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Abstract

We investigate periodic and chaotic solutions of Hamikonsystems irR*
which arise in the study of stationary solutions of a clasdisfable evolution
equations. Under very mild hypotheses, variational teples are used to show
that, in the presence of two saddle-focus equilibria, minimg solutions respect
the topology of the configuration plane punctured at thesetfoBYy considering
curves in appropriate covering spaces of this doubly puedtyplane, we prove
that minimizers of every homotopy type exist and charaotetheir topological
properties.

1 Introduction

This work is a continuation of [5] where we developed a constrained minimization
method to study heteroclinic and homoclinic local minimizers of the action fomaki

Jilu] = / ooy dt = / (2P + S 4+ P, (1)

I I

which are solutions of the equation
yu"™ — pu" + F'(u) =0 (1.2)

with v, 3 > 0. This equation with a double-well potential has been proposed in
connection with certain models of phase transitions. For brevity we will ocitailed
background of this problem and refer only to those sources required in the proofs of the
results. A more extensive history and reference list are provided indS§hich we
refer the interested reader.
The above equation is Hamiltonian with
g

H = —yu"u + %|u"|2 + §|u'|2 — F(u). (1.3)

*This work was supported by grants ARO DAAH-0493G0199 and NISTe&05.
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The configuration space of the system is theu’)-plane, and solutions ta.2) can be
represented as curves in this plane. Initially these curves do not appeaesirieted in

any way. However, the central idea presented here is that, \vher) are saddle-foci,

the minimizers ofJ respect the topology of this plane punctured at these two points,
which allows for a rich set of minimizers to exist. Using the topology of the doubly
-punctured plane and its covering spaces, we describe the structure of dl@bogses

of minimizers, including those which are periodic and chaotic. Since the actithre of
minimizers of these latter types is infinite, a different notion of minimigarequired

that is reminiscent of the minimizing (Class A) geodesics of Morse [8]. Suohmizers
have been intensively studied in the context of geodesic flows on compact manifolds or
the Aubry-Mather theory (see e.g. [1] for an introduction). A crucial differendbas

we are dealing with a non-mechanical system on a non-compact space. Nessrthele
we are able to emulate many of Morse’s original arguments about how the mirsmize
can intersect with themselves and each other. For a precise statdrttenimain results

we refer to Theorem 4.2 and Theorem 6.8. For related work on mechanical Haamltoni
systems we refer to [9, 2] and the references therein.

Another important aspect of the techniques employed here and in [5] is the mild-
ness of the hypotheses. In particular, our approach requires no transversality or non-
degeneracy conditions, such as those found in other variational methods and dynamical
systems theory, see [5]. Specifically, we will assume the following hypstbhed

(H): F e C? F(+1) = F'(£1) =0, F"(+1) > 0, and F'(u) > 0 for u # +1.
Moreover there are constants andc, such thatF' (u) > —c; + cou?.

We will also assume for simplicity of the formulation thais even, but many analogous
results will hold for nonsymmetric potentials, c.f. [5]. Finally, we assuieg the
parameters and are such that = +1 are saddle-foci, i.edv/3? > 1/F"(+1). An
example of a nonlinearity satisfying these condition'{s) = (u? — 1)?/4, in which
case (1.2) is the stationary version of the so-called extended Fisher-Kolmdg®ik)
equation.

In [5] we classify heteroclinic and homoclinic minimizers by a finite sequeaice
even integers which represent the number of times a minimizer crasses1. More
general minimizers can be similarly classified by infinite and bi-infisgquences, as
described in Section 2. A more general notion of minimizer for these types is défine
Section 3, and in Section 4 we prove that such minimizers exist.

In Sections 5 and 6 we show that many properties of these symbol sequences such as
symmetry and periodicity are reflected in the corresponding minimizergarticular,
we show that for any periodic type, there exists a periodic minimizer of that fijipe.
classification of minimizers by symbol sequences has other properties in comithon w
symbolic dynamics; for example, if a type is asymptotically periodic in both dinest
then there exists a minimizer of that type which is a heteroclinic connectiovebat
two periodic minimizers.

The minimizers discussed here all lie in the 3-dimensional ‘energy-maniféid=
{(u, v, u",u") | H((u,u',u",u") = 0}. Exploiting certain properties of minimizers
that are established in this paper, we can deduce various linking and knottingtehara
istics when they are represented as smooth curvés irHowever, we will not address
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this issue in this paper. The minimizers found in this paper are also used ino[13]
construct stable patterns for the evolutionary EFK equation on a bounded interval.

Some notation used in this paper was introduced previously in [5]. While we have
attempted to present a self-contained analysis, we have avoided reproduaiteypar-
ticularly in Section 5.1) which are not central to the ideas presented meteylzich are
thoroughly explained in [5].

2 Types and function classes

Afunctionu : R — R can be represented as a curve in(the.')—plane, and the asso-
ciated curve will be denoted By(«). Removing the equilibrium pointst1, 0) from the

(u, u")—plane (the configuration space) creates a space with nontrivial topology, denoted
by P = R?\{(£1,0)}. In P we can represent functionswhich have the property that

u' # 0 whenu = +1, and various equivalence classes of curves can be distinguished.
For example, in [5] we considered classes of curves that terminate at tHeomayui
points(+1, 0). Another important class consists of closed curveB imvhich represent
periodic functions. We now give a systematic description of all classes tortsedered.

Definition 2.1 Atypeis a sequencg = (g;);cz With g; € 2N U {oc0}, whereoo acts as
a terminator. To be precisg, satisfies one of the following conditions:

i) Z = Z, andg < 2N” is referred to as ai-infinite type.

i) Z={0}UN, andg = (0, g1, ¢, ...) With g; € 2N forall i > 1, or
7 =-NU{0},andg = (...,g_2,9_1,00) with g; € 2N forall : < —1.
In these caseg is referred to as aemi-terminated type

i) Z ={0,..., N+ 1} with N > 0, andg = (o0, g1, ..., gn, 00) With g; € 2N.
In this caseg is referred to as derminated type.

These types will define function classes using the vegtorcount the crossings of
u at the levels, = +1. Since there are two equilibrium points, we introduce the notion
of parity denoted byp, which will be equal to eithed or 1.

Definition 2.2 A functionu € HZ,
sets{ A; };ez such that

) ut(£1) = Uer Ai

||) #Az = g; fori e 7,

i) maxA; <minA;,q,

iv) u(4;) = (—1)"**, and

V) U,z Ai consists of transverse crossingsief, i.e.,u'(z) # 0 for z € A;.

(R) is in theclass M (g, p) if there are nonempty

Note that by Definition 2.1, a function in any classM (g, p) has infinitely many
crossings oft+1. Definition 2.2 is similar to the definition of the cladg(g) in [5]
except that here it is assumed that all crossings-bfare transverse. Only finitely
many crossings were assumed to be transverse in [5] so that the cldsggsvould
be open subsets af + H?(R). Since we will not directly minimize ovet/ (g, p), we



now require transversality of all crossingsbf to guarantee thdt(u) € P. However,
note that the minimizers found in [5] are indeed contained in clat&gs p) as defined
above, where the typesare terminated.

The classes\/(g, p) are nonempty for all pairég, p). Conversely, any function
u € H.(R) is contained in the closure of some clagqg, p) with respect to the
complete metric orH2 (R) given by p(u,v) = >, 2 "min{1, ||[u — v| g2}, cf.
[10]. That s, if we define (g, p) := {v € HZ (R) | Fu, € M(g,p), with u,, — u
in H? (R)}, thenHZ (R) = UM (g, p). Note that the functions idM (g, p) :=
M (g, p)\int(M(g,p)) have tangencies dtl and thus are limit points of more than one
class. In the case of an infinite type, shiftsgofan give rise to the same function class.
Therefore certain infinite types need to be identified. & &k the shift map defined by
o(g)i = g;x1 and the map : {0,1} — {0, 1} be defined by-(p) = (p + 1)mod 2 =
|p — 1]. Two pairs (infinite types]g, p) and(g’, p’) are equivalent ig’ = ¢"(g) and
p' = 7"(p) for somen € Z, and this implies\/ (g, p) = M (g, p’).

3 Definition of minimizer

When the domain of integration &, the action/[u] given in (1.1) is well-defined only
for terminated typeg andu € M (g, p) N{X, + H?(R)}, whereX,, is a smooth function
from (—1)P*™! to (—1)P. For semi-terminated types or infinite types the actibis
infinite for everyu € M(g,p). We will define an alternative notion of minimizer in
order to overcome this difficulty.

For every compact interval C R the restricted action/; is well-defined for all
types. When we restriet to an intervall, we can define it$ype and parity relative
to I, which we denote byg(u|;), p(u|;)). Namely, letu € M(g,p). Itis clear that
(u,u')|ar ¢ (£1,0) for any bounded interval. Theng(u|;) is defined to be the finite-
dimensional vector which counts the consecutive instanceg;of +1, andp(u|;)
is defined such that the first timg; = +1 in I happens at—1)P*!. Note that the
components o (u|;) are not necessarily all even, since the first and the last entries may
be odd. We are now ready to state the definition of a (global) minimiz&f (g, p).

Definition 3.1 A functionu € M(g, p) is called aminimizer for .J over M (g, p) if
and only if for every compact intervalthe numbetJ;[u|;] minimizesJ[v|;] over all
functionsv € M (g, p) and all compact intervalg’ such thatv, v')|sr = (u,u')|sr and

(g(v[r), p(v]r)) = (g(ulr), p(ulr))-

The pair(g(u|r), p(u|r)) defines a homotopy class of curves7nwith fixed end
points (u,u')|s;. The above definition says that a functienrepresented as a curve
['(u) in P, is a minimizer if and only if for any two point® and P, on I'(u), the
segmentl’(P;, P,) C T'(u) connectingP; and P, is the mostJ-efficient among alll
connectionf(Pl, P,) betweenP; and P, that are induced by a functionand are of
the same homotopy type &% P;, P»), regardless the length of the interval needed to
parametrize the cuni(P,, P,). As we mentioned in the introduction, this is analogous
to the length minimizing geodesics of Morse and Hedlund and the minimizers in the
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Aubry-Mather theory. The set of all (global) minimizersin(g, p) will be denoted by
CM(g,p).

Lemma 3.2 Letu € M (g, p) be a minimizer, them € C*(R) andu satisfies equation
(1.2). Moreover,u satisfies the relatiot! (u, v', u", v"") = 0, i.e. the associated orbit
lies on the energy leveél = 0.

Proof. From the definition ofA/(g, p), on any bounded intervdl C R there exists
eo(I) > 0 sufficiently small such that+¢ € M (g, p) forall ¢ € HZ(I), with ||@]| 2 <
¢ < €. ThereforeJ;[u + ¢] > J;[u] for all such functionsp, which implies that
dJrlu] = 0 for any bounded intervdl C R, and thus: satisfies (1.2).
To prove the second statement we argue as follows. Sircd/ (g, p), there exists
a bounded interval such that'|5; = 0. Introducing the rescaled variable= ¢/T with
= |I| andw(s) = u(t), we have

s =t = [ L L) e, @)

which decouples andT'. Sinceu'|s; = 0 we see from Definition 3.1 that{T + ¢, v] >
Jr[u] = J[T,v]. The smoothness ofin the variablel’ > 0 implies thatZ J[r, v]
0. Differentiating yields

=T

2awt = [ [ -2 + o) ds
= / [—— Ju"]? — §|u'|2+F(u)] dt
0

= —7'1/ H(u,u',u" u")dt = —F,
0

ThusE = 0, andH (u, ', u",u") = 0 for ¢t € I. This immediately implies thalf = 0
forallt € R. []

The minimizers forJ found in [5] also satisfy Definition 3.1, and we restate one of
the main results of [5].

Proposition 3.3 Supposé is even and satisfigsl), and3, v > 0 are chosen such that
+1 are saddle-focus equilibria. Then for any terminated tgpeith parity either0 or 1
there exists a minimizer € M(g, p) of J.

From Definition 2.2, the crossings ofc M (g, p) with +1 are transverse and hence
isolated. We adapt from [5], the notion of a normalized function with a few minor
changes to reflect the fact that we now require every crossiag ad be transverse.

Definition 3.4 A functionu € M(g, p) is normalized if, between each pait(a) and
u(b) of consecutive crossings &fl, the restrictionu|,; is either monotone on|, )
has exactly one local extremum.



Clearly, the case af|(,,) being monotone can occur only between two crossings at
different levelst1, in which case we say thathas atransition on|a, b].

Lemma 3.5 If u € C'M (g, p), thenu is normalized.

Proof. Sinceu € M(g, p), all crossings ofi = +1 are transverse, i.e.' # 0. Thus
for any critical pointy, € R, u(ty) # +1, and the Hamiltonian relation from Lemma 3.4
implies thatyu” (t5)%/2 = F(u(ty)) > 0. Thereforeu is a Morse function, and between
any two consecutive crossings 6fl there are only finitely many critical points. Now
on any interval between consecutive crossings wheagenot normalized, the clipping
lemmas of Section 3 in [5] can be applied to obtain a mbsedficient function, which
contradicts the fact thatis a minimizer. []

4  Minimizers of arbitrary type

In this section we will introduce a notion of convergence of types which will be irsed
Section 6.2 to establish the existence of minimizers in every dli&gs p) by building
on the results proved in [5].

Definition 4.1 Consider a sequence of typés”, p”) = ((¢7)icr,,p™) and a type
(g,p) = ((9:)icr,p). The sequencég™, p”) limits to the type(g, p) if and only if
there exist numberd,, € 2Z such thaty?, v , . , — g;foralli € I asn — co. We
will abuse notation and writ¢g”, p") — (g, p)-

We should point out that a sequence of types can limit to more than one type. For ex-
ample the sequendg™, 0) = ((00,2,2,n,4,4,4,4,n,2,2,2,...),0) limits to the types
((00,2,2,00),0), ((00,4,4,4,4,00),1) and((c0, 2,2,2,...), 0).

Theorem 4.2 Let (g",p") — (g,p) andu,, € CM(g",p") with ||u,l|1. < C for
all n. Then there exists a subsequenge such thatu,,, — @ € M(g,p) in C .(R),
andw is a minimizer in the sense of DefinitiBrl, i.e.w € CM(g, p)-

Proof. This proof requires arguments developed in [5] to which the reader is referred
for certain details. The idea is to take the limitwf restricted to bounded intervals.
We define the numberd,, as in Definition 4.1, and we denote the convex hullgby
I, = conv(A;). Due to translation invariance we can pin the functiepso thatu, (0) =
(—1)P*', which is the beginning of the transition betwelh , .. , andI? y . ..

Due to the assumed a priori bound and interpolation estimates which can be fohad in t
appendix to [7], there is enough regularity to yield a limit functibas aC;. .—limit of

u,, after perhaps passing to a subsequence. Morewsatisfies the differential equation
(1.2) onR. The question that remains is whetlee M (g, p).

To simplify notation we will now assume thaf, = 0 andp™ = p = 0. Fixing
asmalld > 0, we definel’(§) D I as the smallest interval containidj such that
ulorry = (1) — (=1)"*16. If g is a (semi-)terminated type théfi(d) is a half-line.
The interval of transition betweeif (¢) and I, (d) is denoted byL?(§). To see that
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u € M(g,p), the goal is to eliminate the two possibilities that a priori may lead to the
loss or creation of crossings in the limit so thag M (g, p): the distance between two
consecutive crossings i, could grow without bound ofi could posess tangencies at
u = +1.

Due to the a priori estimates 1 > we have the following bounds off

and
Jun|r @] < C7,

whereC' andC’ are independent of andi. Indeed, note that for large enough the
homotopy type ofi,, on the intervald!*(d) is constant by the definition of convergence
of types. Since the functions, are minimizers,/J[u, |~ )] is less than the action of any
test function of this homotopy type satisfying the a priori bounds andw’ on 917 (9)
(see [5], Section 6, for a similar test function argument). The estipid@)| < C(9)

is immediately clear from Lemma 5.1 of [5]. We now need to show that therdista
between two crossings ¢f-1)*! within the intervall*(§) cannot tend to infinity.

First we will deal with the case whey? is finite for alln. Suppose that the distance
between consecutive crossings(efl)*! in I7(§) tends to infinity as: — co. Due
to Inequality (4.1) and Lemma 3.5, minimizers have exactly one extremum between
crossing of(—1)"*! for anye > 0, and hence there exist subintervals c I7*(5) with
|K,,| = oo, suchthad < |u, — (—1)?| < e on K,, whereg, € {0,1}, and|v |, | < €.
Taking a subsequence we may assumeghét constant.

We begin by considering the case whefe= i + 1. Now ¢ can be chosen small
enough, so that the local theory in [5] is applicabléipn If |K,| becomes too large then
u,, can be replaced by a function with lower action and with many crossingsiof*'.
Subsequently, redundant crossings can be clipped out, thereby lowering the action. This
implies thatu,, is not a minimizer in the sense of Definition 3.1, a contradiction.

The case where, = i must be dealt with in a different manner. First, there are
unique points,, € K, such that:/ (¢,) = 0, and for these points,(¢,) — (—1)* as
|K,| — oo. Letu,(s,) be the first crossing of—1)*! to the left of K,,. Taking the
limit (along subsequences) of (¢t — s,,) we obtain a limit functionz which is a solution
of (1.2). If |t, — s,| is bounded thei has a tangency to = (—1)’ at somet, € R. All
uy lie in {H = 0} (see (1.3)) and so does henceu”(t.) = 0. Moreoveru™(t.) = 0,
becausei(t.) is an extremum. By uniqueness of the initial value problem this implies
thatu = (—1)¢, contradicting the fact that(0) = (—1)"*". If |t, — s,,| — oo, thenu is
a monotone function oft), o), tending to(—1)* asxz — oo, and its derivatives tend to
zero (see Lemma 3 in [11] or Lemma 1 part (ii) in [7] for details). This caxdhtts the
saddle-focus character of the equilibrium point.

In the case thay = oo we remark that (4.1) also holds whéf is a half-line.

It follows from the estimates in Lemma 5.1 in [5] that — (—1)"*' asz — oo or

x — —oo (whichever is applicable). From the local theory in Section 4 of [5] and the
fact thatu,, is a minimizer, it follows that the derivatives of, tend to zero. The analysis
above concerning the intervals, and the clipping of redundant oscillations now goes
on unchanged.



We have shown that the distance between two crossingslofs bounded from
above. Next we have to show that the limit function has only transverse mgessit1.
This ensures that no crossings are lost in the limit. Wihemuld be tangent t¢—1)+*
in 7;, then we can construct a functiondre M (g, p) in the same way as demonstrated
in [5] by replacing tangent pieces by mofeefficient local minimizers and by clipping.
The functionv still has a lower action thain on a slightly larger interval (the limit
function z also obeys (4.1), so that the above clipping arguments still apply). Since
u, — @ in C}_ it follows that.J;[u,] — J;[u] on bounded intervalg. This then implies
that forn large enough the functiom, is not a minimizer in the sense of Definition 3.1,
which is a contradiction.

The limit function# could also be tangent to-1)’ for somet, € I,. As before,
such tangencies satisfity) — (—1)" = @'(ty) = @"(to) = ©"(ts) = 0, which leads to
a contradiction the uniqueness of the initial value problem.

Finally, crossings oft-1 cannot accumulate since this would imply that at the accu-
mulation point all derivatives would be zero, leading to the same contradasiabove.
In particular, ifg? — oo for somei, then|I}'| — oo and the crossings id’ for j > i
move off to infinity and do not show ifa, which is compatabile with the convergence of
types.

We have now proved that € M (g, p) and, sincei is theC;! .—limit of minimizers,

loc

u is also a minimizer in the sense of Definition 3.1. ]

Remark 4.3 It follows from the estimates in Theorem 3[@f that in the theorem above
we in fact only need ah*°-bound on the sequencs.

Remark 4.4 It follows from the proof of Theores2that there exists a constasyf > 0

such that for all uniformly bounded minimizer§t) it holds that|u(t) — (—1)"P| > §
forall t € I, and all: € Z. This means that the uniform seperation property discussed
in [5] is uniformly satisfied by all minimizers.

Remark 4.5 In order to take a limit of the sequeneg € CM(g,,p) in the above
theorem, we need the a priori estimdtg, ||, .. < C for all n. We will show in Section 6
that this estimate will be satisfied for many sequeggesee Corollary 6.2 and Theorem
6.3 below. Note that for the special case whEfe) ~ |u|* as|u| — oo for somes > 2,
an a priori L*> bound on the set of all solutions ¢f.2) with domain of existendg can
be obtained4].

5 Periodic minimizers

An bi-infinite typeg is periodic if there exists an integer such that"(g) = g. The
(natural) definition of the period of is min{n € 2N|o"(g) = g}. We will write

g = (r) wherer = (g, ..., g,) andn is even. Cyclic permutations efwith possibly
a flip of p give rise to the same function clad$((r), p). In reference to the typé&:)

with parity p we will use the notatiorir, p). Any such type paifr, p) can formally
be associated with a homotopy classriiP, 0) in the following way. Lete, ande; be
the clockwise oriented circles of radius one centered dt) and(—1, 0) respectively,
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so thatleo] and[e, | are generators far, (P, 0). Definingd(r,p) = eli() - ... - ep’”,

the mapd : Uy>12N?* x {0,1} — m(P,0) is an injection, and we defing’ (P, 0) to
be the image ofl in (P, 0). Powers of a type paiir, p)* for & > 1 are defined by
concatenation of with itself k times, which is equivalent ttr, p)* = 0 1((0(r, p))*).

Definition 5.1 Two pairs(r, p) and (r, p) are equivalentif there are numberg, ¢ € N
such that(r, p)? = (r,p)? up to cyclic permutations. This relatiot;, p) ~ (T, D), is
an equivalence relation.

Example: if(r,p) = ((2,4,2,4),0) and(7,p) = ((4,2,4,2,4,2),1), thenf(r,p)? =
0(t,p)?. The equivalence class @f, p) is denoted byr, p|. A type (r, p) is a minimal
representative fdr, p] if for each(r, p) € [r, p] thereist > 1 such thatr, p) = (r, p)*

up to cyclic permutations. A minimal representative is unique up to cyclic petnns.

It is clear that in the representation of a periodic tgpe: (r), the typer is minimal if

the length ofr is the minimal period. Due to the above equivalences we now have that

M((r),p) = M((r),p), V(r,p) € [r,p].

It is not a priori clear that minimizers it/ ((r), p) are periodic. However, we will see
that among these minimizers, periodic minimizers can always be found.
For a given periodic typ€r) we consider the subset of periodic functions in
M(<r>7 p)1 . . .
Mper(<r>7 p) = {U € M(<r>7 p) | uls pe”Odlq'

For anyu € M, ((r),p) and a period" of u, I'(u|j,r) is a closed loop ifP whose
homotopy type corresponds to a nontrivial elementrpf?,0). In this correspon-
dence there is no natural choice of a basepoint. For specificity, we will deswibe
to make the correspondence with the origin as the basepoint and thereafterfoomit it
the notation. Translate so thatu(0) = 0. Lety : [0,1] — P be the line from0
to (0,4'(0)), and lety*(t) = ~(1 — t). Thenf(u|[0,T]) = 7" o I'(u|p,m) o v, and
[C(ulor)] € i (P,0). Now define[l'(u|pr)] = [T(uljo.r)]. Thus there exists a pair
0~'[[(ulp,r)] = (T,P) € [r, p], with T = r* for somek > 1. Therefore we define for
any(r,p) € [r, p]

Myper (T, D) = {u € Myer((r), p) | [['(2|jo,m)] ~ 0(r, ) € m1(P) for a periodT of u}.

The typer = g(u|j,77), With g = (r), is the homotopy type oi relative to a period
T. This type has an even number of entries. It follows tht,(r, p) C Mpe (T, D)
for all (v,p) = (r,p)*, k > 1. FurthermoreM,e,((r) ., p) = Uzp)er.plMper (T, D). IN
order to get a better understanding of periodic minimize®if{r), p) we consider the
following minimization problem:

er\l, = inf J = inf J R 51
Tper (T, P) e r[u] P (] (5.1)
Ter+

where.Jr is action given in (1.1) integrated over one period of Ieﬁ@tlandMg’er(r, p)
is the set ofl’-periodic functions: € M., (r, p) for which g(u| ) = r. Note that
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T is not necessarily the minimal period, unlesis a minimal representative for]. It

is clear that fory, # > 0 the infimaJ,..(r, p) are well-defined and are nonnegative for
any homotopy type. At this point it is not clear, however, that the infirg&..(r, p)

are attained for all homotopy types We will prove in Section 6 that existence of
minimizers for (5.1) can be obtained using the existence of homoclinic and heteroclini
minimizers already established in [5].

Lemma 5.2 If J,..(r, p) is attained for some € M, (r, p) thenu € C*(R) and satis-
fies(1.2). Moreover, since: is minimal with respect t@” we haveH (u, v', v”, u"") = 0,
i.e. the associated periodic orbit lies in the energy surface- 0.

Proof. Since 7, (r, p) is attained by some € M, (r, p) for some period’, we
have that/z[u + ¢] — Jr[u] > 0 for all ¢ € H?(S',T) with ||¢||z> < ¢, sufficiently
small. This implies thatl.J;-[u] = 0, and thus: satisfies (1.2). The second part of this
proof is analogous to the proof of Lemma 3.2. []

We now introduce the following notation:

CM({r),p) = {u € M((r),p) | uis a minimizer according to Definition 3.1},
CMper((r),p) = {u € CM((r),p) | uis periodic},
CMyer(r,p) = {u € Myer(r, p) | uis a minimizer for J,e,(r, p)}-

5.1 Existence of periodic minimizers of typer = (2, 2)*

If we seek periodic minimizers of type = (2,2)*, the uniform separation property
for minimizing sequences (see Section 5 in [5]) is satisfied in the dlgasgr). Note
that the parity is omitted because it does not distinguish different homotopy types her
The uniform separation property as defined in [5] prevents minimizing sequeooes fr
crossing the boundary of the given homotopy class. For any other periodic type the
uniform separation property is not a priori satisfied. For the sake of simphetyegin
with periodic minimizers of typé2, 2) and minimizeJ in the classM e ((2, 2)).

Minimizing sequences can be chosen to be normalized due to the following lemma,
which we state without proof. The proof is analogous to Lemma 3.5 in [5].

Lemma 5.3 Letu € M, ((2,2)) andT be a period ofu. Then for every > 0 there
exists a normalized function € M,.((2,2)) with period7" < T such that/[w] <
JT[U] + €.

The goal of this subsection is to prove that whérsatisfies (H) andi,v > 0 are
such thatt1 are saddle-foci, thef,.((2, 2)) is attained, Theorem 5.5 below. The proof
relies on the local structure of the saddle-focus equilibriaand is a modification of
arguments in [5]; hence we will provide only a brief argument. The reader isedfey
[5] for further details.

In preparation for the proof of Theorem 5.5, wefix> 0, ¢, > 0, andd > 0 so that
the conclusion of Theorem 4.2 of [5] holds, i.e. the characterization of the osgjllator
behavior of solutions near the saddle-focus equilibriaholds. Letu € M’ ((2,2))

per
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be normalized, and let be such thati(¢,) = 0. Thent, is part of a transition fromr1
to £1. Assume without loss of generality that this transition is frethto 1. Define
t- =sup{t < to: |u(t)+ 1] < ¢} andt, = inf{t > ¢, : |u(t) — 1| < §}. Then
let S(u) = {t : |u(t) £ 1| < 6} andB[u,T| = |S(u) N [ty,t_ + T]|, and note that
[to, to +T] = {S(u) N[ty,t_+T]}U{S(u)*Nlty,to + T]}. With these definitions we
can establish the following estimate (c.f. Lemma 5.4 in [5]). Fomall M. ((2,2))
with Jr[u] < Jper((2,2)) + €

[ullFr: < O+ Fper((2,2)) + Blu, T)). (5.2)

First, ||u/[|%: < C(Jper((2,2))+€0), and second ifu+1| > § thenF (u) > n*u?, which
implies that||ul|?, < 1/n ft”T u)dt + (1 + 6)?Blu, T] < C(Jr[u] + Blu,T]).
Combining these two estimates proves (5.2).

For functionsu € M, ((2,2)) that satisfy.Jp[u] < Fpe((2,2)) + 1, it follows
from Lemma 5.1 of [5] that there exist (uniform tr) constants/; and 7, such that
Ty > |S(u)“ N [te, to + T]| > Ty > 0 and thusI" > T;. The next step is to give an a
priori upper bound ofi” by considering the minimization problem (c.f. Section 5 in [5])

B, =inf{ Blu,T] | u€ M ((2,2)) normalized, T € R",

per

and Jr[u] < Jper((2,2)) + €}.

Lemma 5.4 There exists a constaif = K (m) > 0 such thatB, < K for all 0 <
€ < €. Moreover, ifly = K + T3, then for any) < € < ¢, there is a normalized
ue M ((2,2)) with Jr[u] < Jper((2,2)) +2eandTy < T < Ty,

per

Proof. Let (u,,T,) € MIZ:;;((Q, 2)) x Rt be a minimizing sequence fds., with

normalized functions,,. As in the proof of Theorem 5.5 of [5], in the weak limit this
yields a pair(ii, T') such thatB[i, 7] < B.. We now definef(((2,2), 1) = 8((270 +

2) + 2). This gives two possibilities foB[ii, T, eitherB[i,T] > K or B[i,T] < K.

If the former is true then we can construct (see Theorem 5.5 of [5]) a(pﬁiﬂ’)

MT ((2,2)) x R*, with & normalized, such that

per
Ja[0] < Ja[0] < Jper((2,2)) +€ and B[5,T'] < B[a, T] < B,

which is a contradiction excluding the first possibility. In the second caserewhe
B[i,T] < K, we can construct a paif, 7") with 3 normalized such that

Ja[0] < Jali] + € < Jou((2,2)) + 26, and B[3,T'] < B[i,T] < K,

which implies thatl; < T <T < K + T, = Ty and concludes the proof. For details
concerning these constructions, see Theorem 5.5 in [5]. []

Theorem 5.5 Suppose that" satisfiegH) and 3, > 0 are such thatt-1 are saddle-
foci, then J,e:((2,2)%) is attained for anyk > 1. Moreover, the projection of any
minimizer inC'M,,((2, 2)) onto the(u, u')—plane is a simple closed curve.
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Proof. By Lemma 5.4, we can choose a minimizing sequefeg 7,,) €
Mx((2,2)) x RT, with u,, normalized and with the additional properties thag|| ;> <
C andTy < T, < T,. Since the uniform separation property is satisfied for the type
(2, 2) this leads to a minimizing paiz, T') for (5.1) by following the proof of Theorem
2.2:in [5]. As for the existence of periodic minimizers of type- (2, 2)* the uniform
separation property is automatically satisfied and the above steps atieatle

Lemma 3.5 yields that minimizers are normalized functions and the projection of a

normalized function inV/,..((2, 2)) is a simple closed curve in the, u')—plane. ]

We would like to have the same theorem for arbitrary periodic types~or homo-
topy types that satisfy the uniform separation property the analog of Theorem %86 can
proved. However, in Section 5 we will prove a more general result usingfibvenation
about the minimizers with terminated types (homoclinic and heteroclinic naens)
which was obtained in [5].

Remark 5.6 The existence of &, 2)-type minimizer is proved here in order to obtain
a priori WW>-estimates for all minimizers (Section 6). Howevef; ifatisfies the ad-
ditional hypothesis thaf'(u) ~ |ul®, s > 2 as|u| — oo, then such estimates are
automatic (c.f. [7], [4]). In that case the existence of a minimizer of tfpe) follows
from Theorem 5.14 below. To prove existence of minimizers of arbitraryrtygewill
use an analogue of Theorem 5.14 (see Lemma 6.7 and Theorem 6.8 below).

5.2 Characterization of minimizers of typeg = ((2,2))

Periodic minimizers associated wifdy| or [e;] are the constant solutions= —1 and
u = 1 respectively. The simplest nontrivial periodic minimizers are those of type
(2,2)%, i.e. r € [(2,2)]. These minimizers are crucial to the further analysis of the
general case. The type= (2, 2) is a minimal type (associated wifty ey]), and we want
to investigate the relation between minimizershif{{(2, 2))) and periodic minimizers
of type (2, 2)*.

Considering curves in the configuration sp&ces a convenient method for studying
minimizers of typg(2, 2). For example, minimizers i@ M (((2,2))) andC M,.((2,2))
all satisfy the property that they do not intersect the line segihent —1, 1) x {0} in P.
If other homotopy types are considered, i.a: ¢ [(2, 2)], then minimizers represented
as curves irP necessarily have self-intersections and they must intersect the segment
which makes their comparison more complicated. We will come back to thisgmobl
in Section 6. Note that for &' -functionu the associated cund&(u) is a closed loop if
and only ifu is a periodic function.

Lemma 5.7 For any non-periodic minimizer, € C'M({(2,2))) and any bounded in-
terval I the curvel'[u|;] has only a finite number of self-intersections. For periodic
minimizersu € C' M, (((2,2))) this property holds when the lengthbfs smaller than
the minimal period.

Proof. Fix a time intervall = [0, 7. If u is periodic,T should be chosen smaller
than the minimal period ofi. Let P = (ug,u;) be an accumulation point of self-
intersections of:|;. ThenP is a self intersection point, and there exists a monotone
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sequence of times, € I converging ta, such that (u(r,)) are self-intersection points
andT'(u(ty)) = P. Also there exists a corresponding sequemgcec [ with o, # 7,
such thaf(u(7,)) = I'(u(0,)). Choosing a subsequence if necessafy— s, mono-
tonically. Sinceu is a minimizer inC'M (((2,2))), the intervaldo,,, 7,,] must contain a
transition, and hence,, — 0,,| > Ty, > 0. Therefore,s, # to, and we will assume that
so < to (otherwise change labels). The homotopy typ& @f], ) is (2, 2)" for some
k > 1 (sincel is bounded).

Assume thatr,, and 7, are increasing; the other case is similar. Using the times
o < S0 < T, < to, the curvel', = T[uliy, 54044, fOr o sufficiently small, can be
decomposed &S, = a o0y 0y o0y obwhereb = I'(u|j,-50,1), V1 = L (U|j0p,50]), ¥ =
I(wis,m01)s Y2 = LUl t01), @Nda = I'(u|p,,40+91)- FOrn sufficiently large,y; and-,
have the same homotopy type, and+# ~,, since otherwise: would be periodic with
period smaller that, — o, < T'. We can now construct two more paths

I'N'=aovyoyovy0ob and 'y =aoypovyoyob

which have the same homotopy type fosufficiently large. Since/[T".] is minimal,

J[Iy] > JI.] andJ[I';] > J[I.], and thusJ[y;] > J[y,] and.J[y,] > J[y1] which
implies thatJ[y,] = J[v.]. ThereforeJ[I'.] = J[I'1] = J[I'9], andT'y, ', andT, are

all distinct minimizers with the same homotopy type and same boundary conditions.
Since these curves all coincide alongthe uniqueness of the initial value problem is
contradicted. An argument very similar to the one above is also used in thegdroof
Lemma 5.12 and demonstrated in Figure 5.1. ]

Lemma5.8 If r = (2,2)* with k& > 1, thenC' M, (r) = C M,e:((2,2)) and Jper(r) =
k- Tper((2,2)).

Proof. Let u € C' Mpe,(r) with r = (2,2)* for k > 1, and letT" be the period such
that the associated curve® I'(u|j ), has the homotopy class 6((2, 2)%). First we
will prove thatT'(u|;71) is @ simple closed curve i®, and hence, € M..((2,2)).
Suppose not, then by Lemma 5.7 the cul{e|; 1) can be fully decomposed into
distinct simple closed curves; for « = 1,...,k (just call the inner lood";, cut it
out, and call the new inner loop,, and so on). Denote by; the action associated
with loop I';, then>™. .J; = Jr[u]. Letv; € M, ((2,2)F) be the function obtained
by pasting togethek copies ofu restricted to the loof’;. If v; were a minimizer in
Myer((2,2)F), then by Lemma.2 the functions: andv; would be distinct solutions to
the differential equatiofil.2) which coincide over an interval. This would contradict the
uniqueness of solutions of the initial value problem, and hepenot a minimizer, i.e.
JT[UZ'] =k-J; > jper((Qaz)k)' Consequentlﬂper((zaQ)k) = Zz Ji > jper((Qaz)k)’
which is a contradiction. Thus € M,..((2,2)) andl'(u|j,77) is a simple loop traversed
k times.

Now we will show thatu € C'M,.((2,2)). Sincel'(u) is the projection of a func-
tion into the (u, u')—plane,u traverses the loop once over the inter{@I7’/k], and
Tper((2,2)%) = k - Jrsi[u]. Supposelr/x > Jper((2,2)). Then we can construct a
function in M,..((2, 2)*) with action less thatd[u] = J,.((2, 2)*) by gluing togethek:
copies of a minimizer inV/,,.,((2, 2)), which is a contradiction. ]
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Lemma 5.9 For anyk > 1, CMper((2,2)%) = C Mper((2,2)) = C Mper({(2, 2)))
(

Proof. We have already shown in Lemma 5.8 that/,..((2, 2)*) = CM,e.((2,2)).
We now first prove that’ M., ((2,2)) C C'M,e:({(2,2))). Letu € CM,e((2,2)) have
periodT". Suppose: ¢ C M, ({(2,2))). Then there exist two poini3(u(t,)) = P, and
['(u(ty)) = P, onT'(u) such that the curve betweenP; and P, obtained by following
['(u) is not minimal. Replacing by a curve with smaller action and the same homotopy
type yields a functiomw € M,.:({((2,2))) for which Jy, 1,1[v] < Jy, 4,)[u]. Choosek > 0
such thakT > t, —t,. Thenu is a minimizer inC'M,..((2,2)*) = C M, ((2,2)) which
IS a contradiction.

To finish the proof of the lemma we show thaf\/,..(((2,2))) C CMye((2,2)).
Let u € CMyer(((2,2))) have periodl’. LetT'(uljr) be the associated closed curve
in P and w its winding number with respect to the segmént Suppose/r[u] >
Toer((2,2)%) = w- Ther(2, 2). This implies the existence of a functiore M, ((2,2)%)
and a period’ such that/;[v] < Jr[u]. Choose atime, € [0,7] such thatu(ty) = 1
andu’(ty) > 0. Let P, = (1,4(t9)) € P. There exists @ > 0 sufficiently small such
thatu(ty £0) > 0, u'(ty +J) > 0, andu does not cross-1 in [ty — d,to + J] except at
to. Let P, and P, denote the point&u(t, F9), u'(ty F J)) respectively. Lety denote the
piece of the curvé&(u) from P; to P, and~* the curve tracind (u) backward in time
from P, to P;. Now choose a poinP; onT'(v) for whichv = 1 andv’ > 0. We can
easily construct cubic polynomiats andp, for which the curvd’(p;) connectsP,; to
P3 and the curvé’(p,) connectsP?; to P, in P. These curve§ (p;) are monotone func-
tions, and hence the lodp(p;) o I'(p,) o v* has trivial homotopy type ifP. Therefore
D (ulio,r7)" 0y ~ T(p2) o F(v|[oj,])’c oI'(p1) in P foranyk > 1, and from Definition 3.1
JID(ulo;m)* 0 4] < JIT(p2) 0 T(v]jy 77)* o T(py)]. Thus,

k- Jrlu] + J[y] < Jlpi] + Jpo] + K - Jz[v]
which implies
0 < k(Jrlu] = Jp[v]) < Jlpi] + J[po] = 1]
These estimates lead to a contradictioniaufficiently large. ]

Lemma 5.10 For any two distinct minimizers,; andu, in C' M, ((2,2)), the associ-
ated curved’(u;) do not intersect.

Proof. Supposd’(u;) andT'(u,) intersect at a poinP € P. Translate.; andu, so
thatT'(u1(0)) = T'(uz(0)) = P. Define the function: € M, ((2,2)?) as the periodic

extension of
u(t):{ul(t) fort € [0, T3],
ug(t —Ty) fort e [T, Th + 1o,
whereT; is the minimal period ofi;. ThenJr, 7, [u] = 2Jpe:((2,2)) = Jper((2,2)?).
By Lemmab5.8 we haveu € C' M, ((2,2)), which contradicts the fact that andu, are
distinct minimizers with(u,) # T'(us). ]

As a direct consequence of this lemma, the periodic orbitgjn((2, 2)) are ordered
in the sense thdt(u,) lies either strictly inside or outside the region enclosed'fy).
The ordering will be denoted by.
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Theorem 5.11 There exists a largest and a smallest periodic orbiCin/,,((2,2)) in
the sense of the above ordering, which we will denote, hy and u.,;, respectively.
Moreoverl < ||uminl|1.00 < [|[tmax|l1.00 < Co, @NA Uiy < u < umax fOr everyu €
C'M,e:((2,2)). In particular the setC M,..((2,2)) is compact.

Proof. Either the number of periodic minimizers is finite, in which case there
is nothing to prove, or the set of minimizers is infinite. Uét= (J{T'(u) | v €
CMper((2,2))} € P,and letA = U N {(u,v) | ' = 0,u > 0}. Every minimizer
in C'M,er((2,2)) intersects the positive-axis transversely exactly once. Moreover dis-
tinct minimizers cross this axis at distinct points by Lemma 5.10. Thus we ca# ase
an index set and label the minimizersiasfor o € A. Due to the a priori upper bound
on minimizers (Lemma 5.1 in [5])4 is a bounded set. The sdtis contained in the
u-axis and hence has an ordering induced by the real numbers. This order corresponds
to the order on minimizers, i.ex < gin A if and only if u, < ug as minimizers.

Supposey, is an accumulation point of. Then there exists a sequenggconverg-
ing to cv,. From Theorem 4.2 (the a priaki°-bound onu,,,, is sufficient by Remark 4.3)
we see that there exisisc C'M ({(2,2))) which is a solution to Equatiof1.2) such that
Uq, — uin CL.(R). Sinceu,, is periodic and the'l _—limit of a sequence of periodic
functions with uniformly bounded periods (compare with the proof of Theorem 4.2 to
find a uniform bound on the periods) is periodice C'M,.(((2,2))). By Lemma 5.9,
u € CM,e((2,2)). Furthermore: corresponds ta,,,, and hencel is compact.

Consequenthd contains maximal and minimal elements. kgt,. andu,,;, be the
periodic minimizers through the maximal and minimal pointsdofespectively. This
proves the theorem. []

The above lemmas characterize periodic minimizeSid({(2,2))). Now we turn
our attention to non-periodic minimizers. We conclude this subsection with a theore
that gives a complete description of the 66t/ (((2, 2))).

Letu € CM({(2,2))) be non-periodic. Suppose thats a self-intersection point of
['(u). Then there exist times < ¢, such thal(u(t,)) = I'(u(tz)) = P, andl (uly, 1)
is a closed loop. By Lemma 5.7 there are only finitely many self-intemgestn|, , ¢5).
Without loss of generality we may therefore assume thiata simple closed loop, i.e,
we need only consider the case whéte= I'(u(t1)) = I'(u(tz)) andT'(u|y, 4,)) iS @
simple closed loop. We now defifig, = T'(u|(, o)) @ndT— = T'(u](—cot,)). We will
refer tol' . as the forward and backward orbits:ofelative toP.

Lemma 5.12 Letu € C'M({(2,2))) be a non-periodic minimizer with at least one self-
intersection. Let” andI'. be defined as above. Then the forward and backward orbits
[y relative to P do not intersect themselves. FurthermafeandI'. are unique, and
the curvel'(u) passes through any point A at most twice.

Proof. We will prove the result fof", ; the argument fof"_ is similar. Suppose that
[, has self-intersections. Define

t. = min{t > t; | T'(u(t)) = T'(u(r)) for somer € (t1,1)}.
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The minimumt, is attained by Lemma 5.7, and > t, sincey = I'(u|y, ) iS @
simple closed loop. Let, € (#4,t.) be the point such thadt(u(ty)) = T'(u(t.)). This
point is unique by the definition of,, andy = T'(uly,..)) is @ simple closed loop.
For small positive) we defineQ = I'(u(t.)), B = T'(u(ti — 6)), E = T(u(t, + 6))
andT', = I'(u|y,—s:.44]), S€€ Figure 5.1. We can decompose this curve into five parts;
[, = 03090050700 Whereo, joins B to P, o, joins P to (), o3 joinsQ to E/, and~y
and~ are simple closed loops basedraand( respectively, see Figure 5.1. The simple
closed curves andy go aroundL exactly once and thus have the same homotopy type.
Moreover,y # 4 sinceu is hon-periodic.

Besided', we can construct two other distinct paths fréhio E:

['\ =03005070v00; and 'y =o0307507500y00;.

It is not difficult to see thal'y, I'; and I, all have the same homotopy type. Since
J[I'.] is minimal in the sense of Definition 3.1 we have, by the same reasoning as in
Lemma 5.7, that[I";] > J[I',] and.J[I'y] > J[I'.], which implies that/[§] > .J[y] and
J[y] > J[7]). HencelJ[y] = J[]. ThereforeJ[['1] = J[[';] = J[I'.] which implies
thatl';, I’y andT', are all distinct minimizers of the same type as curves joirfhtp
E. Since these curves all contain the pathso, andos, and are solutions to (1.2), the
uniqueness to the initial value problem is contradicted.

Finally, the curvd’(u) can pass through a point at most twice because it is a union of
', andT"_, each visiting a point at most once. Moreover, pointB(in|, +,)), common
to bothI", andT"_, are passed exactly once. It now follows that if there is another self-
intersection besideB, say atR = I'(u(s1)) = ['(u(s2)), thens; < ¢, andty < so. We
conclude that the curvB(u/|, ,,)) containsl'(u|y, ,,)) and therefore it is not a simple
closed curve. Thu® is a unique self-intersection that cuts off a simple loop. ]

Figure 5.1: The forward orbif , starting atP with a self-intersection at the poia}.
Lemma 5.12 implies that this cannot happen for non-periadicC' M ({((2, 2))).

Lemma 5.13 Letu € C'M({(2,2))) be non-periodic. Suppose thatc L>*(R). Then
u is a connecting orbit between two periodic minimizersu, € CM,.((2,2)), i.e.
there are sequences,t; — oo such thatu(t —¢,) — u_(¢) andu(t + ) — u (1)
in C . (R).

loc
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Proof. Lemma 5.12 implies thdt, is a spiral which intersects the positiveaxis at
a bounded, monotone sequence of pofnts 0) in P converging to a pointa., 0). Let
t, be the sequence of consecutive times suchufig) = «,,. Consider the sequence of
minimizers inC'M (((2, 2))) defined byu, (t) = u(t + t,). By Theorem 4.2 there exist
aCl ~limitu, € CM({(2,2))). If u, is periodic, there is nothing more to prove. Thus
suppose: ., is non-periodic. Then the cundg(u, ) crosses the—axis infinitely many
times. On the other hand, from tlig . convergencé'(u, ) crosses this axis only at,.
By Lemma 5.12]'(u, ) can intersecty, at most twice, which is a contradiction. The
C} —convergence follows from regularity (as in the proof of Theorem 4.2). The proof

loc

of the existence of,_ is similar. ]

Theorem 5.14 Letu € C'M({(2,2))). Eitheru is unboundedy is periodic andu €
CM,er((2,2)), or uis a connecting orbit between periodic minimizersin,.. ((2, 2)).

Proof. Letu € C'M(((2,2))) be bounded, then is either periodic or non-periodic.
In the case that is periodic it follows from Lemma 5.9 that € C'M,,..((2, 2)). Other-
wise if u is not periodic it follows from Lemma 5.13 thatis a connecting orbit between
two minimizersu_, u; € CMye((2,2)). N

In Section 6.2 we give analogues of the above theorems for arbitrary homotopytypes
Notice that the option of. € C'M (((2,2))) being unbounded in the above theorem
does not occur wheR'(u) ~ |ul®, s > 2 as|u| — oco.

6 Properties of minimizers

In Section 5, we proved the existence of minimizers4p..((2, 2)), which will provide

a priori bounds on the minimizers of arbitrary type. These bounds and Theorem 4.2
will establish the existence of such minimizers. In this section wealsb prove that
certain properties of a typgare often reflected in the associated minimizers. The most
important examples are the periodic types= (r). Although there are minimizers

in every classV/ ((r), p), it is not clear a priori that among these minimizers there are
also periodic minimizers. In order to prove existence of periodic miniraif@revery
periodic type(r) we use the theory of covering spaces.

6.1 Existence

The periodic minimizers of typg2, 2) are special for the following reason. For a normal-
izedu € M,er((2,2)), defineD(u) to be the closed disk iR? such tha®D(u) = I'(u).

Theorem 6.11) If w € CM((r),p) thenT'(u) C D(um,) for any periodic typgr) #
((2,2)). 1) If w e CM(g,p) thenT'(u) C D(um) for any terminated typg.

Proof. i) If (r) # ((2,2)) then everyu € CM({r),p) has the property thdt(u)
intersects thei-axis between: = +1. Suppose thdf (u) does not lie inSideD (up;y)-
Thenl'(u) must interseck (u.,i,) at least twice, and |g®?;, and P, be distinct intersection
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points with the property that the cur¥g obtained by followind () from P; to P, lies
entirely outside ofD(umin). LetTy C T'(umin) be the curve fronP; to P, following
umin, SUCh that’; andl", are homotopic (traversing the lodfu.,i,) as many times as
necessary) and thuBI';| = .J[I';] is minimal. Replacing’; by I's leads to a minimizer
in CM ({r),p) which partially agrees with.. This contradicts the uniqueness of the
initial value problem for (1.2).

ii) As in the previous case the associated cdrye) either intersects (u.,;,) at least
twice or lies completely insid® (u.,,), and the proof is identical. ]

Corollary 6.2 For all minimizers in the above theorefjy||1 « < ||umin||1,00 < Co.

In order to prove existence of minimizers in every class we now use the éhew-
rem in combination with an existence result from [5].

Theorem 6.3 For any given typez and parity p there exists a (bounded) minimizer
u € CM(g,p). Moreover||u||; » < Co, independent ofg, p).

Proof. Given a typeg we can construct a sequengg of terminated types such
thatg, — g asn — oo. For any terminated typg, there exists a minimizew, €
C'M (g, p) by Proposition 3.3 (Theorem 1.3 of [5]). Clearly such a sequepeatisfies
|lunlli,00 < C by Corollary 6.2. Applying Theorem 4.2 completes the proof. N

6.2 Covering spaces and the action of the fundamental group

The fundamental group @? is isomorphic to the free group on two generateysnd
e; which represent loops (traversed clockwise) arouhd) and(—1,0) respectively
with basepoint0, 0). Indeed,P is homotopic to a bouquet of two circlés = S; V S;.
The universal covering ok denoted byff can be represented by an infinite tree whose
edges cover eitheg ore; in X, see Figure 6.1. The universal coveringiotienoted by
@ : P — P can then be viewed by thickening the trEeso thatP is homeomorphic to
an open disk ifR2.

An important property of the universal covering is that the fundamental groUp)
induces a left group action oR in a natural way, via the lifting of paths iR to paths in
P. This action will be denoted by- p for § € m (P) andp € P. We will not reproduce
the construction of this action here, and the reader is referred to an intooglbctok
on algebraic topology such as [3]. However, we will utilize the structure ofjtiuient
spaces ofP obtained from this action, which are again covering®ofThese quotient
spaces will be the natural spaces in which to consider the lifts of clifu@swhich lie
in more complicated homotopy classes than those in the case ff .. ((2, 2)).

A periodic typeg = (r) is generated by a finite type which together with the parity
p determines an element of (P) of the formé(r) = e‘”" )|+ €p - Since we only
consider curves if? which are of the forni*(u) = (u(¢),u'(t)), the numbers; are all
positive. The infinite cyclic subgroup generated by any such eletherit be denoted
by (¢) c m(P). The quotient spac®, = P/ () is obtained by identifying points
andq in P for which g = 6* - p for somek € Z. The resulting spac®, is homotopic
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Figure 6.1: The universal covg}?r of X is a tree. lIts origin is denoted b§. For
6 = epereo, the quotient spac&’y, = X/ (#) is also a covering space ovéf, and
Xy ~ S

to an annulus, angy : Py > Pisa covering space. Figufel illustrates the situation
for X, since it is easier to draw, and f@r the reader should imagine that the edges in
the picture are thin strips. The lift of the path= eje, ¢y to X based at) is shown by
the dashed line. This piece of the tree becomes a circle in the quotientspabiote
that infinitely many edges irX' are identified with this circle. The dashed lines in both
X and X, are strong deformation retracts &f and X, respectively, and henc¥, is
homotopic to a circle. Thlckenlng’g gives thang is homotopic to an annulus. Thus
m1(Py) is a generated by a simple closed looPiwhich will be denoted by (r). Note
that for convenience we suppress the dependeng¢ad on the parityp.

Remark 6.4 If we define the shift operateron finite types to be a cyclic permutation,
then M, (r,p) = Mpe:(c*(r), 7%(p)) for all k € Z. Functions inM,,(r, p) have a
unique lift to simple closed curve iRy, 6 = 6(r). However, functions in the shifted
classMpe.(o*(r), 7%(p)) are not simple closed curves®y. In order for such functions
to be lifted to a unique simple closed curve we need to consider the coverirtg’lgdgac
wheref, = 0(c*(r), 7% (p)).

6.3 Characterization of minimizers of type(r)

In Section 5.2, we characterized minimizersGii/({(2,2))) by studying the proper-
ties of their projections int@. What was special about the typgs 2)* was that the
projected curves were a priori contained?n\ L, which is topologically an annulus.
The J-efficiency of minimizing curves restricts the possibilities for theilf &and mu-
tual intersections. In particular, we showed that all periodic minirsiaet' M/ (((2, 2)))
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project onto simple closed curvesi\ L and that no two such minimizing curves in-
tersect. These two properties, coupled with the simple topology of the annukesjalr
force the minimizing periodic curves to have a structure of a family of nestagle
loops.

Such a simple picture in the configuration plgheannot be expected for minimizers
inCM(((r),p)) withr # (2,2). The simple intersection properties (of Lemma 5.9 and
5.11) no longer hold; in fact, periodic minimizing curves must have self-inteosect
in P as do any curves i representing the homotopy class(¢f) , p). However, by
lifting minimizing curves into the annuluB,, we can remove exactly these necessary
self-intersections and put us in a position to emulate the discussion for the(2ypgs
More precisely, for a minimal typgr, p), anyu € M.((r, p)*) with periodT” such that
0~ (ulp,r7)] = (r,p)*, there are infinitely many lifts of the closed lodiu| 1) into
P,(r) (see above remark) but there is exactly one lift, denbig| o,r), thatis a closed
loop homotopic ta;*(r) in P,(r). We can repeat all of the arguments in Section 5 by
identifying intersections between the cuniggu|jo,11) in P,(r) instead of intersections
between the curves(u|p,) in P\ L. Of course, when gluing together pieces of curves,
the values of, andu' come from the projections intB. In particular, the arguments of
Lemma 5.9 show thdty(u|j,r) must be a simple loop tracédtimes, which leads to
the following:

Lemma 6.5 For any periodic typgr) and anyk > 1 it holds thatC' M. ((r,p)*) =
CMper(r: p) = CMper(<r> 7p)

The proof of the next theorem is a slight modification of Theorem 5.11.

Theorem 6.6 For any periodic typ€r) the setC' M, (r, p) is compact and totally or-
dered (inPy).

The following lemma is analogous to Lemma 5.13. Note however that by Theo-
rem 6.1 we do not need to assume that the minimizer is uniformly bounded.

Lemma 6.7 Letu € CM((r),p) for some periodic typér) # ((2,2)). Eitheru is pe-
riodic andu € C' M, (r, p), Or u is @ connecting orbit between two periodic minimizers
u_,uy € C'Mye(r,p),i.e. there are sequences, ¢ — oo suchthatu(t—t, ) — u_(t)
andu(t +t5) — uy(t)in Cp . (R).

Combining Theorem 6.3 and Lemma 6.7 we obtain the existence of periodic min-
imizers in every class with a periodic type (this result can also berwaan a way
analogous to Theorem 5.5).

Theorem 6.8 For any periodic typer) the set” M, (r, p) is nonempty.

The classification of functions by type has some properties in common with symbolic
dynamics. For example, if a tyggis asymptotic to two different periodic types, i.e.
o"(g) —» ry ando "(g) — r_ asn — oo, with r, # r_, then any minimizer €
CM (g, p) is a connecting orbit between two periodic minimizerse C'Mex(._ p) and
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uy € CMper(ry, p), i.€. there exist sequences ¢ — oo such thatu(t —¢, ) — u_(t)
andu(t+t) — uy (¢) in CL_(R). This result follows from Cantor’s diagonal argument

using Theorems 4.2 and 6.7, and hence we have used the symbol sequences to conclude
the existence of heteroclinic and homoclinic orbits connecting any two types of periodi
orbits.

Symmetry properties of typgsare also often reflected in the corresponding mini-
mizers. For example, define the mé@p on infinite types by, (g) = (g2i,—i)icz, and
consider types that satisty; (g) = g for somei,. Moreover assume thgtis periodic.

In this case we can prove that the corresponding periodic minimizers are syoanel

satisfy Neumann boundary conditions.

Theorem 6.9 Let g = (r) satisfy¥; ({r)) = (r) for somei,. Then for anyu €
C M, (r, p) there exists a shift such thatu, (z) = u(x — 7) satisfies

) ur(z) = u, (T — z) forall x € [0, T] whereT is the period of,

i) u.(0) = u(0) =0andu, (T) =u(T) =0, and

iii) u, is a local minimizer for the functionalr[u] on the Sobolev spadg?2(0,7T) =
{uw € H*(0,T) | v'(0) = u'(T) = 0}.

Proof. Without loss of generality we may assume that= 1 and thatg =
((g1,...,9n)) for someN € 2N. We can choose a poirig in the convex hull of
Ay such thatu'(tg) = u'(to + T) = 0 andg(u|y0+11) = (91/2,92,---, 98, 91/2).
We now definev(t) = u(to + T — t). Then by the symmetry assumptions gn
we have thaig(v|i,i111) = &(Uliigse+1). SINCE Jig 10411(v) = Jjtg 1017 (u) @nd
C(u(ty)) = C(u(to+T)) =T (v(ty)) = ['(v(ty+T)), we conclude from the uniqueness
of the initial value problem that(t) = wv(t) for all ¢t € [to, o + T], which proves the
first statement. The second statement follows immediately fyorfihe third property
follows from the definition of minimizer. []
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