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Abstract: We investigate periodic and chaotic solutions of Hamiltonian systei$ in
which arise in the study of stationary solutions of a class of bistable evolution equations.
Under very mild hypotheses, variational technigues are used to show that, in the presence
of two saddle-focus equilibria, minimizing solutions respect the topology of the config-
uration plane punctured at these points. By considering curves in appropriate covering
spaces of this doubly punctured plane, we prove that minimizers of every homotopy type
exist and characterize their topological properties.

1. Introduction

This work is a continuation of [7] where we developed a constrained minimization
method to study heteroclinic and homoclinic local minimizers of the action functional

_ . /o _ Z "2 é 12
J][u]—/;](u,u,u )dz_/l[zm 2+ S| —i—F(u)]dt, (1.1)

which are solutions of the equation
yu"" — Bu” + F'(u) =0 (1.2)

with y, 8 > 0. This equation with a double-well potential has been proposed in
connection with certain models of phase transitions. For brevity we will omit a detailed
background of this problem and refer only to those sources required in the proofs of the
results. A more extensive history and reference list are provided in [7], to which we refer
the interested reader.
The above equation is Hamiltonian with
p

H=—yu"u + g|u"|2 + E|u’|2 — F). (1.3)
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The configuration space of the system is tiagu’)-plane, and solutions t..2) can be
represented as curves in this plane. Initially these curves do not appear to be restricted in
any way. However, the central idea presented here is that, (hErD) are saddle-foci,

the minimizers of/ respect the topology of this plane punctured at these two points,
which allows for a rich set of minimizers to exist. Using the topology of the doubly-
punctured plane and its covering spaces, we describe the structure of all possible types
of minimizers, including those which are periodic and chaotic. Since the action of the
minimizers of these latter types is infinite, a different notion of minimizer is required that

is reminiscent of the minimizing (Class A) geodesics of Morse [11]. Such minimizers
have been intensively studied in the context of geodesic flows on compact manifolds or
the Aubry—Mather theory (see e.g. [1] for an introduction). A crucial difference is that
we are dealing with a non-mechanical system on a non-compact space. Nevertheless,
we are able to emulate many of Morse’s original arguments about how the minimizers
can intersect with themselves and each other. For a precise statement of the main results
we refer to Theorem 3.2 and Theorem 5.8. For related work on mechanical Hamiltonian
systems we refer to [2,12] and the references therein.

Anotherimportant aspect of the techniques employed here and in [7] is the mildness of
the hypotheses. In particular, our approach requires no transversality or non-degeneracy
conditions, such as those found in other variational methods and dynamical systems
theory, see [7]. Specifically, we will assume the following hypothesig'on

(H): F € C?2(R), F(£1) = F/(£1) =0, F”(£1) > 0,and F(u) > O for u # +1.
Moreover there are constants ¢1 and ¢ such that F(u) > —c1 + cou?.

We will also assume for simplicity of the formulation th&tis even, but many analo-
gous results will hold for nonsymmetric potentials, cf. [7]. Finally, we assume that the
parameters andp are such that = +1 are saddle-foci, i.e.)4/8% > 1/F"(+1). An
example of a nonlinearity satisfying these conditiong'{g) = (1% — 1)%/4, in which
case (1.2) is the stationary version of the so-called extended Fisher—Kolmogorov (EFK)
equation.

In [7] we classify heteroclinic and homoclinic minimizers.bby a finite sequence
of even integers which represent the number of times a minimizer crassest1.
In order to classify more general minimizers we must consider infinite and bi-infinite
sequences, as we now describe.

A functionu : R — R can be represented as a curve in thgu')—plane, and the
associated curve will be denotedby:). Removing the equilibrium pointa:1, 0) from
the (u, u")—plane (the configuration space) creates a space with nontrivial topology,
denoted byP = R2\{(+1, 0)}. In P we can represent functions which have the
property that’ # 0 whenu = +1, and various equivalence classes of curves can
be distinguished. For example, in [7] we considered classes of curves that terminate at
the equilibrium pointg+1, 0). Another important class consists of closed curveB,in
which represent periodic functions. We now give a systematic description of all classes
to be considered.

Definition 1.1. Atypeisasequenceg = (g;);ez With g; € 2N U {oo}, where oo actsas
a terminator. To be precise, g satisfies one of the following conditions:

i) Z=17,andg e 2N? isreferred to as a bi-infinite type.

i) Z={0}UN,andg = (o0, g1, g2, ...) Withg; € 2Nforalli > 1,or Z = —NU {0},
andg=(...,g-2,8-1,00) Withg; € 2Nfor all i < —1. Inthesecasesgisreferred
to asa semi-terminated type.
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i) Z=1{0,...,N+ 1} withN >0,andg = (o0, g1, ..., gn, 00) With g; € 2N. In
this case g isreferred to asa terminated type.

These types will define function classes using the vegtorcount the crossings of
u at the levels: = £1. Since there are two equilibrium points, we introduce the notion
of parity denoted byp, which will be equal to either O or 1.

Definition 1.2. Afunctionu € ngc(IRi) isintheclass M (g, p) if there are nonempty sets
{A;}iez such that

) ut&ED = Uz As

i) #A; = g; fori € Z,

iii) max A; <min A;41,

V) u(A;) = (=1)*P+1 and

V) ez Ai consists of transverse crossings of £1, i.e., u’(x) # 0 for x € A;.

Note that by Definition 1.1, a functiom in any classM (g, p) has infinitely many
crossings of+1. Definition 1.2 is similar to the definition of the clag$(g) in [7]
except that here it is assumed that all crossingsbére transverse. Only finitely many
crossings are assumed to be transverse in [7] so that the cldgggsvould be open
subsets of + H2(R). Since we will not directly minimize ove¥ (g, p), we now require
transversality of all crossings efl to guarantee thdt(u) € P. However, note that the
minimizers found in [7] are indeed contained in clask&s, p) as defined above, where
the typegy are terminated.

The classesV{ (g, p) are nonempty for all pairgg, p). Conversely, any function
u € H%C(R) is contained in the closure of some claggg, p) with respect to the
complete metric orH,%C(]R) given by p(u,v) = ), 27 min{1, |lu — vllg2i s cf.
[13]. That is, if we defineM (g, p) := {u € H3,(R) | Ju, € M(g,p), with u, — u
in HZ.(R)}, then H2 (R) = Ug,pM (g, p). Note that the functions iaM (g, p) :=
M(g, p) \int(M(g, p)) have tangencies at= 41 and thus are limit points of more than
one class. In the case of an infinite type, shiftgaan give rise to the same function
class. Therefore certain infinite types need to be identifiedr lbetthe shift map defined
byo(g); = gi+1andthemap : {0, 1} — {0, 1} be defined by (p) = (p+1)mod 2=
|p —1|. Two infinite typegg, p) and(d/, p’) are equivalenti§’ = o"(g) andp’ = " (p)
for somen € Z, and this impliesM (g, p) = M(g/, p’). A bi-infinite typeg is periodic
if there exists an integer such thav" (g) = g.

When the domain of integration i, the action/[u] given in (1.1) is well-defined
only for terminated typeg andu € M(g, p) N {xp + H(R)}, wherex,, is a smooth

function from(—1)P*1 to (—1)P. For semi-terminated types or infinite types the action

J is infinite for everyu € M(g, p). In Sect. 2, we will define an alternative notion

of minimizer in order to overcome this difficulty. The primary goal of this paper is to
prove the following theorem, but we also prove additional results about the structure and
relationships between various types of minimizers.

Theorem 1.3. If F satisfies Hypothesis (H) and is even, then for any type g and parity
p there existsa minimizer of J in M(g, p) in the sense of Definition 2.1. Moreover, if g
is periodic, then there exists a periodic minimizer in M (g, p).

In Sects. 5 and 6 we show that other properties of the symbol sequences, such as sym-
metry, are reflected in the corresponding minimizers. The classification of minimizers by
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symbol sequences has other properties in common with symbolic dynamics; for exam-
ple, if a type is asymptotically periodic in both directions, then there exists a minimizer
of that type which is a heteroclinic connection between two periodic minimizers.

The minimizers discussed here all lie in the 3-dimensional “energy-maniléo=
{u,u',u”, u") | H{(u,u',u”,u"”) = 0}. Exploiting certain properties of minimizers
that are established in this paper, we can deduce various linking and knotting character-
istics when they are represented as smooth curvaifg,5]. The minimizers found
in this paper are also used in [16] to construct stable patterns for the evolutionary EFK
equation on a bounded interval, and the dynamics of the evolutionary EFK is discussed
in [9].

Some notation used in this paper was previously introduced in [7]. While we have
attempted to present a self-contained analysis, we have avoided reproducing details
(particularly in Sect. 5.1) which are not central to the ideas presented here, and which
are thoroughly explained in [7].

2. Definition of Minimizer

For every compact intervdl C R the restricted actiod; is well-defined for all types.

When we restrick to an intervall, we can define itb/pe and parity relativeto I, which

we denote by(g(u|;), p(x|;)). Namely, letu € M(g, p). It is clear that(u, u’)|3; &

(£1, 0) for any bounded interval. Theng(u|;) is defined to be the finite-dimensional
vector which counts the consecutive instances|pf= +1, andp(«|;) is defined such

that the firsttime|; = +1 in I happens at—1)P*1. Note that the componentsgfu|;)

are not necessarily all even, since the first and the last entries may be odd. We are now
ready to state the definition of a (global) minimizerd(g, p).

Definition 2.1. A function u € M (g, p) is called a minimizer for J over M(g, p) if
and only if for every compact interval I the number J;[u|;] minimizes J;/[v|;/] over all
functions v € M(g, p) and all compact intervals I’ such that (v, v")|5; = (u, u')|;
and (g(vly), p(vl;)) = (Qulr), p(ulr)).

The pair(g(u|;), p(u|;)) defines a homotopy class of curvesTnwith fixed end
points (u, u")|3;. The above definition says that a functienrepresented as a curve
I'(u) in P, is a minimizer if and only if for any two point®; and P, on I"(«), the
segmentl"(Py, P2) C I'(u) connectingP; and P, is the most/-efficient among all
connectiond (P, P>) betweenP; and P, that are induced by a functianand are of
the same homotopy type &%P1, P,), regardless of the length of the interval needed to
parametrize the cunié(P1, P»). As we mentioned in the introduction, this is analogous
to the length minimizing geodesics of Morse and Hedlund and the minimizers in the
Aubry—Mather theory. The set of all (global) minimizersiif(g, p) will be denoted by
CM(9, p).

Lemma2.2. Letu € M(g, p) beaminimizer, thenu € C*(R) and u satisfies Eq. (1.2).
Moreover, u satisfiestherelation H (u, u’, u”, u”") = 0, i.e. the associated orbit lies on
the energy level H = 0.

Proof. From the definition ofM (g, p), on any bounded interval c R there exists
eo(I) > O sufficiently small such that + ¢ € M(g,p) for all ¢ € Hg(l), with

léll 2 < € < eo. Thereforel;[u + ¢] > J;[u] for all such functiongp, which implies
thatd J;[u] = O for any bounded intervdl C R, and thus: satisfies (1.2).
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To prove the second statement we argue as follows. @ircé/ (g, p), there exists a
bounded interval such that’|;; = 0. Introducing the rescaled variable= ¢/ T with
T = |I| andv(s) = u(z), we have

ira 1
Jilu] = J[T, v] 5/0 [ﬁg V1% + 7§|v/|2 + TF(v)] ds, (2.1)

which decouples: and T. Sinceu’|y; = 0 we see from Definition 2.1 that[T +
€,v] > Jrlu] = J[T, v]. The smoothness of in the variableT > 0 implies that

L J[x, v]’r =0 Differentiating yields

2
T3
= 1—1/0 |:—§y|u"|2 - §|u’|2 + F(u)i| dt

T
= —tfl/ Hu,u',u”, u")dt = —E.
0

3 1 3
—J[z, v] =f —1_4—y|v”|2—r_z'Blv'|2—|—F(v) ds
at 0 2

ThusE = 0, andH (u, u’, u”, u"") = 0 fort € I. Thisimmediately implies thati = 0
forallr e R. O

The minimizers forJ found in [7] also satisfy Definition 2.1, and we restate one of the
main results of [7].

Proposition 2.3. Suppose F iseven and satisfies(H), and 8, y > 0 are chosen such that
u = +1 are saddle-focus equilibria. Then for any terminated type g with parity either O
or 1thereexistsaminimizer u € M(g, p) of J.

From Definition 1.2, the crossings ofe M (g, p) with £1 are transverse and hence
isolated. We adapt from [7], the notion of a normalized function with a few minor changes
to reflect the fact that we now require every crossing-a@fto be transverse.

Definition 2.4. A function u € M (g, p) is normalized if, between each pair u(a) and
u(b) of consecutive crossings of 41, the restriction u|, ) is €ither monotone or i, »)
has exactly one local extremum.

Clearly, the case of|, ) being monotone can occur only between two crossings at
different levelst1, in which case we say thathas atransition on[a, b].

Lemma25. If u € CM(g, p), then u isnormalized.

Proof. Sinceu € M(g, p), all crossings oft = 41 are transverse, i.. # 0. Thus for
any critical pointrg € R, u(tp) # +1, and the Hamiltonian relation from Lemma 2.2
and (1.3) implies thayu” (t0)%/2 = F(u(to)) > 0. Thereforex is a Morse function,
and between any two consecutive crossings-bfthere are only finitely many critical
points. Now on any interval between consecutive crossings whiraot normalized,
the clipping lemmas of Sect. 3 in [7] can be applied to obtain a niegéficient function,
which contradicts the fact thatis a minimizer. o
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3. Minimizersof Arbitrary Type

In this section we will introduce a notion of convergence of types which will be used in
Sect. 5.2 to establish the existence of minimizers in every ai&gs p) by building on
the results proved in [7].

Definition 3.1. Consider a sequence of types (9", p") = ((gM)ies,. P") and a type
g9.p) = ((g,-)iel, p). The sequence (g", p"*) limits to the type (g, p) if and only if
there exist numbers N,, € 27 such that gfl+1vn+pn—p — g foralielasn — oco.\We
will abuse notation and write (", p*) — (g, p)-

We should point out that a sequence of types can limit to more than one type. For
example the sequencg”, 0) = ((00,2,2,n,4,4,4,4,n,2,2,2,...),0) limits to the
types((co, 2, 2, 00), 0), ((00, 4,4, 4,4, 00), 1) and((c0, 2,2,2,...),0).

Theorem 3.2. Let (9", p") — (9,p) and u, € CM(Q", p") with |lu,ll1.00 < C for
all n. Then there exists a subsequence u,,, such that u,, — @ € M(g,p) in Cf(‘)c(R),
and  isa minimizer in the sense of Definition 2.1, i.e.w € CM (g, p).

Proof. This proof requires arguments developed in [7] to which the reader is referred
for certain details. The idea is to take the limitf restricted to bounded intervals.
We define the numberd,, as in Definition 3.1, and we denote the convex hull4gf

by I, = conv(4;). Due to translation invariance we can pin the functiapsso that
u,(0) = (=1)P*L which is the beginning of the transition betweé}t;!ﬁpnfp and
If+1v,,+pn_p- Due to the assumed a priori bound and interpolation estimates which can
be found in the appendix to [10], there is enough regularity to yield a limit fungtion

as aCl‘(‘)C—Iimit of u,, after perhaps passing to a subsequence. Moréosatisfies the
differential equation (1.2) oR. The question that remains is whetliee M(g, p).

To simplify notation we will now assume thaf, = 0 andp” = p = 0. Fixing
asmalls > 0, we definel/"(§) O I as the smallest interval containiri§ such that
ulgprsy = (=D — (=115 (if gis a (semi-)terminated type thelff (5) may be
a half-line). The interval of transition betweéfi(s) and /;"_,(8) is denoted byL} (5).

To see thafi € M(g, p), one has to to eliminate the two possibilities that a priori may
lead to the loss or creation of crossings in the limit so that M (g, p): the distance
between two consecutive crossings:jncould grow without bound ai could possess
tangencies ai = +1.

Due to the a priori estimates #%° we have the following bounds aft

Jlunlpnl = C and Jlunlpn@] < c, (3.1)

whereC andC’ are independent of andi. Indeed, note that fot large enough the
homotopy type ofi, on the intervald; () is constant by the definition of convergence
of types. Since the functions, are minimizers/[u, |1,-”(5>] is less than the action of any

test function of this homotopy type satisfying the a priori bounds andu’ on a1/ (8)
(see [7, Sect. 6] for a similar test function argument). The estifigtes)| < C(5)
is immediately clear from Lemma 5.1 of [7]. We now need to show that the distance
between two crossings ¢f-1)+1 within the intervall’ (§) cannot tend to infinity.

First we will deal with the case wheyf is finite for alln. Suppose that the distance
between consecutive crossings(efl)'*1 in 1/'(8) tends to infinity as: — oo. Due
to Inequality (3.1) and Lemma 2.5, minimizers have exactly one extremum between
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crossings of(—1)!*1 for anye > 0, and hence there exist subintervils c 17'(8)
with |K,| — oo, such that O< |u,, — (—1)%"| < ¢ on K,,, whereg, € {0, 1}, and
lu'lak,| < €. Taking a subsequence we may assumegha constant.

We begin by considering the case whegre= i + 1. Now e can be chosen small
enough, so that the local theory in [7] is applicabl&in If | K, | becomes too large then
u, can be replaced by a function with lower action and with many crossings®f 1.
Subsequently, redundant crossings can be clipped out, thereby lowering the action. This
implies thatu,, is not a minimizer in the sense of Definition 2.1, a contradiction.

The case wherg,, = i must be dealt with in a different manner. First, there are
unique points,, € K, such that,(z,) = 0, and for these points, (,) — (=1 as
|K,| — oo. Letu,(s,) be the first crossing of—1)*1 to the left of K,,. Taking the
limit (along subsequences) @f (r — s,,) we obtain a limit functior which is a solution
of (1.2). If |1, — s,| is bounded theil has a tangency te = (—1)' at somer, € R. All
uy lie in {H = 0} (see (1.3)) and so do&$ henceu” (r,) = 0. Moreoveru” (t,) = O,
becauseéi(z,) is an extremum. By uniqueness of the initial value problem this implies
thati = (—1)!, contradicting the fact thak0) = (—1)"*1. If |1, — s,] — o0, theni
is a monotone function off), co), tending to(—1)’ asx — oo, and its derivatives tend
to zero (see Lemma 3 in [14] or Lemma 1, Part (ii) in [10] for details). This contradicts
the saddle-focus nature of the equilibrium point.

In the case that! = oo we remark that (3.1) also holds whéfi is a half-line.

It follows from the estimates in Lemma 5.1 in [7] that — (=it asx — oo or

x — —oo (whichever is applicable). From the local theory in Sect. 4 of [7] and the fact
thatu, is a minimizer, it follows that the derivatives af, tend to zero. The analysis
above concerning the intervatg, and the clipping of redundant oscillations now goes
on unchanged.

We have shown that the distance between two crossing4 &f bounded from above.
Next we have to show that the limit function has only transverse crossing4.ofhis
ensures that no crossings are lost in the limii lere tangent tg—1)/ 1 in I;, then
we could construct a function in € M (g, p) in the same way as demonstrated in [7]
by replacing tangent pieces by mafeefficient local minimizers and by clipping. The
functionv still has a lower action thai on a slightly larger interval (the limit function
u also obeys (3.1), so that the above clipping arguments still apply). Sjnee « in
C,‘(‘)c it follows that J;[u,] — J;[u] on bounded intervals. This then implies that fot
large enough the functiam, is not a minimizer in the sense of Definition 2.1, which is
a contradiction.

The limit functionz could also be tangent {e-1)' for somerg € I;. As before, such
tangencies satisfy(rg) — (—1)' = W (t9) = u”’(t9) = w"(t9) = 0, which leads to a
contradiction of the uniqueness of the initial value problem.

Finally, crossings oft = £1 cannot accumulate since this would imply that at the
accumulation point all derivatives would be zero, leading to the same contradiction as
above. In particular, ig — oo for somei, then|/'| — oo and the crossings iA”;
for j > i move off to infinity and do not show i, which is compatabile with the
convergence of types.

We have now proved that € M (g, p) and, sincér is theCl‘(‘Jc—Iimit of minimizers,

u is also a minimizer in the sense of Definition 2.10

Remark 3.3. It follows from the estimates in Theorem 3 of [10] that in the theorem above
we in fact only need ah.°°-bound on the sequenag.
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Remark 3.4. It follows from the proof of Theorem 3.2 that there exists a consigit 0

such that for all uniformly bounded minimizets$r) it holds thatju(r) — (—1)*P| > §
forall ¢+ € I; and alli € Z. This means that the uniform separation property discussed
in [7] is uniformly satisfied by all minimizers.

4, Periodic Minimizers

A bi-infinite type g is periodic if there exists an integer such thato”(g) = g. The
(natural) definition of the period afis min{n € 2N |o"(g) = g}. We willwriteg = (r),
wherer = (g1, ..., g») andn is even. Cyclic permutations ofwith possibly a flip of
p give rise to the same function cla&&((r), p). In reference to the typg&) with parity

p we will use the notatiorir, p). Any such type pairr, p) can formally be associated
with a homotopy class in1 (P, 0) in the following way. Leteg andes be the clockwise
oriented circles of radius one centered(ht0) and (—1, 0) respectively, so thdieg]

and[e1] are generators fat1 (P, 0). Definingd(r, p) = 3271/(,23) e e,ﬁl/z, the map

0 : U=12N% x {0,1} — m1(P,0) is an injection, and we define; (P, 0) to be
the image of9 in m1(P, 0). Powers of a type paifr, p)* for k > 1 are defined by
concatenation af with itself k times, which is equivalent ta, p)* = 6-1((@(r, p)~).

Definition 4.1. Twopairs(r, p) and (f, p) areequivalent if therearenumbers p, g € N
such that (r, p)? = (F, )¢ up to cyclic permutations. Thisrelation, (r, p) ~ (F, D), is
an equivalence relation.

Example. If (r, p) = ((2,4,2,4),0)and([, P) = ((4,2,4,2,4,2), 1),themd(r, p)° =
6(F, P)2. The equivalence class af, p) is denoted byr, p]. A type (r, p) is a minimal
representative fdr, p] if foreach(t, p) € [r, p]thereisk > 1 suchthatf, p) = (r, p)*
up to cyclic permutations. A minimal representative is unique up to cyclic permutations.
It is clear that in the representation of a periodic tgpe (r), the typer is minimal if
the length ofr is the minimal period. Due to the above equivalences we now have that

M(r),p) = M), D), ¥V T.P)elr,pl

It is not a priori clear that minimizers id ({r), p) are periodic. However, we will see
that among these minimizers, periodic minimizers can always be found.
For a given periodic typg ) we consider the subset of periodic functionsdi(r ), p),

Mper((r), p) = {u € M((r), p) | u is periodig.

For anyu € Mpe({r), p) and a periodl’ of u, I'(u|j0,7) is a closed loop ifP whose
homotopy type corresponds to a nontrivial elementptP, 0). In this correspondence
there is no natural choice of a basepoint. For specificity, we will describe how to make
the correspondence with the origin as the basepoint and thereafter omit it from the
notation. Translate: so thatu(0) = 0. Lety : [0,1] — P be the line fromO to
(0,u'(0)), and lety*(r) = y(1 —1). ThenT (uljo,r)) = ¥* o T'(uljo,7)) © ¥, and
[T(ulo.r))] € 71 (P, 0). Now define[T"(uljo,71)] = [T (uljo,71)]. Thus there exists a
paird =T (uljo,r))] = @, P) € [r, pl, with T = r* for somek > 1. Therefore we define
forany(r,p) € [r, pl,

Mper(, D) = {u € Mper((r), p) | [[(uljo,r7)] ~ 6T, D) € m1(P) for a periodT of u}.
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The typef = g(uli0,77), With g = (r), is the homotopy type af relative to a period
T. This type has an even number of entries. It follows thgkr(r, p) C Mper(T, P)
for all 7, P) = (r, p)*, k > 1. FurthermoreéMpe((r) , P) = U pyeir.p)Mper, P). In
order to get a better understanding of periodic minimize®ir ), p) we consider the
following minimization problem:

Tperr,p) = inf  Jr[ul= inf  Jr[u], (4.1)
u€Mper(r,p) Mer(r.p)
TeRt

whereJr is action given in (1.1) integrated over one period of IerigtlamdeTer(r, p)

is the set off' -periodic functions: € Mpe((r, p) for which g(u|io,77) = r. Note thatT

is not necessarily the minimal period, unless a minimal representative for]. It is

clear that fory, 8 > 0 the infimaJper(r, p) are well-defined and are nonnegative for
any homotopy type. At this point it is not clear, however, that the infinge(r, p) are
attained for all homotopy types We will prove in Sect. 5 that existence of minimizers
for (4.1) can be obtained using the existence of homoclinic and heteroclinic minimizers
already established in [7].

Lemma4.2. If Jper(r, p) is attained for some u € Mpel(r, p), then u € C4(R) and
satisfies(1.2). Moreover, sinceu isminimal withrespectto T wehave H (u, u’, u”, u’"") =
0, i.e. the associated periodic orhit liesin the energy surface H = 0.

Proof. SinceJper(r, p) is attained by some € Mpe(r, p) for some period”, we have
thatJr[u + ¢] — Jr[u] > Oforallg € H2(S, T) with ||$]| 52 < €, sufficiently small.
This implies thatl J7[u] = 0, and thus: satisfies (1.2). The second part of this proof is
analogous to the proof of Lemma 2.20

We now introduce the following notation:

CM((r),p) ={u e M(r),p) | uisaminimizer according to Definition. 2},
CMper((r),p) = {u € CM((r), p) | u is periodid,
C Mper(r, p) = {u € Mper(r, p) | u is a minimizer forJper(r, p)}.

4.1. Existenceof periodicminimizersoftyper = (2, 2). Ifwe seek periodic minimizers
of typer = (2, 2)%, the uniform separation property for minimizing sequences (see
Sect. 5in [7]) is satisfied in the clad#ye(r). Note that the parity is omitted because it
does not distinguish different homotopy types here. The uniform separation property as
defined in [7] prevents minimizing sequences from crossing the boundary of the given
homotopy class. For any other periodic type the uniform separation property is not a
priori satisfied. For the sake of simplicity we begin with periodic minimizers of type
(2, 2) and minimizeJ in the classMper((2, 2)).

Minimizing sequences can be chosen to be normalized due to the following lemma,
which we state without proof. The proof is analogous to Lemma 3.5 in [7].

Lemma4.3. Let u € Mpe((2,2)) and T be a period of u. Then for every ¢ > 0
there exists a normalized function w € Mper((2, 2)) with period 7/ < T such that
Jrlw] < Jrlu] + €.



582 W.D. Kalies, J. Kwapisz, J.B. VandenBerg, R.C.A.M. Vander\Vorst

The goal of this subsection is to prove that whersatisfies (H) ang, y > 0 are
such thatt = £1 are saddle-foci, theflper((2, 2)) is attained, by Theorem 4.5 below.
The proof relies on the local structure of the saddle-focus equilibria +1 and is
a modification of arguments in [7]; hence we will provide only a brief argument. The
reader is referred to [7] for further details.

In preparation for the proof of Theorem 4.5, we fix > 0,¢9 > 0, and§ >
0 so that the conclusion of Theorem 4.2 of [7] holds, i.e. the characterization of the
oscillatory behavior of solutions near the saddle-focus equilibbria +1 holds. Let
u e MTer((Z 2)) be normalized, and leg be such that:(zg) = 0. Thenrg is part of a
transmon froms1 to+1. Assume without loss of generality that this transition is from
—1tol.Defing_ =supr < fo: |u(t)+1] < §}andry =inf{t > to: |u(®)—1| < §}.
ThenletS(w) = {¢ : |u(t)£1| < 8}andB[u, T] = |S(u) N[ty,— + T]|, and note that
[to, to + T1 = {S@) N [t3,t— + T1} U {S)° N [to, 1o + T1}. With these definitions
we can establish the following estimate (cf. Lemma 5.4 in [7]). For @l Mper((2, 2))
with Jr[u] < Tper((2, 2)) + €0,

i,z < CA+ Tper(2. 2)) + Blu, T1). (4.2)

First,[lu’[12,, < C(Jper((2. 2))+€0), and second ifu1| > 8, thenF (u) > n?u?, which
implies that|ju|?, < 1/5 ’0” Fw)dt + (1 + 8)?2B[u, T] < C(Jr(ul + Blu, TY).
Combining these two estlmates proves (4.2).

For functionsu € Mje((2,2)) that satisfyJr[u] < Jper((2,2) + 1, it follows
from Lemma 5.1 of [7] that there exist (uniform i) constantsZy and 7> such that
T> > |Sw)“ N [to, 10+ T1| = T1 > 0 and thusT’ > Tjy. The next step is to give an a
priori upper bound of" by considering the minimization problem (cf. Sect. 5in [7])

=inf{Bu,T]|ue Mper((2, 2)) normalized T € RT,
andJr[u] < Jpe((2, 2)) + €}.

Lemma4.4. There exists a constant K = K(tg) > O suchthat B, < K for all 0 <
€ < €o. Moreover, if To = K + T», then for any 0 < € < ¢g, thereis a normalized
u € Me(2,2)) with Jr[u] < Jper((2,2)) +2¢ and Ty < T < To.

Proof. Let(u,,T,) € Mper((Z 2)) x R be a minimizing sequence f&, with normal-
ized functionst,,. Asin the proof of Theorem 5.5 of [ 7], in the weak limit this yields a pair
(, T) such thatB[, T] < B.. We now definek ((2, 2), 7o) = 8((2t0 + 2) + 2). This
gives two possibilities foB [, T] eitherB[u, T] > K orB[u T] < K. Ifthe formeris
true then we can construct (see Theorem 5.5 of [7]) a(p)atf ) € M r((2 2)) x RT,
with v normalized, such that

J7 0] < J7li) < Jpel(2,2)) +¢ and B[, T'] < Bla, T < Be,

which is a contradiction excluding the first pOSSIbIlIty In the second case, where
Blu, T] < K, we can construct a paib, T’ ) with v normalized such that

J7 0] < J7lid] 4 € < Jper((2,2) + 26, and B[v,T'] < Blu, T1 < K,

which implies that;, < 7’ < T < K + T» = Tp and concludes the proof. For details
concerning these constructions, see Theorem 5.5 in [i].
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Theorem 4.5. Suppose that F satisfies (H) and 8, y > 0 are such that u = +1 are
saddle-foci, then Jper((2, 2)%) isattained for any k > 1. Moreover, the projection of any
minimizer in C Mper((2, 2)) onto the (u, u’)—planeis a simple closed curve.

Proof. By Lemma 4.4, we can choose a minimizing sequengeT;,) € MpTg,((Z, 2)) x
R, with u,, normalized and with the additional properties that| ;2 < C andTy <
T, < To. Since the uniform separation property is satisfied for the {2p2) this leads
to a minimizing pairz, T) for (4.1) by following the proof of Theorem 2.2 in [7]. As for
the existence of periodic minimizers of type= (2, 2) the uniform separation property
is automatically satisfied and the above steps are identical.
Lemma 2.5 yields that minimizers are normalized functions and the projection of a
normalized function iMMper((2, 2)) is a simple closed curve in the, u’)—plane. O

We would like to have the same theorem for arbitrary periodic typesor homotopy
types that satisfy the uniform separation property the analogue of Theorem 4.5 can be
proved. However, in Sect. 5 we will prove a more general result using the information
about the minimizers with terminated types (homoclinic and heteroclinic minimizers)
which was obtained in [7].

Remark 4.6. The existence of &, 2)-type minimizer is proved here in order to obtain a
priori Wl -estimates for all minimizers (Sect. 5). HoweverFigatisfies the additional
hypothesis thaf («) ~ |u|*, s > 2 as|u| — oo, then such estimates are automatic (cf.
[6,10]). In that case the existence of a minimizer of type?) follows from Theorem
4.14 below. To prove existence of minimizers of arbitrary tymee will use an analogue
of Theorem 4.14 (see Lemma 5.7 and Theorem 5.8 below).

4.2. Characterization of minimizers of type g = ((2, 2)). Periodic minimizers associ-
ated with[eg] or [e1] are the constant solutions= —1 andu = 1 respectively. The sim-
plest nontrivial periodic minimizers are those of type: (2, 2),i.e.r € [(2, 2)]. These
minimizers are crucial to the further analysis of the general case. The typ@, 2) is
a minimal type (associated wifki eg]), and we want to investigate the relation between
minimizers inM (((2, 2))) and periodic minimizers of type2, 2).

Considering curves in the configuration sp&is a convenient method for studying
minimizers of type(2, 2). For example, minimizers i@ M (((2, 2))) andC Mper((2, 2))
all satisfy the property that they do not intersect the line segihent(—1, 1) x {0} in P.
If other homotopy types are considered, i.€. £ [(2, 2)], then minimizers represented
as curves irP necessarily have self-intersections and they must intersect the sefgment
which makes their comparison more complicated. We will come back to this problem in
Sect. 5. Note that for @*-functionu the associated cuni&(u) is a closed loop if and
only if u is a periodic function.

Lemma 4.7. For any non-periodic minimizer u € CM({(2, 2))) and any bounded in-
terval I the curve I'[u|;] has only a finite number of self-intersections. For periodic
minimizersu € C Mper(((2, 2))) this property holdswhen the length of 7 is smaller than
the minimal period.

Proof. Fix a time intervall = [0, T']. If u is periodic,T should be chosen smaller than

the minimal period ofi. Let P = (uo, up) be an accumulation point of self-intersections

of u|;. ThenP is a self intersection point, and there exists a monotone sequence of times
17, € I converging tap such thal (u(z,,)) are self-intersection points aidu (rg)) = P.
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Also there exists a corresponding sequesice I with o, # 1, such that" (u(z,)) =
I'(u(o,)). Choosing a subsequence if necessary—> so monotonically. Sincex is a
minimizer inCM ({(2, 2))), the intervalgo,, 7,] must contain a transition, and hence
|tn — o, > Tp > 0. Thereforesg # 1o, and we will assume that < 7o (otherwise
change labels). The homotopy typeld(u|(s,.«) is (2, 2)F for somek > 1 (sincel is
bounded).

Assume that,, and t, are increasing; the other case is similar. Using the times
op < S0 < Ty < fo, the curvel'y, = T'[ulis,—s.10+s1], TOr & sufficiently small, can be
decomposed ds; = aoyoyoyrob,whereb = I'(ul(g,—5,5,1): Y1 = T (Ul(5,,501)> ¥ =
C(Wlisg.z,1)s v2 = T'(Wlr,.01), anda = T (|, 10+s7)- FOrn sufficiently largey1 andy»
have the same homotopy type, and# y», since otherwise would be periodic with
period smaller tham — 0,, < T. We can now construct two more paths

M=aoyioyoyiob and To=aoyroyoyrob

which have the same homotopy type fosufficiently large. Since/[T",] is minimal,

J[I1] = J[I'«] andJ[I"2] > J[I'4], and thus/[y1] > J{yz] andJ[y2] > J[y1] which
implies thatJ[y1] = J[y2]. ThereforeJ[y] = J[I'1] = J[['2], andl'1, 2 and T,

are all distinct minimizers with the same homotopy type and same boundary conditions.
Since these curves all coincide alopgthe uniqueness of the initial value problem is
contradicted. An argument very similar to the one above is also used in the proof of
Lemma 4.12 and is demonstrated in Fig. 4.1

k- Jper((2, 2)).

Proof. Letu € CMped(r) with r = (2, 2)* for k > 1, and letT be the period such
that the associated curve T, I' (u|[0,77), has the homotopy class 6f(2, 2)%). First
we will prove thatl" (u|jo,7)) is a simple closed curve iR, and henca € Mpe((2, 2)).
Suppose not, then by Lemma 4.7 the cubfe|[0,77) can be fully decomposed into
k distinct simple closed curves; fori = 1,...,k (just call the inner lood"1, cut
it out, and call the new inner loop,, and so on). Denote by; the action associated
with loop I';, thenY"; J; = Jr[u]. Letv; € Mped((2, 2)F) be the function obtained
by pasting togethet copies ofu restricted to the loof;. If v; were a minimizer in
Mper((2, 2)%), then by Lemma £ the functions: andv; would be distinct solutions to
the differential equatiofl.2) which coincide over an interval. This would contradict the
uniqueness of solutions of the initial value problem, and heptenot a minimizer, i.e.
Jrlvil = k- J;i > Jper((2, 2)"). Consequentlyfper((2, 2)") = 3=; Ji > Tper((2, 2)1),
which is a contradiction. Thus € Mper((2, 2)) andr (u|[o,77) is a simple loop traversed
k times.

Now we will show thatu € CMper((2, 2)). SinceT (u) is the projection of a func-
tion into the (u, u")—plane,u traverses the loop once over the interf@lT/k], and
Tper((2, 2k = k- Jr/k[u]. Supposelr/; > Jper((2, 2)). Then we can construct a
function in Mper((2, 2)F) with action less thad [u] = Jper((2, 2)%) by gluing together
k copies of a minimizer itMper((2, 2)), which is a contradiction. O

Lemma4.9. For any k > 1, CMper((2, 2)F) = CMper((2, 2)) = C Mper(((2, 2))).

1 One may assume without loss of generality thas a minimal period.
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Proof. We have already shown in Lemma 4.8 thiaW/per((2, 2k = CMper((2, 2)).

We first prove thatC Mper((2,2)) C CMpe({(2,2))). Letu € CMped((2,2)) have
periodT. Suppose: & CMper({(2, 2))). Then there exist two pointS(u(r1)) = Py and
['(u(r2)) = P> onT (1) such that the curve betweenP; and P, obtained by following
["(u) is not minimal. Replacing by a curve with smaller action and the same homotopy
type yields afunction € Mper(((2, 2))) for which Jis; 1,1[v] < Jjs,11[1]. Choose > 0
suchthakT > tp —t1. Thenu is a minimizer inC Mper((2, 2k = C Mper((2, 2)) which

is a contradiction.

To finish the proof of the lemma we show th@Mper(((2, 2))) C CMper((2, 2)).
Letu € CMper({(2, 2))) have periodrl'. Let I'(u]j0,71) be the associated closed curve
in P and w its winding number with respect to the segméntSuppose/r[u] >
Tper((2, 2)*) = w-Jper(2, 2). This implies the existence of a functiore Mper((2, 2)*)
and a periodf such that/z[v] < Jr[u]. Choose a timey € [0, 7] such that(rg) = 1
andu’(tg) > 0. Let Py = (1, u(t9)) € P. There exists @ > 0 sufficiently small such
thatu(to +68) > 0, u'(to = 8) > 0, andu does not cross=1 in [fp — &8, 1o + 8] except
atro. Let P1 and P> denote the point&: (1o F 8), u’(fo F 8)) respectively. Ley denote
the piece of the curv€ («) from P1 to P> andy* the curve tracing" («) backward in
time from P, to P1. Now choose a poinP3 onI"(v) for whichv = 1 andv’ > 0. We
can easily construct cubic polynomiglg and p, for which the curved™(p1) connects
P; to P3 and the curvd™(p2) connectsPs to P, in P. These curve¥ (p;) are mono-
tone functions, and hence the lobpp1) o I'(p2) o y™ has trivial homotopy type iP.
Thereforel (uljo.7))* o y ~ T'(p2) o F(U|[07f])k o I'(py) in P for anyk > 1, and from

Definition 2.1J [T (ulj0,71)* o y] < J[T'(p2) o T'(vlig 7))* o T'(p1)]. Thus,
k- Jrlul+ Jlyl < Jlp1l + Jlp2l + k - J7[v],
which implies
0 <k(Jrlul — J7lvD) < JIlpal + Jlp2]l — JIyl
These estimates lead to a contradictionfaufficiently large. O

Lemma 4.10. For anytwodistinct minimizersuy anduz in C Mper((2, 2)), theassociated
curves I'(u;) do not intersect.

Proof. Supposd(u1) andT'(u2) intersect at a poinP € P. Translateu1 anduy so
thatT"(#1(0)) = T'(u2(0)) = P. Define the function: € Mper((2, 2)?) as the periodic
extension of

u1(t) forr € [0, T1],

u(t) =
us(t — Ty) fort e [Ty, Ty + To],

whereT; is the minimal period ofi;. ThenJz, 7, [u] = 2Jper((2, 2)) = Jper((2, 2)2).
By Lemma 48 we havex € CMper((2, 2)), which contradicts the fact that andu»
are distinct minimizers with" («1) # I'(u2). O

As adirect consequence of this lemma, the periodic orbitéjg((2, 2)) are ordered
in the sense thdt(u1) lies either strictly inside or outside the region enclosed byy).
The ordering will be denoted by.

Theorem 4.11. There exists a largest and a smallest periodic orbit in C Mper((2, 2)) in
the sense of the above ordering, which we will denote by umax and umin respectively.
Moreover 1 < |luminllt.oo < llumaxllt,o0 < Co, @nd umin < u < umax for every

u € CMper((2, 2)). In particular the set C Mper((2, 2)) is compact.
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Proof. Either the number of periodic minimizers is finite, in which case there is nothing
to prove, or the set of minimizersis infinite. Lét= ( J{T"(u) |u € CMper((2, 2)} C P,
andletA = U N{(u,u’) | u" = 0,u > 0}. Every minimizer inC Mper((2, 2)) intersects
the positiveu—axis transversely exactly once. Moreover distinct minimizers cross this
axis at distinct points by Lemma 4.10. Thus we can Ases an index set and label the
minimizers ast, for « € A. Due to the a priori upper bound on minimizers (Lemma
5.1in [7]), A is a bounded set. The satis contained in the:-axis and hence has an
ordering induced by the real numbers. This order corresponds to the order on minimizers,
i.e.a < gin Aifandonly ifu, < ug as minimizers.

Suppose, is an accumulation point of. Then there exists a sequengeonverging
to a,. From Theorem 3.2 (the a priofi®*-bound onu,,, is sufficient by Remark 3.3)
we see that there exisis € CM ({(2, 2))) which is a solution to Eg(1.2) such that
Ug, — Uin CL(R). Sinceuy, is periodic and the'L ~limit of a sequence of periodic
functions with uniformly bounded periods (compare with the proof of Theorem 3.2 to
find a uniform bound on the periods) is periodic,e CMper(((2, 2))). By Lemma
4.9,u € CMpe((2, 2)). Furthermorer corresponds ta,,, and henced is compact.
Consequentlyd contains maximal and minimal elements. Lgtax and umin be the
periodic minimizers through the maximal and minimal pointsdofespectively. This
proves the theorem.o

The above lemmas characterize periodic minimizetS Mi({(2, 2))). Now we turn
our attention to non-periodic minimizers. We conclude this subsection with a theorem
that gives a complete description of the €& ({(2, 2))).

Letu € CM({(2, 2))) be non-periodic. Suppose thatis a self-intersection point of
I'(u). Then there exist timeas < > such thaf" (u(r1)) = I'(u(r2)) = P, andl (u|s.1,])
is a closed loop. By Lemma 4.7 there are only finitely many self-intersectiops, as.
Without loss of generality we may therefore assume thata simple closed loop, i.e,
we need only consider the case whéte= I'(u (1)) = I'(u(r2)) and T (ulf,,1,)) is a
simple closed loop. We now defiie, = I'(u](4,00)) @NdT— = T (u|(—o0,1)). We will
refer tol'+ as the forward and backward orbitsiofelative toP.

Lemma4.12. Letu € CM({(2, 2))) beanon-periodic minimizer with at least one self-
intersection. Let P and I'.. be defined as above. Then the forward and backward orbits
'y relative to P do not intersect themselves. Furthermore, P and I'y. are unique, and
the curve I" (u) passes through any point in 7 at most twice.

Proof. We will prove the result fof" ; the argument foF_ is similar. Suppose that
has self-intersections. Define

te =min{r > 11| T (u(®)) = T'(u(z)) for somer € (11, 1)}.

The minimumz, is attained by Lemma 4.7, ang > > sincey = T'(u|yy.,) is a
simple closed loop. Lety € (11, t4) be the point such thdt (u(79)) = ' (u(z.)). This
point is unique by the definition af,, andy = T (u|,..]) is a simple closed loop.
For small positives we defineQ = I'(u(t,)), B = I'(u(t1 — 8)), E = I'(u(ty + 3))
andT. = I'(u|yy—-s.1,+51), S€€ Fig. 4.1. We can decompose this curve into five parts;
'y = 0307 ocog0y oo1, Whereos joins B to P, o2 joins P to Q, o3 joins Q to E, and

y andy are simple closed loops basedraind Q respectively, see Fig. 4.1. The simple
closed curvey andy go aroundL exactly once and thus have the same homotopy type.
Moreover,y # y sinceu is non-periodic.
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Besided", we can construct two other distinct paths fr@o E:
'1 =030020y0yo001 and ') =030y oy oo007.

Itis not difficult to see thal'1, ', andT", all have the same homotopy type. Sinde, ]
is minimal in the sense of Definition 2.1 we have, by the same reasoning as in Lemma
4.7, thatJ[I'1] > J[[«] andJ['2] > J[[4], which implies that/[y] > J[y] and
Jly] = J[y]. HenceJ[y] = J[y]. ThereforeJ[I'1] = J[I'2] = J[I«] which gives
thatT"q, I'> andT, are all distinct minimizers of the same type as curves joirBinip
E. Since these curves all contain the patiso, andos, and are solutions to (1.2), the
uniqueness to the initial value problem is contradicted.

Finally, the curvd” (1) can pass through a point at most twice because it is a union of
'+ andI'_, each visiting a point at most once. Moreover, points |, .,)), common
to bothI"; andI'_, are passed exactly once. It now follows that if there is another self-
intersection besideB, say atR = I'(u(s1)) = I'(u(s2)), thensy < 11 andr < s2. We
conclude that the curvB(u|, s,)) containsl (uj;,.,,)) and therefore it is not a simple
closed curve. Thu® is a unique self-intersection that cuts off a simple loop.

Fig. 4.1. The forward orbitl"; starting atP with a self-intersection at the poi Lemma 4.12 implies that
this cannot happen for non-periodics CM ({((2, 2)))

Lemma4.13. Let u € CM({(2, 2))) be non-periodic. Suppose that u € L°°(R). Then
u is a connecting orbit between two periodic minimizersu_, u; € CMpe((2, 2)), i.€.
thereare sequencest,, 1,7 — oo suchthatu(r —1,) — u_(t) and u(t +£,7) — uy(t)
in Cig.(R).

Proof. Lemma 4.12 implies thdt; is a spiral which intersects the positiveaxis at a
bounded, monotone sequence of poiidg, 0) in P converging to a poinf,, 0). Let

t, be the sequence of consecutive times suchithiaj = «,,, andn’(r,,) = 0. Consider
the sequence of minimizers M ({(2, 2))) defined byu,, (1) = u(t +t,). By Theorem
3.2 there exist €|}JC—Iimit ur € CM{(2, 2))). If uy is periodic, there is nothing more
to prove. Thus suppose; is non-periodic. Then the curdé(x,) crosses tha—axis
infinitely many times. On the other hand, from tb‘g%c convergencd (1) Crosses
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this axis only atr,. By Lemma 4.12] (1) can interseci, at most twice, which is a
contradiction. Thei‘l‘(‘)c—convergence follows from regularity (as in the proof of Theorem
4.2). The proof of the existence of is similar. O

Theorem 4.14. Let u € CM({(2, 2))). Either u is unbounded, « is periodic and u €
C Mper((2, 2)), or u isaconnecting orbit between periodic minimizersin C Mper((2, 2)).

Proof. Letu € CM({(2, 2))) be bounded, then is either periodic or non-periodic. In
the case that is periodic it follows from Lemma 4.9 thate CMper((2, 2)). Otherwise

if  is not periodic it follows from Lemma 4.13 thatis a connecting orbit between two
minimizersu_, u; € CMped((2,2)). O

In Sect. 5.2 we give analogues of the above theorems for arbitrary homotopyrtypes
Notice that the option af € CM ({(2, 2))) being unbounded in the above theorem does
not occur wherF (u) ~ |u|*,s > 2 as|u| — oo.

5. Properties of Minimizers

In Sect. 4, we proved the existence of minimizera4pe((2, 2)), which will provide a

priori bounds on the minimizers of arbitrary type. These bounds and Theorem 3.2 will
establish the existence of such minimizers. In this section we will also prove that certain
properties of atypg are often reflected in the associated minimizers. The mostimportant
examples are the periodic typgs= (r). Although there are minimizers in every class
M((r), p), it is not clear a priori that among these minimizers there are also periodic
minimizers. In order to prove existence of periodic minimizers for every periodic type
(r)y we use the theory of covering spaces.

5.1. Existence. The periodic minimizers of typ€2, 2) are special for the following
reason. For a normalizede Mper((2, 2)), defineD(u) to be the closed disk iR2 such
thato D(u) = I'(u).

Theorem 5.1.1) Ifu e CM((r), p),thenT(u) C D(umin) for any periodic type (r) #

((2,2)).
i) Ifu e CM(g, p), thenT"(u) C D(umin) for any terminated type g.

Proof. i) If (r) # ((2,2)) then everyu € CM((r),p) has the property thaf (u)
intersects the-axis betweemn = £1. Suppose thdf (u) does not lie inside (umin).
ThenI" () mustintersecK (umin) atleast twice, and leg?; and P, be distinct intersection
points with the property that the cur¥g obtained by followind" («) from Py to P lies
entirely outside ofD (umin). Let 'z C T'(umin) be the curve fromP; to P, following
umin, such that"; andI', are homotopic (traversing the lodpumin) as many times
as necessary) and thugl'1] = J[I'2] is minimal. Replacing1 by I'; leads to a
minimizer inCM ({r) , p) which partially agrees with. This contradicts the uniqueness
of the initial value problem for (1.2).

i) As in the previous case the associated curye) either intersect¥ («min) at least
twice or lies completely insid® («min), and the proof is identical. O

Corollary 5.2. For all minimizersin the above theorem, [|u|/1,00 < l#minll1.00 < Co.

In order to prove existence of minimizers in every class we now use the above theorem
in combination with an existence result from [7].
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Theorem 5.3. For any given type g and parity p there exists a (bounded) minimizer
u € CM(Q, p). Moreover ||u||1.00 < Co, independent of (g, p).

Proof. Given atypeawe can construct a sequergeofterminated types such thgyt —
g asn — oo. For any terminated typg, there exists a minimizer, € CM(g,, p) by
Proposition 2.3 (Theorem 1.3 of [7]). Clearly such a sequapaatisfied|u, |1, < C
by Corollary 5.2. Applying Theorem 3.2 completes the proat.

5.2. Covering spaces and the action of the fundamental group. The fundamental group
of P is isomorphic to the free group on two generategsand e; which represent
loops (traversed clockwise) arou(id 0) and(—1, 0) respectively with basepoii, 0).
Indeed;P is homotopic to a bouquet of two circlés= S; v S1. The universal covering
of X denoted byX can be represented by an infinite tree whose edges cover &jtber
e1in X, see Fig. 5.1. The universal covering®fdenoted by : P — P, can then be
viewed by thickening the treE so thatP is homeomorphic to an open diskit?.

‘ — ]
N 09
1

X

Fig. 5.1. The universal coveX of X is atree. Its origin is denoted 9. Ford = ege1eq, the quotient space
Xo = X/ (0) is also a covering space ovEt andXy ~ S1

An important property of the universal covering is that the fundamental gro(/d)
induces a left group action @ in a natural way, via the lifting of paths iR to paths in
‘P. This action will be denoted by- p for 6 € =1(P) andp € P. We will not reproduce
the construction of this action here, and the reader is referred to an introductory book
on algebraic topology such as [3]. However, we will utilize the structure of the quotient
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spaces ofP obtained from this action, which are again covering®ofrhese quotient
spaces will be the natural spaces in which to consider the lifts of cuitggswhich lie
in more complicated homotopy classes than those in the case dffper((2, 2)).

A periodic typeg = (r) is generated by a finite typewhich together with the parity
p determines an element af, (P) of the formo(r) = e 1| - e{)l. Since we only

consider curves if? which are of the fornT" (u) = (u(t) u'(t)), the numbers; are all
positive. The infinite cyclic subgroup generated by any such eleéheiit be denoted
by (6) C m1(P). The quotlent spac®y = P/ (0) is obtained by identifying pointg
andq in P for whichq = 6% . p for somek e Z. The resulting spacg, is homotopic

to an annulus, angy : Py — Pisa covering space. FigurelSllustrates the situation
for X, since it is easier to draw, and f@r the reader should imagine that the edges in
the picture are thin strips. The lift of the path= ege1eg to X based a® is shown by
the dashed line. This piece of the tree becomes a circle in the quotlentJSpaNete
that infinitely many edges iX are identified ‘with this circle. The dashed lines in both
X and X, are strong deformation retracts Efand Xo respectively, and henck, is
homotopic to a circle. Thlckenlngg gives thaNtPg is homotopic to an annulus. Thus
1(Py) is a generated by a simple closed loo@inwhich will be denoted by (r). Note
that for convenience we suppress the dependeng¢enti¢ on the parityp.

Remark 5.4. If we define the shift operatar on finite types to be a cyclic permutation,
then Mped(r, p) = Mper(o* (1), rk(p)) for all k € Z. Functions inMper(r, p) have a
unique lift to a simple closed curve By, 60 = 0(r). However, functions in the shifted
cIassMper(cr (r), 8(p)) are not simple closed curvesm In order for such functions
to be lifted to a unique simple closed curve we need to consider the coveringapace
wheredy = 0(a*(r), X (p)).

5.3. Characterization of minimizersof type (r). In Sect. 5.2 we characterized minimiz-
ers inCM({(2, 2))) by studying the properties of their projections irflo What was
special about the type®, 2)¢ was that the projected curves were a priori contained in
P\ L, whichis topologically an annulus. Thieefficiency of minimizing curves restricts
the possibilities for their self and mutual intersections. In particular, we showed that all
periodic minimizers inC M ({(2, 2))) project onto simple closed curves i\ L and
that no two such minimizing curves intersect. These two properties, coupled with the
simple topology of the annulus, already force the minimizing periodic curves to have a
structure of a family of nested simple loops.

Such a simple picture in the configuration pldheannot be expected for minimizers
inCM(((r), p)) withr # (2, 2). The simple intersection properties (of Lemma 5.9 and
5.11) no longer hold; in fact, periodic minimizing curves must have self-intersections
in P as do any curves i representing the homotopy class(@f) , p). However, by
lifting minimizing curves into the annuluBy, we can remove exactly these necessary
self-intersections and put us in a position to emulate the discussion for the 2y 2¢'s
More precisely, for a minimal typ@, p), anyu € Mper((r, p)¥) with period7 such that
07T (uljo.r))] = (r, p)¥, there are infinitely many lifts of the closed lodu/|jo,71)
into 739 (r) (see the above remark) but tNhere is exactly one lift, denbBgéd|0, 1), that
is a closed loop homotopic t*(r) in P, (r). We can repeat all of the arguments in
Sect. 4 by identifying intersections between the cumvgg:|[o,77) in Py (r) instead of
intersections between the curné:|jo,77) in P \ L. Of course, when gluing together
pieces of curves, the valueswfindu’ come from the projections intB. In particular,
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the arguments of Lemma 4.9 show tlig{u|jo,77) must be a simple loop tracéetimes,
which leads to the following:

Lemma 5.5. For any periodic type (r) and any k > 1 it holds that C Mper((r, p)k) =
CMper(r, p) = CMper({r) , P)-
The proof of the next theorem is a slight modification of Theorem 4.11.

Theorem 5.6. For any periodic type (r) the set C Mper(r, p) is compact and totally
ordered (in Pyp).

The following lemma is analogous to Lemma4.13. Note however that by Theorem 5.1
we do not need to assume that the minimizer is uniformly bounded.

Lemmab.7. Let u € CM({r),p) for some periodic type (r) # ((2,2)). Either u
is periodic and u € CMper(r, p), Or u is a connecting orbit between two periodic
minimizers u_, u; € CMper(r, p), i.e. there are sequences 7, , 1,7 — oo such that
u(t —t;) — u_(t) andu(t + ;) — uy () in Cjp (R).

Combining Theorem 5.3 and Lemma 5.7 we obtain the existence of periodic min-
imizers in every class with a periodic type (this result can also be obtained in a way
analogous to Theorem 4.5).

Theorem 5.8. For any periodic type (r) the set C Mpe((r, p) is nonempty.

The classification of functions by type has some properties in common with symbolic
dynamics. For example, if a tygpis asymptotic to two different periodic types, i.e.
o"(g) — ry ando~"(g) — r_ asn — oo, withr # r_, then any minimizern <
CM (g, p) is a connecting orbit between two periodic minimizerse C Mperr_py and
uy € CMper(r 4, p),i.e.there exist sequencgs tF — oosuchthati(r—1,) — u_(z)
andu(r+11) — uy (1) in C,‘(‘)C(R). This result follows from Cantor’s diagonal argument
using Theorems 3.2 and 5.7, and hence we have used the symbol sequences to conclud
the existence of heteroclinic and homoclinic orbits connecting any two types of periodic
orbits.

Symmetry properties of typagare also often reflected in the corresponding mini-
mizers. For example, define the még on infinite types byl;,(9) = (g2ig—i)icz, and
consider types that satisfy;,(g) = g for someig. Moreover assume thatis periodic.

In this case we can prove that the corresponding periodic minimizers are symmetric and
satisfy Neumann boundary conditions.

Theorem 5.9. Let g = (r) satisfy W;,({r)) = (r) for some ip. Then for any u <
C Mper(r, p) there exists a shift ¢ such that u. (x) = u(x — 7) satisfies

i) u(x) =u (T —x)forallx el[0, T]whereT istheperiod of u,

i) u2(0)=ul0 =0andu’(T)=u?(T)=0,and

i) u, isalocal minimizer for the functional Jr[u] on the Sobolev space Hﬁ(o, T) =
{u e H30,T) | v’ (0) = u/(T) = 0}.

Proof. Withoutloss of generality we may assume tihat 1 andg = ((g1, ... , gn)) for
someN € 2N. We can choose a pointin the convex hull ofd1 such that:’ (¢p) = u’ (10+

T) = 0andg(ulfg,i0+11) = (81/2, 82, - - - , 8N, 81/2). We now define (t) = u(to+7 —

1). Then by the symmetry assumptionsgwe have thag(v|q.1+11) = 9l [10.10+71)-
SinceJig,10+71(V) = Jirg.r0+11() @ndl™ (u(0)) = T'(u(to+T7)) = I'(v(10)) = I'(v(t0+

7)), we conclude from the uniqueness of the initial value problemuttrat= v(¢) for

all + € [r, 1o + T1, which proves the first statement. The second statement follows
immediately fromi). The third property follows from the definition of minimizero
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