; 2)) � CMper(h(2; 2)i). Let u 2 CMper((2; 2)) have
periodT . Supposeu 62 CMper(h(2; 2)i). Then there exist two points�(u(t1)) = P1 and�(u(t2)) = P2 on�(u) such that the curve
 betweenP1 andP2 obtained by following�(u) is not minimal. Replacing
 by a curve with smaller action and the same homotopy
type yields a functionv 2Mper(h(2; 2)i) for whichJ[t1;t2][v] � J[t1;t2][u]. Choosek � 0
such thatkT > t2�t1. Thenu is a minimizer inCMper((2; 2)k) = CMper((2; 2)) which
is a contradiction.

To finish the proof of the lemma we show thatCMper(h(2; 2)i) � CMper((2; 2)).
Let u 2 CMper(h(2; 2)i) have periodT . Let �(uj[0;T ]) be the associated closed curve
in P and ! its winding number with respect to the segmentL. SupposeJT [u] >Jper((2; 2)!) = ! �Jper(2; 2). This implies the existence of a functionv 2Mper((2; 2)!)
and a periodbT such thatJ bT [v] < JT [u]. Choose a timet0 2 [0; T ] such thatu(t0) = 1
andu0(t0) > 0. Let P0 = (1; u0(t0)) 2 P. There exists a� > 0 sufficiently small such
thatu(t0 � �) > 0; u0(t0 � �) > 0, andu does not cross�1 in [t0 � �; t0 + �] except att0. LetP1 andP2 denote the points(u(t0� �); u0(t0 � �)) respectively. Let
 denote the
piece of the curve�(u) from P1 to P2 and
� the curve tracing�(u) backward in time
from P2 to P1. Now choose a pointP3 on �(v) for which v = 1 andv0 > 0. We can
easily construct cubic polynomialsp1 andp2 for which the curve�(p1) connectsP1 toP3 and the curve�(p2) connectsP3 to P2 in P. These curves�(pi) are monotone func-
tions, and hence the loop�(p1) � �(p2) � 
� has trivial homotopy type inP. Therefore�(uj[0;T ])k � 
 � �(p2) � �(vj[0;bT ])k � �(p1) in P for anyk � 1, and from Definition 3.1J [�(uj[0;T ])k � 
] � J [�(p2) � �(vj[0;bT ])k � �(p1)]. Thus,k � JT [u] + J [
] � J [p1] + J [p2] + k � J bT [v]
which implies 0 � k(JT [u]� J bT [v]) � J [p1] + J [p2]� J [
]
These estimates lead to a contradiction fork sufficiently large.

Lemma 5.10 For any two distinct minimizersu1 andu2 in CMper((2; 2)), the associ-
ated curves�(ui) do not intersect.

Proof. Suppose�(u1) and�(u2) intersect at a pointP 2 P. Translateu1 andu2 so
that�(u1(0)) = �(u2(0)) = P: Define the functionu 2 Mper((2; 2)2) as the periodic
extension of u(t) = � u1(t) for t 2 [0; T1],u2(t� T1) for t 2 [T1; T1 + T2],
whereTi is the minimal period ofui. ThenJT1+T2 [u] = 2Jper((2; 2)) = Jper((2; 2)2).
By Lemma5:8 we haveu 2 CMper((2; 2)), which contradicts the fact thatu1 andu2 are
distinct minimizers with�(u1) 6= �(u2).

As a direct consequence of this lemma, the periodic orbits inMper((2; 2)) are ordered
in the sense that�(u1) lies either strictly inside or outside the region enclosed by�(u2).
The ordering will be denoted by>.
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Theorem 5.11 There exists a largest and a smallest periodic orbit inCMper((2; 2)) in
the sense of the above ordering, which we will denote byumax andumin respectively.
Moreover1 < kumink1;1 � kumaxk1;1 � C0, andumin < u < umax for everyu 2CMper((2; 2)). In particular the setCMper((2; 2)) is compact.

Proof. Either the number of periodic minimizers is finite, in which case there
is nothing to prove, or the set of minimizers is infinite. LetU = Sf�(u) j u 2CMper((2; 2))g � P, and letA = U \ f(u; u0) j u0 = 0; u > 0g: Every minimizer
in CMper((2; 2)) intersects the positiveu–axis transversely exactly once. Moreover dis-
tinct minimizers cross this axis at distinct points by Lemma 5.10. Thus we can useA as
an index set and label the minimizers asu� for � 2 A. Due to the a priori upper bound
on minimizers (Lemma 5.1 in [5]),A is a bounded set. The setA is contained in theu-axis and hence has an ordering induced by the real numbers. This order corresponds
to the order on minimizers, i.e.� < � in A if and only if u� < u� as minimizers.

Suppose�� is an accumulation point ofA. Then there exists a sequence�n converg-
ing to��. From Theorem 4.2 (the a prioriL1-bound onu�n is sufficient by Remark 4.3)
we see that there existsbu 2 CM(h(2; 2)i) which is a solution to Equation(1:2) such thatu�n ! bu in C1loc(R). Sinceu�n is periodic and theC1loc–limit of a sequence of periodic
functions with uniformly bounded periods (compare with the proof of Theorem 4.2 to
find a uniform bound on the periods) is periodic,bu 2 CMper(h(2; 2)i). By Lemma 5.9,bu 2 CMper((2; 2)): Furthermorebu corresponds tou��, and henceA is compact.

ConsequentlyA contains maximal and minimal elements. Letumax andumin be the
periodic minimizers through the maximal and minimal points ofA respectively. This
proves the theorem.

The above lemmas characterize periodic minimizers inCM(h(2; 2)i). Now we turn
our attention to non-periodic minimizers. We conclude this subsection with a theorem
that gives a complete description of the setCM(h(2; 2)i).

Letu 2 CM(h(2; 2)i) be non-periodic. Suppose thatP is a self-intersection point of�(u). Then there exist timest1 < t2 such that�(u(t1)) = �(u(t2)) = P , and�(uj[t1;t2])
is a closed loop. By Lemma 5.7 there are only finitely many self-intersections on[t1; t2].
Without loss of generality we may therefore assume that
 is a simple closed loop, i.e,
we need only consider the case whereP = �(u(t1)) = �(u(t2)) and�(uj[t1;t2]) is a
simple closed loop. We now define�+ = �(uj(t1;1)) and�� = �(uj(�1;t2)). We will
refer to�� as the forward and backward orbits ofu relative toP .

Lemma 5.12 Letu 2 CM(h(2; 2)i) be a non-periodic minimizer with at least one self-
intersection. LetP and�� be defined as above. Then the forward and backward orbits�� relative toP do not intersect themselves. Furthermore,P and�� are unique, and
the curve�(u) passes through any point inP at most twice.

Proof. We will prove the result for�+; the argument for�� is similar. Suppose that�+ has self-intersections. Definet� = minft > t1 j�(u(t)) = �(u(�)) for some� 2 (t1; t)g:
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The minimumt� is attained by Lemma 5.7, andt� > t2 since
 � �(uj[t1;t2]) is a
simple closed loop. Lett0 2 (t1; t�) be the point such that�(u(t0)) = �(u(t�)). This
point is unique by the definition oft�, and ~
 � �(uj[t0;t�]) is a simple closed loop.
For small positive� we defineQ = �(u(t�)), B = �(u(t1 � �)), E = �(u(t� + �))
and�� = �(uj[t1��;t�+�]), see Figure 5.1. We can decompose this curve into five parts;�� = �3 � ~
 � �2 � 
 � �1 where�1 joinsB toP , �2 joinsP toQ, �3 joinsQ toE, and

and~
 are simple closed loops based atP andQ respectively, see Figure 5.1. The simple
closed curves
 and~
 go aroundL exactly once and thus have the same homotopy type.
Moreover,
 6= ~
 sinceu is non-periodic.

Besides�� we can construct two other distinct paths fromB toE:�1 = �3 � �2 � 
 � 
 � �1 and �2 = �3 � ~
 � ~
 � �2 � �1:
It is not difficult to see that�1, �2 and�� all have the same homotopy type. SinceJ [��] is minimal in the sense of Definition 3.1 we have, by the same reasoning as in
Lemma 5.7, thatJ [�1] � J [��] andJ [�2] � J [��], which implies thatJ [~
] � J [
] andJ [
] � J [~
]. HenceJ [
] = J [~
]. ThereforeJ [�1] = J [�2] = J [��] which implies
that�1;�2 and�� are all distinct minimizers of the same type as curves joiningB toE. Since these curves all contain the paths�1, �2 and�3, and are solutions to (1.2), the
uniqueness to the initial value problem is contradicted.

Finally, the curve�(u) can pass through a point at most twice because it is a union of�+ and��, each visiting a point at most once. Moreover, points in�(uj(t1;t2)), common
to both�+ and��, are passed exactly once. It now follows that if there is another self-
intersection besidesP , say atR = �(u(s1)) = �(u(s2)), thens1 < t1 andt2 < s2. We
conclude that the curve�(uj(s1;s2)) contains�(uj[t1;t2]) and therefore it is not a simple
closed curve. ThusP is a unique self-intersection that cuts off a simple loop.

(�1; 0) (1; 0)

~
 P

E
L

�1B Q�2 �3

Figure 5.1: The forward orbit�+ starting atP with a self-intersection at the pointQ.
Lemma 5.12 implies that this cannot happen for non-periodicu 2 CM(h(2; 2)i).
Lemma 5.13 Let u 2 CM(h(2; 2)i) be non-periodic. Suppose thatu 2 L1(R). Thenu is a connecting orbit between two periodic minimizersu�; u+ 2 CMper((2; 2)), i.e.
there are sequencest�n ; t+n ! 1 such thatu(t � t�n ) ! u�(t) andu(t + t+n ) ! u+(t)
in C4loc(R).
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Proof. Lemma 5.12 implies that�+ is a spiral which intersects the positiveu–axis at
a bounded, monotone sequence of points(�n; 0) in P converging to a point(��; 0): Lettn be the sequence of consecutive times such thatu(tn) = �n. Consider the sequence of
minimizers inCM(h(2; 2)i) defined byun(t) = u(t + tn). By Theorem 4.2 there exist
aC1loc–limit u+ 2 CM(h(2; 2)i). If u+ is periodic, there is nothing more to prove. Thus
supposeu+ is non-periodic. Then the curve�(u+) crosses theu–axis infinitely many
times. On the other hand, from theC1loc convergence�(u+) crosses this axis only at��.
By Lemma 5.12,�(u+) can intersect�� at most twice, which is a contradiction. TheC4loc–convergence follows from regularity (as in the proof of Theorem 4.2). The proof
of the existence ofu� is similar.

Theorem 5.14 Let u 2 CM(h(2; 2)i). Either u is unbounded,u is periodic andu 2CMper((2; 2)), or u is a connecting orbit between periodic minimizers inCMper((2; 2)).
Proof. Let u 2 CM(h(2; 2)i) be bounded, thenu is either periodic or non-periodic.

In the case thatu is periodic it follows from Lemma 5.9 thatu 2 CMper((2; 2)). Other-
wise ifu is not periodic it follows from Lemma 5.13 thatu is a connecting orbit between
two minimizersu�; u+ 2 CMper((2; 2)).
In Section 6.2 we give analogues of the above theorems for arbitrary homotopy typesr.

Notice that the option ofu 2 CM(h(2; 2)i) being unbounded in the above theorem
does not occur whenF (u) � jujs, s > 2 asjuj ! 1.

6 Properties of minimizers

In Section 5, we proved the existence of minimizers inMper((2; 2)), which will provide
a priori bounds on the minimizers of arbitrary type. These bounds and Theorem 4.2
will establish the existence of such minimizers. In this section we will also prove that
certain properties of a typeg are often reflected in the associated minimizers. The most
important examples are the periodic typesg = hri. Although there are minimizers
in every classM(hri;p), it is not clear a priori that among these minimizers there are
also periodic minimizers. In order to prove existence of periodic minimizers for every
periodic typehri we use the theory of covering spaces.

6.1 Existence

The periodic minimizers of type(2; 2) are special for the following reason. For a normal-
izedu 2 Mper((2; 2)), defineD(u) to be the closed disk inR2 such that@D(u) = �(u).
Theorem 6.1 i) If u 2 CM(hri ;p) then�(u) � D(umin) for any periodic typehri 6=h(2; 2)i. ii) If u 2 CM(g;p) then�(u) � D(umin) for any terminated typeg.

Proof. i) If hri 6= h(2; 2)i then everyu 2 CM(hri ;p) has the property that�(u)
intersects theu-axis betweenu = �1. Suppose that�(u) does not lie insideD(umin).
Then�(u) must intersect�(umin) at least twice, and letP1 andP2 be distinct intersection
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points with the property that the curve�1 obtained by following�(u) fromP1 toP2 lies
entirely outside ofD(umin). Let �2 � �(umin) be the curve fromP1 to P2 followingumin, such that�1 and�2 are homotopic (traversing the loop�(umin) as many times as
necessary) and thusJ [�1] = J [�2] is minimal. Replacing�1 by �2 leads to a minimizer
in CM(hri ;p) which partially agrees withu. This contradicts the uniqueness of the
initial value problem for (1.2).

ii) As in the previous case the associated curve�(u) either intersects�(umin) at least
twice or lies completely insideD(umin), and the proof is identical.

Corollary 6.2 For all minimizers in the above theorem,kuk1;1 � kumink1;1 � C0.
In order to prove existence of minimizers in every class we now use the above theo-

rem in combination with an existence result from [5].

Theorem 6.3 For any given typeg and parityp there exists a (bounded) minimizeru 2 CM(g;p). Moreoverkuk1;1 � C0, independent of(g;p).
Proof. Given a typeg we can construct a sequencegn of terminated types such

thatgn ! g asn ! 1. For any terminated typegn there exists a minimizerun 2CM(gn;p) by Proposition 3.3 (Theorem 1.3 of [5]). Clearly such a sequenceun satisfieskunk1;1 � C by Corollary 6.2. Applying Theorem 4.2 completes the proof.

6.2 Covering spaces and the action of the fundamental group

The fundamental group ofP is isomorphic to the free group on two generatorse0 ande1 which represent loops (traversed clockwise) around(1; 0) and (�1; 0) respectively
with basepoint(0; 0). Indeed,P is homotopic to a bouquet of two circlesX = S1 _ S1.
The universal covering ofX denoted byeX can be represented by an infinite tree whose
edges cover eithere0 or e1 in X, see Figure 6.1. The universal covering ofP denoted by} : eP ! P can then be viewed by thickening the treeeX so thateP is homeomorphic to
an open disk inR2 .

An important property of the universal covering is that the fundamental group�1(P)
induces a left group action oneP in a natural way, via the lifting of paths inP to paths ineP . This action will be denoted by� � p for � 2 �1(P) andp 2 eP. We will not reproduce
the construction of this action here, and the reader is referred to an introductory book
on algebraic topology such as [3]. However, we will utilize the structure of thequotient
spaces ofeP obtained from this action, which are again coverings ofP. These quotient
spaces will be the natural spaces in which to consider the lifts of curves�(u) which lie
in more complicated homotopy classes than those in the case ofu 2Mper((2; 2)).

A periodic typeg = hri is generated by a finite typer, which together with the parityp determines an element of�1(P) of the form�(r) = er2njp�1j � ::: � er1p . Since we only
consider curves inP which are of the form�(u) = (u(t); u0(t)), the numbersri are all
positive. The infinite cyclic subgroup generated by any such element� will be denoted
by h�i � �1(P). The quotient spaceeP� = eP= h�i is obtained by identifying pointsp
andq in eP for which q = �k � p for somek 2 Z. The resulting spaceeP� is homotopic
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Figure 6.1: The universal covereX of X is a tree. Its origin is denoted byO. For� = e0e1e0, the quotient spaceeX� = eX= h�i is also a covering space overX, andeX� � S1.
to an annulus, and}� : eP� ! P is a covering space. Figure6:1 illustrates the situation
for X, since it is easier to draw, and forP the reader should imagine that the edges in
the picture are thin strips. The lift of the path� = e0e1e0 to eX based atO is shown by
the dashed line. This piece of the tree becomes a circle in the quotient spaceeX�. Note
that infinitely many edges ineX are identified with this circle. The dashed lines in botheX and eX� are strong deformation retracts ofeX and eX� respectively, and henceeX� is
homotopic to a circle. ThickeningeX� gives thateP� is homotopic to an annulus. Thus�1( eP�) is a generated by a simple closed loop ineP� which will be denoted by�(r). Note
that for convenience we suppress the dependence of� and� on the parityp.

Remark 6.4 If we define the shift operator� on finite typesr to be a cyclic permutation,
thenMper(r;p) = Mper(�k(r); �k(p)) for all k 2 Z. Functions inMper(r;p) have a
unique lift to simple closed curve ineP�, � = �(r). However, functions in the shifted
classMper(�k(r); �k(p)) are not simple closed curves ineP�. In order for such functions
to be lifted to a unique simple closed curve we need to consider the covering space eP�k ,
where�k = �(�k(r); �k(p)).
6.3 Characterization of minimizers of typehri
In Section 5.2, we characterized minimizers inCM(h(2; 2)i) by studying the proper-
ties of their projections intoP. What was special about the types(2; 2)k was that the
projected curves were a priori contained inP n L, which is topologically an annulus.
TheJ-efficiency of minimizing curves restricts the possibilities for their self and mu-
tual intersections. In particular, we showed that all periodic minimizers inCM(h(2; 2)i)
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project onto simple closed curves inP n L and that no two such minimizing curves in-
tersect. These two properties, coupled with the simple topology of the annulus, already
force the minimizing periodic curves to have a structure of a family of nestedsimple
loops.

Such a simple picture in the configuration planeP cannot be expected for minimizers
in CM((hri ;p)) with r 6= (2; 2). The simple intersection properties (of Lemma 5.9 and
5.11) no longer hold; in fact, periodic minimizing curves must have self-intersections
in P as do any curves inP representing the homotopy class of(hri ;p). However, by
lifting minimizing curves into the annuluseP�, we can remove exactly these necessary
self-intersections and put us in a position to emulate the discussion for the types(2; 2)k.
More precisely, for a minimal type(r;p), anyu 2Mper((r;p)k) with periodT such that��1[�(uj[0;T ])] = (r;p)k, there are infinitely many lifts of the closed loop�(uj[0;T ]) intoeP�(r) (see above remark) but there is exactly one lift, denoted��(uj[0;T ]), that is a closed
loop homotopic to�k(r) in eP�(r). We can repeat all of the arguments in Section 5 by
identifying intersections between the curves��(uj[0;T ]) in eP�(r) instead of intersections
between the curves�(uj[0;T ]) in P nL. Of course, when gluing together pieces of curves,
the values ofu andu0 come from the projections intoP. In particular, the arguments of
Lemma 5.9 show that��(uj[0;T ]) must be a simple loop tracedk-times, which leads to
the following:

Lemma 6.5 For any periodic typehri and anyk � 1 it holds thatCMper((r;p)k) =CMper(r;p) = CMper(hri ;p).
The proof of the next theorem is a slight modification of Theorem 5.11.

Theorem 6.6 For any periodic typehri the setCMper(r;p) is compact and totally or-
dered (ineP�).

The following lemma is analogous to Lemma 5.13. Note however that by Theo-
rem 6.1 we do not need to assume that the minimizer is uniformly bounded.

Lemma 6.7 Letu 2 CM(hri ;p) for some periodic typehri 6= h(2; 2)i. Eitheru is pe-
riodic andu 2 CMper(r;p), or u is a connecting orbit between two periodic minimizersu�; u+ 2 CMper(r;p), i.e. there are sequencest�n ; t+n !1 such thatu(t�t�n )! u�(t)
andu(t+ t+n )! u+(t) in C4loc(R).

Combining Theorem 6.3 and Lemma 6.7 we obtain the existence of periodic min-
imizers in every class with a periodic type (this result can also be obtained in a way
analogous to Theorem 5.5).

Theorem 6.8 For any periodic typehri the setCMper(r;p) is nonempty.

The classification of functions by type has some properties in common with symbolic
dynamics. For example, if a typeg is asymptotic to two different periodic types, i.e.�n(g) ! r+ and��n(g) ! r� asn ! 1, with r+ 6= r�, then any minimizeru 2CM(g;p) is a connecting orbit between two periodic minimizersu� 2 CMper(r�;p) and

20



u+ 2 CMper(r+;p), i.e. there exist sequencest�n ; t+n !1 such thatu(t� t�n )! u�(t)
andu(t+ t+n )! u+(t) in C4loc(R). This result follows from Cantor’s diagonal argument
using Theorems 4.2 and 6.7, and hence we have used the symbol sequences to conclude
the existence of heteroclinic and homoclinic orbits connecting any two types of periodic
orbits.

Symmetry properties of typesg are also often reflected in the corresponding mini-
mizers. For example, define the map	i0 on infinite types by	i0(g) = (g2i0�i)i2Z, and
consider types that satisfy	i0(g) = g for somei0. Moreover assume thatg is periodic.
In this case we can prove that the corresponding periodic minimizers are symmetric and
satisfy Neumann boundary conditions.

Theorem 6.9 Let g = hri satisfy	i0(hri) = hri for somei0. Then for anyu 2CMper(r;p) there exists a shift� such thatu� (x) = u(x� �) satisfies
i) u� (x) = u� (T � x) for all x 2 [0; T ] whereT is the period ofu,
ii) u0�(0) = u000� (0) = 0 andu0� (T ) = u000� (T ) = 0, and
iii) u� is a local minimizer for the functionalJT [u] on the Sobolev spaceH2n(0; T ) =fu 2 H2(0; T ) j u0(0) = u0(T ) = 0g.

Proof. Without loss of generality we may assume thati0 = 1 and thatg =h(g1; : : : ; gN)i for someN 2 2N. We can choose a pointt0 in the convex hull ofA1 such thatu0(t0) = u0(t0 + T ) = 0 andg(uj[t0;t0+T ]) = (g1=2; g2; : : : ; gN ; g1=2).
We now definev(t) = u(t0 + T � t). Then by the symmetry assumptions ong
we have thatg(vj[t0;t0+T ]) = g(uj[t0;t0+T ]). SinceJ[t0;t0+T ](v) = J[t0;t0+T ](u) and�(u(t0)) = �(u(t0+T )) = �(v(t0)) = �(v(t0+T )), we conclude from the uniqueness
of the initial value problem thatu(t) = v(t) for all t 2 [t0; t0 + T ], which proves the
first statement. The second statement follows immediately fromi). The third property
follows from the definition of minimizer.
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