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Abstract

We introduce a concept of a pair of parallel L-cuts on a translation sur-
face, conjecture existence of such pairs for surfaces of genus g > 1, and find
them for g = 2. We discuss applications to genus reducing decomposition
of surfaces and to pseudo-Anosov maps (concerning their abelian-Nielsen
equivalence classes and non-embedding into toral automorphisms). In
particular, we provide a negative answer to the question about injectivity
of the Abel-Franks map for genus two pseudo-Anosovs with orientable
foliations.
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1 Introduction

This introduction is divided into subsections, of which the first talks about exis-
tence of parallel L-cuts on translation surfaces and the following three discuss the
implications. (At the end we describe the organization of the rest of the paper.)

1.1 Parallel L-cuts

Let M be a compact two dimensional surface carrying on the complement of a
finite set Msing an atlas of charts onto open subsets of the Cartesian (x, y)-plane
R

2 with the transition functions that are translations. We additionally assume
that the area of M is finite and the omitted points are conical singularities with
angle 2kπ for k ∈ {2, 3, . . .}. Such M is called a translation surface.

The curvature of M is concentrated at the singularities, and the Gauss-Bonnet
theorem gives the Euler characteristic of M as

χ(M) =
∑

z∈Msing

−k(z) + 1. (1.1)

For instance, for M of genus g = 2 we have χ(M) = 2 − 2g = −2 and the sum is
either −1− 1 or −2. This gives either two singularities with angle 4π each or one
singularity with angle 6π. We denote the corresponding collections of surfaces by
H(1, 1) and H(2).

Any translation surface can be presented by identifying (via translations) pairs
of parallel sides of a (connected and simple) polygon P in R

2. This fact, often taken
as an elementary definition of translation surfaces, can be shown by using Veech’s
zippered rectangles [30] (reviewed in Section 4). In particular, for M in H(2)
and H(1, 1) we shall use polygons P that are octagons and decagons, respectively
(Figures 4.1 and 4.3).

An oriented geodesic segment J in M , viewed locally in charts, yields straight
segments in R

2 of some fixed direction recorded as the usual polar angle θ ∈ [0, 2π).
We refer to such J simply as a segment and say that J is a horizontal segment if
θ ∈ {0, π} or a vertical segment if θ ∈ {π/2, 3π/2}. (The attributes up or down and
left or right have the obvious meaning.)

Segments with singularities at both ends and otherwise free of singularities are
referred to as saddle connections. We shall call M vh-simple iff M has no vertical
or horizontal saddle connections. For the most part, we restrict our discussion to
vh-simple surfaces because this simplifies the statements, and such are the pseudo-
Anosov surfaces in our main application (Section 1.3).

The central concept of this paper is that of an L-cut in M , by which we under-
stand an oriented curve K in M that traces a finite vertical segment followed by a
finite horizontal segment. If M is of genus g > 1, we additionally require that each
end of K is a singular point. (The two ends may coincide.) Note that we allow K
to have self-intersections or non-endpoint singularities. (This will not be the case
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for the very K we construct for vh-simple M but may be unavoidable in general,
cf. [4].)
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Figure 1.1: A surface M ∈ H(1, 1) with a pair of parallel L-cuts (K,K ′). The
polygon P presenting M decomposes into parts P1 and P2, each presenting a
subsurface ofM with boundary K ′K−1. Since each of P1 and P2 can be rearranged
into a parallelogram with a slit, M decomposes into a connected sum of tori M1

and M2 joined along L-cut slits.

A pair of L-cuts (K,K ′) is called parallel iff the two cuts begin at the same point
and end at the same point and the loop K ′K−1 (obtained by concatenating K ′ and
the reverse of K) is null-homologous. (See the upper left corner in Figure 1.1 for an
example.) Observe that the homological condition guarantees that the horizontal
segments of K and K ′ are of the same length h ≥ 0 and the vertical segments are
of the same length v ≥ 0. Indeed, if ω is the closed complex 1-form on M given
in the (x, y) coordinates (near regular points) by dx + idy, then vanishing of the
homology class [K ′K−1] gives

∫

K

ω =

∫

K ′

ω,

where the complex number w :=
∫

K
ω (called the holonomy vector of K) yields

|Re(w)| = h and |Im(w)| = v. There are four possibilities for the signs of Re(w)
and Im(w), which we refer to as the shape of the L-cut K. (For −+, K is L-shaped;
for ++, K is Γ-shaped, etc.) Note that parallel L-cuts are of the same shape, and
they can always be made L-shaped upon flipping the vertical/horizontal directions
(i.e. postcomposing the charts with (x, y) 7→ (±x,±y)).

One of our main goals is to put forth the following conjecture.

Conjecture 1.1 (L-cut Conjecture). For any translation surface M of genus g >
1, there exists a pair of parallel L-cuts (K,K ′).
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The core difficulty of the conjecture is retained (while skirting distracting de-
generacies) under an additional hypothesis that M is vh-simple. For genus two,
we have the following theorem, which is the main result of this paper.

Theorem 1.2 (Existence of L-cuts). For a vh-simple translation surface M of
genus 2, there exists a pair of parallel L-cuts (K,K ′). If M ∈ H(1, 1) (and thus
has two singularities), then each K and K ′ is a simple arc (i.e., a closed segment
in R embedded in M) and its endpoints are at distinct singularities. If M ∈ H(2)
(and thus has one singularity), then each K and K ′ is a simple loop (i.e., a circle
embedded in M) through the singularity. In any case, K and K ′ do not intersect
(at a point other than a singularity).

It is worth noting that, if one restricts to generic translation surfaces, the con-
jecture has a quick proof by considerations employing the classical moduli space
consisting of translation surfaces up to isomorphism (isometry that is a translation
when viewed in charts). Indeed, any of the finitely many connected components
of the moduli space (e.g., H(2) and H(1, 1) for g = 2) contains a surface M0

with a pair of homologous vertical saddle connections [8]. Thus the subset of the
component consisting of the M with a pair of parallel L-cuts is non-empty (as it
obviously contains all small perturbations of M0). This subset is open and man-
ifestly invariant under the Teichmüller flow (which acts by postcomposing charts
with (x, y) 7→ (et/2x, e−t/2y)). By the celebrated result in [30, 25], Teichmüller flow
is ergodic on each component with respect to a certain natural measure that is
positive on open sets. Parallel L-cuts exist then on every surface in the moduli
space excepting a closed nowhere dense set of measure zero. What renders this
useless for our purposes is that the translation surfaces of pseudo-Anosov maps
(which are in the center of our interest) correspond to the periodic orbits of the
Teichmüller flow, and it is plausible that some such orbits are contained in the
exceptional set.

1.2 Splitting into Connected Sum

Our theorem and conjecture are related to the translation surface theoretic coun-
terpart of the well know topological fact that any closed orientable topological
surface is homeomorphic to a connected sum of tori. Indeed, suppose that (K,K ′)
is a pair of parallel L-cuts joining singularities z0 and z1 in a translation surface
M . For the time being assume that that z0 6= z1 and that both K and K ′ are
simple arcs (as in Figure 1.1). Then cutting M along the null-homologous curve
K ′K−1 results in two disjoint surfaces M ′

1 and M ′
2. Each M

′
i retains a copy of the

curve K ′K−1 as its boundary. The points of that boundary come in pairs (p, p′)
where p ∈ K and p′ ∈ K ′ are the same distance along their cut. Upon identifying
all such pairs, the M ′

1 and M ′
2 yield two translation surfaces M1 and M2 (without

boundary), the offspring of M . The angle about each of the conical singularities z0
and z1 gets divided between M1 and M2. For instance, in Figure 1.1, each of the
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two original 4π angles (at z0 and z1) renders a 2π angle in each of the offspring
Mi. It follows that, if we measure the complexity of a translation surface M by

c(M) := −χ(M) + #Msing =
∑

z∈Msing

k(z) ≥ 0, (1.2)

then the offspring have lower complexity:

c(Mi) ≤ c(M) (i = 1, 2). (1.3)

In fact, when z0 6= z1 (as we temporarily assumed), the inequality is strict for
both i = 1, 2. When z0 = z1, there is a pathology (explained below) allowing
c(Mi) = c(M) for one of the i = 1, 2. In any case, simple induction shows that,
if pairs of parallel L-cuts can always be found and the splitting process can be
continued, it will terminate and the set of last offspring will consist of translation
surfaces of complexity zero, a finite collection of tori.
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Figure 1.2: A surface M ∈ H(2) with a pair of parallel L-cuts (K,K ′). The
polygon P presenting M decomposes into two parts, P1 and P2, each of which can
be rearranged into a parallelogram with a slit. Note that P1 inherits from P the
identification of the ends of the slit, which have to be disjointed to render M1 as a
slitted torus.

The splitting when z0 = z1 is less straightforward because we have four segments
of K ∪ K ′ meeting at z0. Examining the identifications of these segments shows
that z0 necessarily creates in one of the offspring Mi a pathology: a point with a
neighborhood that consists of two disks joined at that point. One has to disjoint
these disks to get a bona fide surface. (This disjointing increments the c(Mi),
allowing equality in (1.3).) The situation is depicted in Figure 1.2 where the two
dots are the same in M but have to be treated as distinct in M1 for it to be a
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torus. Only then, the L-cut becomes a simple arc in M1. (It is a simple loop in
M2).

The process of splitting M along the pair (K,K ′) of parallel L-cuts can be
naturally reversed to present the original surface M as a version of the connected
sum construction gluing two offspring surfaces along L-cut slits. In particular, we
have the following corollary of Theorem 1.2.

Corollary 1.3 (L-cut Connected Sum Theorem). Any vh-simple genus two trans-
lation surface M is a connected sum of two tori M1 and M2 joined along isometric
L-cuts, K1 in M1 and K2 in M2. If M has two singularities then both K1 and K2

are simple arcs (as in Figure 1.1). If M has one singularity then K1 and K2 are
a simple arc and a simple loop (as in Figure 1.2).

The hypothesis of vh-simplicity can be certainly weakened (or even removed
completely) at the cost of allowing pairs of L-cuts that are not simple arcs or loops,
in which case formalizing the connected sum operation is more cumbersome. It
would be too distracting to go in this direction here but Figure 1.3 illustrates one
such generalized splitting. (Note the polygon presenting M2 has an antenna that
carries important identification information.) A more complete treatment can be
found in [4], where the vh-simplicity hypothesis is weakened to minimality of the
vertical flow on M .

K
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K

K ′
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K
K ′

P1 P2

M2

Figure 1.3: Splitting of M ∈ H(2) along a pair of parallel L-cuts (K,K ′) with K ′

not a simple loop. While M1 is slit along simple L-cut, M2 is slit along a closed
loop L-cut starting at the “triangle” and traversing twice the portion between
the “square” and the “triangle” (the two points resulting from disjointing the
singularity). This induces the “antenna” in the polygon P2 presenting torus M2.
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Corollary 1.3 is analogous to the result of McMullen in [27] (see also [5]) as-
serting that any translation surface M can be rotated by some angle θ to become
a connected sum of two tori M1 and M2 joined along two vertical cuts, J1 in M1

and J2 in M2. (Rotating M refers to changing the translation surface structure by
postcomposing charts into R

2 with a rotation by θ.) Although McMullen shows
that there are infinitely many θ facilitating such splitting, this does not seem to
easily imply an L-cut splitting for θ = 0.

Much is also known (see e.g. [21, 8]) about splitting of a generic translation
surface along homologous saddle connections. This is used to catalog all connected
components of the moduli space of translation surfaces but seems to have no im-
mediate application to L-cut splitting for g > 2.

1.3 Non-embedding of surfaces into toral automorphisms

Recall that toral automorphims are maps fA : TN → T
N of the N -dimensional torus

T
N = R

N/ZN conjugate to the map x 7→ Ax (mod 1) where A is an N ×N integer
matrix of determinant ±1. (Here N > 1 and Z is the integers.) Hyperbolic toral
automorphims (h.t.a.) are distinguished by A having no eigenvalues of modulus
one. They provide the simplest examples of diffeomorphisms exhibiting chaotic
behavior.

By the device of Markov partitions [1, 28, 6], a h.t.a. fA is measure theoret-
ically isomorphic via a continuous a.e. injective map to a mixing Markov chain1.
Therefore there is an uncountable zoo of compact fA-invariant subsets of T

N . The
simplest subsets are the invariant subtori (which arise from rational A-invariant
subspaces of RN) and all the other are rather unwieldy in that they cannot even
contain a rectifiable arc [24]. Hoping to generate some new interesting examples,
one can ask about invariant subsets that are homeomorphic to a compact connected
manifold M (of dimension greater than zero) other than a torus. This is the open
question from the 1960s first discussed by Hirsch in [17]. Since the answer is an
easy “no” for 1-dimensional M , the place to start is the case of 2-dimensional M .

This brings in another celebrated class of chaotic systems: the pseudo-Anosov
maps. These were introduced by Thurston [29] in the 1970s in a development
unrelated to Hirsch’s question. It is only through the prism of the results that came
years later that we know that there is an intimate connection. Indeed, a h.t.a. is
expansive and thus induces (as in the proof of Corollary 1.5 below) an expansive
self-homeomorphism f : M → M on any invariantly embedded subsurface M ⊂
T
N , assuming such a surface exists. By a remarkable result (Theorem 1.6) proved

independently by Lewowich [22] and Hiraide [16], such a homeomorphism f is
necessarily a pseudo-Anosov map. What is more (Lemma 3.3), if that pseudo-

1These, in turn, are equivalent to Bernoulli shifts, measure theoretically [13] or even almost
continuously [20]. Non-hyperbolic but ergodic toral automorphisms are also measure theoretically
Bernoulli [19]; although, it is not know if that is true in the almost continuous (finitary) sense
[23].
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Anosov map has orientable stable/unstable foliations then the embedding has to
coincide with the map h :M → T

N given by the very general π1-stability theorem
of Franks [12], first invoked in this context by Fathi [11]. (In the recent survey
[14], Gromov calls h Abel-Franks map, after drawing a parallel with the classical
Abel-Jacobi embedding of a Riemann surface.)

As we explain below, the map h is constructed by using the idea of global
shadowing and is given by rather explicit power series (see e.g. [3]). It is locally
injective on the complement of a finite set [11] and is often a.e. injective [3]. (So
many pseudo-Anosov are indeed hiding inside hyperbolic toral automorphisms!)

To address Hirsch’s question and show non-existence of an invariantly embedded
M ⊂ T

N , it suffices to prove non-injectivity of the Abel-Franks map h. This has
been done so far only for a certain specific family of pseudo-Anosov maps with one
singularity by Gavin Band in [2]. We add to this by showing that the scenario
identified by Band is present in all surfaces of genus two. (The main advance is in
dealing with M ∈ H(1, 1).) We prove the following.

Theorem 1.4 (pA Non-Embedding Theorem). Suppose that f : M → M is a
pseudo-Anosov map of a genus two surface with orientable foliations and fA :
T
N → T

N is a hyperbolic toral automorphism. If ψ : M → T
N is continuous and

such that ψ ◦ f = ψ ◦ fA, then ψ is not injective.

Corollary 1.5. Suppose that M is a genus two surface and fA : TN → T
N is

a hyperbolic toral automorphism. If ψ : M → T
N is an embedding onto an fA-

invariant subset, then the map f := ψ−1 ◦ fA ◦ ψ is a pseudo-Anosov map with
non-orientable foliations.

The corollary hinges on the following (already mentioned) result of Hiraide and
Lewowicz

Theorem 1.6 (Hiraide, Lewowicz). Every expansive homeomorphism of a compact
surface is conjugate to a pseudo-Anosov map (with orientable or non-orientable
foliations).

We suspect that no pseudo-Anosov map of any genus g > 1, whether the
foliations are orientable or not, can be embedded into a h.t.a. However, a proof
along our lines runs into sheer combinatorial and geometric complexity of pseudo-
Anosov maps, which explodes rapidly with increasing genus.

1.4 Abelian-Nielsen non-separability of pseudo-Anosovs

Existence of parallel L-cuts has implications for Nielsen equivalence, a classical
tool for classification and assignment of combinatorial data to periodic points of
surface homeomorphisms. (For background, see Boyland’s survey [7].)

Recall that two fixed points x and y of a homeomorphism f : M → M are
Nielsen equivalent iff there is an arc γ : [0, 1] → M such that γ(0) = x and γ(1) = y
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and γ and f ◦ γ are homotopic with fixed endpoints. (M being a surface, this is
equivalent to saying that the loop f ◦ γ γ−1 is null-homotopic.) We say that x and
y are abelian-Nielsen equivalent iff an arc as above can be found but γ and f ◦ γ are
only homologous with fixed endpoints (i.e. f ◦ γ γ−1 is hull-homologous).2 To deal
with periodic points of f , one applies the definitions to the iterates fn (n ∈ N).
It is well known (see Theorem 7.4 in [7]) that pseudo-Anosov maps are Nielsen

separating, i.e., every fixed point of an iterate fn (n ∈ N) of a pseudo-Anosov map
f is the sole element of its Nielsen equivalence class. This is not the case when we
replace Nielsen by abelian-Nielsen, and we have the following theorem.

Theorem 1.7 (abelian-Nielsen non-separation). Suppose that f is a pseudo-
Anosov map f with orientable foliations on a surface of genus two. There are
infinitely many n ∈ N such that fn has abelian-Nielsen equivalence classes that
contain more than one fixed point of fn.

Again, we conjecture that the hypothesis on the genus can be dropped and
abelian-Nielsen non-separation holds for all pseudo-Anosov maps.3

To get a better grasp of the theorem, let us interpret it in terms of the dynamics
lifted to the universal cover M̃ and to the homology cover M̂ . These covers are
characterized by having deck groups equal to the fundamental group π1(M) and
the first homology H1(M,Z), respectively. (M̂ , which we will use extensively in
Section 2, is also called the maximal Abelian cover of M on account of H1(M,Z)
being the abelianization of π1(M).) It is easy to see (cf. [7]) that Nielsen equivalence
classes coincide with the fixed point sets of lifts of fn to M̃ , while abelian-Nielsen
classes coincide with the fixed point sets of lifts of fn to M̂ . To the extent that we
have a deck group worth of such lifts and π1(M) is much bigger than H1(M,Z),
the theorem is very plausible.

As it stands, the proof of Theorem 1.7 (in Section 2) is a byproduct of a rather
tedious construction of parallel L-cuts. Specifically, we identify two rectangles
(Figure 2.1 in Section 2) on which some iterate fn (n > 0) is conjugate to the
Smale’s horseshoe. Because the L-cuts are homologous to each other, the periodic
points (one from each horseshoe) with the same binary code are abelian-Nielsen
equivalent to each other. (They will also be in the same fiber of the Abel-Franks
map.) Such configuration of what we call homologous horseshoes first appeared in
[2].

***

Aware of the fact that readers interested in different aspects of our results may
have different backgrounds, we include a good dose of expository material.

2The equivalence in [7] is a bit weaker to achieve its nice interpretation in the mapping cylinder
of f .

3In such case, it would hold for all orientation preserving homeomorphisms f of surfaces
that are irreducible aperiodic in Thurston’s classification [10]. Such maps are homotopic to and
contain all the dynamics of a certain pseudo-Anosov [15].
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Sections 2 and 3 deal with pseudo-Anosovs. Sections 2 explains how existence
of L-cuts implies the non-embedding (Theorem 1.4) by combining the ideas of
Franks, Fathi, and Band. It also shows the abelian-Nielsen non-separation (Theo-
rem 1.7). Section 3 rounds the picture with some observations, including identifi-
cation of any would be embedding as the Abel-Franks map.

Sections 4 and 5 collect tools from the theory of renormalization of translation
surfaces. In Section 6, these tools are used to prove our main results on existence
of L-cuts and splitting (Theorem 1.2 and Corollary 1.3), with the crux of the
argument amounting to explicit elementary considerations of geometry of octagons
and decagons.

2 Proof of non-embedding

The main goal of this section is establishing the non-embedding and the abelian-
Nielsen non-separation theorems (Theorems 1.4 and 1.7). We follow the path
blazed by Band [2] and centered on the global-shadowing characterization of the
fibers of the would be embedding ψ : M → T

N (i.e., the map in Theorem 1.4).
Unlike Band we do not assume at the outset that ψ is the Abel-Franks map, as
first constructed by Fathi in [11] (see also [3]). However, the arguments readily
adapt to this more general setting.

Suppose that f : M → M is a continuous map of compact orientable surface,
fA : TN → T

N is a hyperbolic toral automorphism (induced by a matrix A), and
ψ :M → T

N is continuous such that

ψ ◦ f = fA ◦ ψ. (2.1)

At this point we do not assume yet that f is pseudo-Anosov with orientable folia-
tions.

The main idea is to look at the situation at the level of homology covers, M̂ for
M and R

N for TN . The first integral homology H1(M,Z) acts as the deck group of
the covering π : M̂ →M , and we write p̂+v for the result of v acting on p̂. Keep in
mind that M̂ is an unbounded surface that (as a metric space) coarsely resembles
the discrete group H1(M,Z) ≃ Z

2g because the quotient M̂/H1(M,Z) is compact
(equals M). Even more concretely, one can think about M̂ as smoothly embedded
into R

2g as a Z
2g-periodic surface on which H1(M,Z) acts by integer translations.

(The embedding is done by integrating harmonic 1-forms representing a basis of
the cohomology; and the quotient embedding M → T

2g is the classical Abel-Jacobi
map we mentioned before.)

The first step is to lift the maps f , ψ, fA to f̂ : M̂ → M̂ , ψ̂ : M̂ → R
N ,

f̂A : R
N → R

N . These lifts are unique only up to deck transformations. In
particular, f̂A is of the form p 7→ Ap + const. It is convenient to adjust the lifts
and conjugate fA by a suitable translation so that f̂A(p) = Ap and (2.1) becomes

ψ̂ ◦ f̂ = A ◦ ψ̂. (2.2)

10



To perform the adjustment, note that (2.1) gives ψ̂ ◦ f̂ = f̂A ◦ ψ̂ + u for some
u ∈ Z

N . That is ψ̂ ◦ f̂ = f̂ ′
A ◦ ψ̂ if we take f̂ ′

A := Tu ◦ f̂A where Tu is the translation

p 7→ p+ u. Because A is hyperbolic, f̂ ′
A is conjugate by a translation to the linear

transformation p 7→ Ap, i.e., f̂ ′
A = T−s ◦ A ◦ Ts for some s ∈ R

N .Now, (2.2) holds

upon replacing ψ̂ by T−s ◦ ψ̂.
The key to studying the injectivity of ψ is the following implication (cf.

Lemma 2.2 in [2]).

∀x̂,ŷ∈M̂ sup
n∈Z

dist
(

f̂n(x̂), f̂n(ŷ)
)

< +∞ =⇒ ψ̂(x̂) = ψ̂(ŷ). (2.3)

Above, ”dist” refers to any fixed equivariant metric on M̂ , say the one induced by
lifting some Riemannian metric onM . The points x̂ and ŷ for which the supremum
in (2.3) is finite are said to globally shadow each other.

The proof of (2.3), given below, starts with the simple insight that, to the
extent that M̂ coarsely resembles H1(M,Z) ≃ Z

2g, the lift ψ̂ can be viewed (see
(2.4)) as a bounded perturbation of the map ψ∗ : H1(M,Z) → H1(T

N ,Z) ≃ Z
N

induced by ψ on the first homology.

Proof of (2.3): For any x̂ ∈ M̂ , by the definition of the induced map ψ∗ we can
write

ψ̂(x̂) = ψ̂(x̂− v) + ψ∗v (∀ v ∈ H1(M,Z)) (2.4)

where x̂ − v is the result of the homology class −v acting on x̂. Now, v can be
selected to approximate x̂ in the sense that x̂ − v is in some, fixed once and for
all, pre-compact fundamental domain for the action of H1(M,Z). Because the
first term in (2.4) is bounded and the second linear, one easily concludes that ψ̂ is
Lipschitz at large scales, i.e., there is Λ > 0 so that

|ψ̂(x̂)− ψ̂(x̂′)| ≤ Λ + Λdist(x̂, x̂′) (∀ x̂, x̂′ ∈ M̂). (2.5)

(To get (2.5), use |ψ̂(x̂)− ψ̂(x̂′)| ≤ Λ1 + Λ2|v − v′| and |v − v′| ≤ Λ3 dist(x̂, x̂
′).)

Thus if C ≥ 0 is the supremum in (2.3), we have

sup
n∈Z

∣

∣

∣
An ◦ ψ̂(x̂)−An ◦ ψ̂(ŷ)

∣

∣

∣
= sup

n∈Z

∣

∣

∣
ψ̂ ◦ f̂n(x̂)− ψ̂ ◦ f̂n(ŷ)

∣

∣

∣
≤ Λ + ΛC < +∞.

By hyperbolicity of A, supn∈Z |A
nz| <∞ iff z = 0 so (taking z := ψ̂(x̂)− ψ̂(ŷ)) we

get ψ̂(x̂) = ψ̂(ŷ). ✷

Remark 2.1. If ψ∗ is additionally 1-1, the inverse of the implication in (2.3) can
be obtained by reversing the argument above. If ψ∗ is not 1-1, one can replace M̂
by a smaller covering M̌ := M̂/ kerψ∗ and then (using the requisite lifts f̌ and ψ̌
such that A ◦ ψ̌ = ψ̌ ◦ f̌) the implication (2.5) turns into an equivalence:

∀x̌,y̌∈M̌ sup
n∈Z

dist
(

f̌n(x̌), f̌n(y̌)
)

< +∞ ⇔ ψ̌(x̌) = ψ̌(y̌).

Moreover, ψ(x) = ψ(y) iff ψ̌(x̌) = ψ̌(y̌) for some lifts x̌, y̌ ∈ M̌ of x, y.
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z0

z1x

R

z0

z1y

η(R)
η

K

K ′

(a) Picture in M

ẑ0

ẑ1

x̂

ŷ

(b) Picture in M̂

Figure 2.1: (Left:) Each of the turning points x ∈ K and y ∈ K ′ is a heteroclinic
point at a transverse intersection of stable (horizontal) and unstable (vertical)
manifolds of conical singularities z0 and z1. (Right:) The situation in the lift to
M̂ with 4π-singularities ẑ0, ẑ1 whose stable/unstable manifolds are depicted with
solid lines and dashed lines, respectively. Crucially, x̂ and ŷ are heteroclinic to
ẑ0, ẑ1 because K and K ′ are homologous.

Conclusion of Proof of Theorem 1.4: Now we additionally assume that f is
pseudo-Anosov with orientable foliations. It is well known (from [18]) that M can
be turned into a Riemann surface so that the orientable stable/unstable measured
foliations of f are the level lines of a holomorphic one-form. This form, in turn,
defines a translation surface structure onM so that the unstable foliation is vertical
and the stable foliation is horizontal (see e.g. [26]). Since every stable/unstable
leaf of a pseudo-Anosov is dense (see e.g. [10]), M is vh-simple and we can invoke
Theorem 1.2.

Let then (K,K ′) be a pair of L-cuts in M supplied by Theorem 1.2 and x ∈ K
and y ∈ K ′ be the turning points, i.e., the non-endpoints where the horizontal and
vertical segments meet (Figure 2.1b). The points x and y are f -heteroclinic, i.e.,
x, y ∈ W u(z1) ∩ W s(z0) (where W s/u stand for the stable/unstable manifolds).
Note that x 6= y since K 6= K ′.

Crucially, the L-cuts are parallel, so the curve K ′K−1 is null-homologous and
thus lifts to a closed curve K̂ ′K̂−1 in M̂ (where K̂ and K̂ ′ are suitable lifts of K
and K ′). In particular, the x, y lift to x̂, ŷ ∈ M̂ that satisfy x̂, ŷ ∈ W u(ẑ1)∩W

s(ẑ0).
Here the unstable/stable manifolds are with respect to the lifted map f̂ and the ẑi
are lifts of the singularities. Although the ẑi need not be fixed by f̂ , the triangle
inequality

dist
(

f̂n(x̂), f̂n(ŷ)
)

≤ dist
(

f̂n(x̂), f̂n(ẑi)
)

+ dist
(

f̂n(ẑi), f̂
n(ŷ)

)

12



gives

lim
n→±∞

dist
(

f̂n(x̂), f̂n(ŷ)
)

= 0 + 0 = 0. (2.6)

By (2.3), ψ̂(x̂) = ψ̂(ŷ) and thus also ψ(x) = ψ(y). Since x 6= y, ψ is not injective.
✷

R
(1)
0

R
(2)
0

R
(1)
1

R
(2)
1

f(R
(2)
1 )

f(R
(1)
0 )

f(R
(1)
1 )

f(R
(2)
0 )

z0
z1

Figure 2.2: Two horseshoes in M : each rectangle R(i) (i = 1, 2) has subrectangles

R
(i)
0 and R

(i)
1 mapping across R(i) along the unstable manifolds (solid lines).

In fact, the injectivity of ψ fails in a rather decisive way as there is a whole
Cantor set worth of distinct points identified by ψ:

Theorem 2.2 (homologous horsehoes). In the context of Theorem 1.4, there exist
Cantor sets C1, C2 ⊂ M containing (each) all the singularities of M and there is
a bijective relation C1 ↔ C2 such that ψ(x) = ψ(y) for any pair (x, y) of related
points. Moreover, f restricted to Ci is conjugate to the full shift on {0, 1}Z (for
i = 1, 2).

To prove the theorem one can use the additional feature of the construction of
parallel L-cuts in Section 6. Namely, K ∪ η(K ′) bound a rectangle R(1) in M and
K ′ ∪ η(K) bound a rectangle R(2) in M . (In Figure 2.1a, R(1) = R and R(2) =
η(R).) In the language of [2], these rectangles are “horseshoe-like rectangles” that
satisfy the hypotheses of Lemma 3.1 therein. The lemma gives the assertion of
the theorem. What is happening is that each rectangle is mapped to itself in a
horseshoe manner so that we have the usual Cantor sets, C1 ⊂ R(1) and C2 ⊂ R(2),

13



consisting of points whose bi-infinite orbits stay in their respective rectangle. The
points of C1 and C2 are coded by binary sequences in {0, 1}Z, and the bijective
relation C1 ↔ C2 is that of having the same code, i.e., x ∈ C1 and y ∈ C2 with
the same code are identified by ψ, ψ(x) = ψ(y). In all this the fact that K and K ′

are homologous to each other is of critical importance and we refer to (C1, C2) as
a pair of homologous horseshoes. The proof below gives a more precise account of
Band’s mechanism.

R̂(1) + v0

R̂(2) + v0

f̂(R̂(1))

f̂(R̂(2))

ẑ0 + v0
ẑ1 + v0

ẑ0 + v1
ẑ1 + v1

f̂(R̂(1))
R̂(1) + v1

R̂(2) + v1

f̂(R̂(2))

Figure 2.3: The horseshoes are homologous: the images of the lifted rectangles R̂(i)

under f̂ stretch to connect lifted singularities ẑ0 + v0 and ẑ0 + v1 independent of
i = 1, 2.

Proof of Theorem 2.2. First looking in M (Figure 2.2), we have the classical
heteroclinic picture whereby f−1(R(i)) ∩ R(i) is a union of two disjoint subrectan-

gles R
(i)
0 and R

(i)
1 of R(i), each mapping across the R(i) under f (i.e., f(R

(i)
j ) is a

subrectangle traversing the whole R(i) in the unstable direction).
Now, consider the situation in M̂ after lifting the rectangles R(i) to rectangles

R̂(i) in M̂ (Figure 2.3). Here we choose the lifts so that R̂(1) and R̂(2) have K̂
and K̂ ′ as a part of their boundary, respectively, where K̂ and K̂ ′ are as in the
proof of Theorem 1.4 and Figure 2.1. (We also denote by R̂

(i)
j the subrectangles

of the R̂(i) that are the corresponding lifts of the R
(i)
j .) The lifts ẑj of zj that are

at the corners of the R̂(i) are not fixed by f̂ but merely satisfy f̂(ẑj) = ẑj + vj
for some vj ∈ H1(M,Z). Under f̂ , R̂

(i)
0 maps across R̂(i) + v0. In the process,

R̂
(i)
0 ’s subrectangles, denoted by R̂

(i)
00 and R̂

(i)
01 , map across R̂

(i)
0 + v0 and R̂

(i)
1 + v0,

respectively. Applying f̂ one more time maps R̂
(i)
1 + v0 across R̂(i) + f∗(v0) + v1.

Note that f∗(v0)+ v1 does not depend on i = 1, 2. (The situation is similar for R̂
(i)
10

and R̂
(i)
11 .)
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Extending this analysis beyond two iterates (as for the ordinary horseshoe), for

every finite binary word σ = σ1 . . . σm, we get a subrectangle R
(i)
σ whose points p

have the itinerary σ, i.e., the firstm+1 iterates of p, (fk(p))mk=0, belong (successively)
to the rectangles

R(i)
σ1
, R(i)

σ2
, . . . , R(i)

σm , R
(i).

The corresponding subrectangle R̂
(i)
σ of R̂(i) has the m + 1 iterates of its points p̂

(successively) belonging to

R̂(i)
σ1
, R̂(i)

σ2
+vσ1 , · · · , R̂

(i)
σm+

(

fm−1
∗ (vσ1) + . . .+ vσm−1

)

, R̂(i)+(fm∗ (vσ1) + . . .+ vσm) .

Again, the important detail is that the homology classes acting on to the rectangles
R̂

(i)
σk above do not depend on i = 1, 2. As a result, if x̂ ∈ R̂

(1)
σ and ŷ ∈ R̂

(2)
σ , then

dist(f̂k(x̂), f̂k(ŷ)) ≤ 2max
{

diam(R̂(1)), diam(R̂(2))
}

(k = 1, . . . , m).

A similar game is played with f replaced by f−1. This shows that, if x̂ and ŷ have
the same bi-infinite itineraries σ ∈ {0, 1}Z, then they globally shadow each other
in M̂ . Thus, by (2.3), ψ̂(x̂) = ψ̂(ŷ) and so also ψ(x) = ψ(y). ✷

By the way, the turning points x ∈ K and y ∈ K ′ used in the proof of Theo-
rem 1.4 belong to the Cantors sets. They have itinerary . . . 0000000.111111 . . ..

Proof of Theorem 1.7. Let x ∈ R(1) and y ∈ R(2) be periodic points with the
same itinerary. Take n ∈ N to be a period (for both x and y) so large that, denoting

by σ the n long initial segment of the itinerary, R̂
(i)
σ contains at most one lift for

each fixed point of fn. (This is possible because there is ǫ > 0 such that no two

lifts of any point are closer than ǫ, and diam
(

f̂−n/2(R̂
(i)
σ )

)

< ǫ for large n.)

Let x̂ ∈ R̂(1) and ŷ ∈ R̂(2) by lifts of x and y as in the proof of Theorem 2.2.
Because both x and y have the same itinerary, by the mechanism explained in the
proof of Theorem 2.2, there is a common w ∈ H1(M,Z) such that

f̂n(x̂) ∈ R(1)
σ + w and f̂n(ŷ) ∈ R(2)

σ + w. (2.7)

Since also x̂ ∈ R
(1)
σ and ŷ ∈ R

(2)
σ (due to the itinerary being an infinite concatena-

tion of σ), we have f̂n(x̂)− w = x̂ and f̂n(ŷ)− w = ŷ by the choice of n.
We have shown that the map f̂n−w is a lift of fn fixing both x̂ and ŷ. By the

discussion in the introduction, this makes x and y abelian-Nielsen equivalent. ✷

3 Hirsch’s embedding and Abel-Franks Map

For those interested in Hirsch’s question, let us frame this open problem with a
few observations that culminate in identification of the would be embedding ψ with
an Abel-Franks map (Lemma 3.3). (This material is not used in our main proofs.)
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As in the previous section, we suppose that f :M → M is a homeomorphism of a
compact surface, fA : TN → T

N is a hyperbolic toral automorphism (induced by a
matrix A), and ψ :M → T

N is a continuous map for which the commutation (2.1)
holds.

The first fact is that one may well assume that ψ induced map on homologies,
ψ∗ : H1(M,R) → H1(T

N ,R), is surjective. To be precise, consider the image
V := ψ∗(H1(M,R)) in H1(T

N ,R). Upon identification H1(T
N ,R) ≃ R

N , the fA
action on the homology coincides with the multiplication of column vectors in
R
N by the matrix A. By (2.1), V is an A-invariant subspace of RN . It contains

Γ := ψ∗(H1(M,Z)) as a lattice so that V/Γ is a subtorus of TN . The subtorus is
fA-invariant and fA|V/Γ is again a hyperbolic toral automorphism, specifically, it

can be conjugated to fÃ : TÑ → T
Ñ where Ñ := dimV and Ã is an Ñ × Ñ integer

matrix representing A|V in some integral basis of Γ. The following lemma allows

one to restrict attention to the smaller torus TÑ ∼= V/Γ and replace fA by fÃ. (It
is a version of Theorem 3 in [17] with the fixed point assumption dropped.)

Lemma 3.1 (Homological Containment). ψ(M) ⊆ V/Γ.

Proof: As in the previous section, we argue on the level of homology covers. In
particular, we invoke (2.5) to see that ψ̂(M̂) is contained in the the Λ-neighborhood
of V , making ψ̂(M̂)/V a bounded subset of the quotient RN/V . ψ̂(M̂)/V is also
invariant under the A-induced automorphism of RN/V . Because this automor-
phism is hyperbolic ψ̂(M̂)/V is just the origin {0}. Thus ψ̂(M̂) ⊆ V , which gives
ψ(M) ⊆ V/Γ. ✷

The second item is the uniqueness of ψ, which goes back to Franks [12] and is
considered in a much broader context in Gromov [14].

Lemma 3.2 (Uniqueness). If ψ′ is another map M → T
N that satisfies the same

hypotheses as ψ and acts in the same way on the first homology, i.e., ψ∗ = ψ′
∗,

then ψ = ψ′.

Proof: For i = 1, 2, ..., N , let ωi be a closed smooth form on M representing
the singular cohomology class ψ∗[dxi]. Take ω̂i := π∗(ωi) to be the pull-back of ωi
to M̂ via the covering π : M̂ → M . By the key property of the homology cover
M̂ , there are smooth functions ϕ̂i : M̂ → R, i = 1, ..., d, such that dϕ̂i = ω̂i. Set
Φ̂ := (ϕ̂1, ..., ϕ̂N) : M̂ → R

N .
To finish the proof it suffices to show that ψ is characterized by the following

global shadowing property:

sup
n∈Z

∣

∣

∣
An ◦ ψ̂(x̂)− Φ̂ ◦ f̂n(x̂)

∣

∣

∣
< +∞ (x̂ ∈ M̂). (3.1)

Indeed, if ψ and ψ′ act in the same way on the 1-st homology then they act in the
same way on the 1-st cohomology. Hence ωi = ω′

i and thus also Φ̂ = Φ̂′. Invoking
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(3.1) twice yields then

sup
n∈Z

∣

∣

∣
An ◦ ψ̂(x̂)−An ◦ ψ̂′(x̂)

∣

∣

∣
< +∞ (x̂ ∈ M̂). (3.2)

Therefore ψ̂(x̂) = ψ̂′(x̂), again by the hyperbolicity of A.
To prove (3.1), taking x̂ ∈ M̂ and v ∈ H1(M,Z), we note that to get from φ̂i(x̂)

to φ̂i(x̂+ v) one has to integrate ω̂i along a smooth curve representing v (lifted to
M̂) so that

φ̂i(x̂+ v) = φ̂i(x̂) +

∫

v

ωi = φ̂i(x̂) +

∫

v

ψ∗[dxi] = φ̂i(x̂) +

∫

ψ∗v

dxi = φ̂i(x̂) + (ψ∗v)i.

That is Φ satisfies

Φ̂(x̂+ v) = Φ̂(x̂) + ψ∗v (x̂ ∈ M̂, v ∈ H1(M,Z)). (3.3)

This can be combined with (2.4), still selecting v ∈ H1(M) with x̂ − v in some
fixed pre-compact fundamental domain, to obtain

∣

∣

∣
Φ̂(x̂)− ψ̂(x̂)

∣

∣

∣
≤ |Φ̂(x̂− v)|+ |ψ̂(x̂− v)| ≤ C

where C > 0 is a constant independent of x̂ (courtesy of continuity of Φ̂ and ψ̂).
By using the commutation φ̂ ◦ f̂ = A ◦ φ̂ (from (2.2)), we obtain (3.1) as follows

∣

∣

∣
An ◦ ψ̂(x̂)− Φ̂ ◦ f̂n(x̂)

∣

∣

∣
=

∣

∣

∣
ψ̂ ◦ f̂n(x̂)− Φ̂ ◦ f̂n(x̂)

∣

∣

∣
≤ C.

✷

Our third remark identifies ψ as the very Abel-Franks map h : M → T
N

constructed by Fathi in [11]. (This is provided ψ∗ is surjective, which can always
be arranged via Lemma 3.1). To be specific, we refer to the description of the map
h given in [3].

Lemma 3.3. If ψ∗ : H1(M,R) → H1(T
N ,R) ∼= R

N is surjective then ψ coin-
cides with the Abel-Franks map h : M → T

N constructed from a suitable set of
cohomology classes.

Proof: Define Ω := imψ∗ = span
R
(ω1, ..., ωN) ⊂ H1(M,Z) where ωi := ψ∗[dxi],

as before. Since f ∗ ◦ ψ∗ = ψ∗ ◦ f ∗
A and ψ∗ is injective, Ω is f ∗-invariant and

the action of f ∗ on Ω is conjugate to that of f ∗
A. Let AΩ be the matrix of the

linear transformation f ∗|Ω with respect to the basis ([ω1], ..., [ωN ]). The spectrum
of AΩ is a subset of that of AT (the matrix of f ∗), making AΩ hyperbolic. This
means that the hypothesis (H) in [3] is satisfied allowing construction of the Abel-
Franks map ĥ : M̂ → R

N with the ω1, ..., ωN as the initial ingredient 1-forms. The
quintessential property of this map is (see [3])

sup
n∈Z

∣

∣

∣
An ◦ ĥ(x̂)− Φ̂ ◦ f̂n(x̂)

∣

∣

∣
< +∞ (x̂ ∈ M̂), (3.4)

which is a version of global shadowing (3.2) with φ̂′ := ĥ, so h coincides with ψ by
the argument opening the proof of Lemma 3.2. ✷
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4 Preliminaries on Veech’s zippered rectangles

Our main result about existence of L-cuts (Theorem 1.2) depends on representation
of translation surfaces by Veech’s zippered rectangles [30]. In presence of nice
introductory expositions in [31] and [32], a quick overview below should suffice.

We consider a translation surface M of genus two with no vertical saddle con-
nections, which is the case when M is vh-simple. Let I ⊂ M be a horizontal
segment whose left endpoint is a singular point of M . We will use I as a cross-

section to the vertical flow onM proceeding vertically up with the unit speed. This
flow is unambiguously defined, at least for short times, at non-singular points. At
singularities one faces a choice of finitely many outgoing (up) or incoming (down)
vertical segments to flow along. The absence of vertical saddle connections implies
that the flow has no invariant proper sub-surfaces (with boundary) and thus is
minimal, i.e., every infinite orbit is dense in all of M . In particular, the following
hypothesis is satisfied.

(H1) Any point of M not in the outgoing vertical of a singularity hits I under the
vertical flow in some negative time.

This hypothesis allows one to studyM via the flow’s first return map T : I → I
because M is filled by the flow’s forward trajectories starting in I. (This is also
true for backward trajectories; in fact, (H1) is preserved under the reversal of the
direction of the flow.) Because the flow is area preserving, the first return T (x)
of x is well defined for a.e. point x ∈ I by a general argument based on Poincaré
recurrence theorem. In fact, T is an interval exchange, and its structure is dictated
by M in a way detailed below.

First, consider M ∈ H(2). Let I ′ be I with endpoints removed. Each point
of I ′ will either flow into a singularity or return to a unique point on I. As
the sole singular point z0 has angle 6π, there are three verticals incoming into z0
and (in absence of vertical saddle connections) there are exactly three different
points p1, p2, p3 where these verticals first encounter I ′ under the backward flow,
see Figure 4.1. The three points cut I ′ into four segments, labeled A,B,C, and
D, with constant return times on each, denoted tA, tB, tC , and tD. Actually,
this is not quite correct because we failed to account for the possible additional
discontinuity of the return time at the point of I ′ which flows into the right endpoint
of I. To avoid introducing one more cut at that point (and getting five segments),
one adjusts the length of I (by moving its right endpoint) to secure the following
additional hypothesis.

(H2) The right endpoint of I joins to a singularity by a vertical segment that does
not intersect I at non-endpoints.

Under (H2), T : I → I is an interval exchange map on exactly four segments
A,B,C, and D. Denoting their respective lengths by λA, λB, λC , and λD, we see
that M is a union of closures of four open rectangles swept by the segments. To be
precise, the open rectangle associated to A is the subset of M that is a (locally)
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isometrically immersed copy of the open λA×tA rectangle in R
2 obtained by flowing

A for times in the interval (0, tA).
The decomposition of M into the four rectangles leads to a presentation of M

as Veech’s zippered rectangle consisting of two disjoint unions of closed rectangles
in R

2, each union having one rectangle with dimensions λA× tA, λB × tB, λC × tC ,
and λD × tD. The upper union has the rectangles positioned with the bases along
a horizontal segment in R

2, which we identify with I, and placed in their original
order along I (Figure 4.1). The lower union has rectangles with their tops aligned
along I in the order after application of the exchange T . Each of the two unions
renders a translation surface isomorphic toM once the boundaries of the rectangles
are subject to appropriate identifications (detailed in [30]). In a nutshell, the
horizontal sides glue according to T (the top of the rectangle over A glues to T (A),
etc.) Glued are also the portions of the overlaying vertical sides before they reach
a singularity (dashed in Figure 4.1). With a little work, one can now figure out the
remaining identifications of the slits in the figure and the verticals over the right
endpoint of I.

A B C D

p1 p2 p3T (D) T (C) T (B) T (A)

T (x)

x

Figure 4.1: A zippered rectangle and an octagon representing M ∈ H(2).

In most instances, joining the points corresponding to singularities of M in
the zippered rectangle yields a simple polygon P, an octagon O for M ∈ H(2)
(Figure 4.1). Taken with the obvious side identifications, P gives a more intuitive
presentation of M . We will avoid the situation, called fishtail, when P is not a
simple polygon (see Figure 4.2).
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Figure 4.2: A zippered rectangle yielding a non-simple polygon with a fishtail.

All of the above discussion can be repeated for M ∈ H(1, 1) (see e.g. [5]).
Roughly, the four verticals incoming into the two 4π singularities z0 and z1 cut I
into five segments, labeled A,B,C,D, and E (Figure 4.3). There are five rectangles
per union and the polygon is a decagon, with the same fishtail caveat.

A B C D

p1 p2 p3T (D) T (C) T (B) T (A)

T (x) x E

T (E) p4

Figure 4.3: A zippered rectangle and a decagon representing M ∈ H(1, 1).
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5 Preliminaries on Rauzy-Veech diagrams

Still following [32] and [31], we review now Rauzy-Veech operations giving a way of
transforming a zippered rectangle representing M into a new zippered rectangle
representing the same M but with a shorter cross-section. This is done by looking
at the rightmost segments among the pre- and post-T segments and shrinking I by
removing the shorter one, called the loser. The longer segment, called the winner,
has its rightmost portion cut away accordingly, and so is cut the corresponding
portion of the winner’s rectangle. This portion and the whole rectangle of the
loser are repositioned and reattached (within their upper/lower unions) so as to
create a new zippered rectangle. This is best understood by looking at Figure 5.1
(Top), where D is the winner and T (A) is the looser. The operation is said to be
of type 0 if the winner is above the loser (as depicted) and of type 1 otherwise (as
would be the case if we flipped the figure upside down).

A
B

C

D

A
B

C

D

A′

B

C

D′

A′

B

C

D′

A+
B+ C+

D+

A−

B−

C−

D−

A+ B+
C+

D+
new

A−

B−

C−D−
new

Figure 5.1: Type 0 operation for M ∈ H(2), on a zippered rectangle (Top) and on

the octagon (Bottom). The datum changes from

[

ABCD
DCBA

]

to

[

ABCD
DACB

]

.

When the initial zippered rectangle does not fishtail and thus yields a polygonal
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representation P of M (Bottom of Figure 5.1), the Rauzy-Veech operation is a
simple matter of cutting from P the triangle spanned by the two rightmost sides
and reattaching it at the bottom (type 0) or the top (type 1).

In any case, for a surface M without vertical saddle connections, starting with
one zippered rectangle, Rauzy-Veech operation can be iterated to generate an
infinite sequence of zippered rectangles (associated to M with a choice of a
cross-section I). The proof of Theorem 1.2 (in Section 6) will depend on this by
carrying out geometric considerations on the zippered rectangles in this sequence
with particularly simple combinatorial structure.

To this end, we will have to pay attention to the zippered rectangle’s combinato-

rial datum, which can be read off of the associated interval exchange T : I → I and
consists of two finite sequences of segment labels arranged in the order of the seg-
ments before and after the application of T (cf. Figure 5.1). The Rauzy diagrams in
Figures 5.2 and 5.3, depict all possible combinatorial data for zippered rectangles
(coming from I satisfying hypotheses (H1,H2)) for M ∈ H(2) and M ∈ H(1, 1),
respectively4. (The arrows indicate Rauzy operations.)

Note that reversing the vertical flow (i.e., replacing T by T−1) is responsible for
the symmetry of the diagrams, with the caveat that it swaps the operation types 0
and 1 and turns each combinatorial datum upside-down. Our favorite is the node
fixed by this symmetry, the central node. It is free of the fishtailing pathology and
is always visited by the sequence, a fact we record in a separate lemma below.

ABCD

ACDB

ADBC

ABCD

ABCDADBC ABDC

1

1

1

1

1

1

0

0

0

0

0

0

DCBA

DCBA

DCBADCAB DACB

DBAC

DACB

Figure 5.2: Rauzy diagram for the stratum H(2).

4Generally, there is a connected Rauzy diagram for each connected component of the moduli
space of translation surfaces; see [30] and the discussions in [21] and [33].
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ECBAD

ABCDE

ACDEB

AEBCD 1

1

0

AEBCD AEBCDAEBDC

0 0 0

1

ADEBCADEBC

1

0

0

1

1
ABCDE

ABCDE0

0

1

ABECDABDEC ABECD

111

0

ABCDE ABCED

0

1

1

EDCAB

0

0

01

EDCBA

EDCBA

EDCBA

EDCBA
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Figure 5.3: Rauzy diagram for the stratum H(1, 1).

Lemma 5.1. For M with no vertical saddle connections (with a choice of cross-
section I satisfying (H1) and (H2)), the sequence of zippered rectangles asso-

ciated to M necessarily visits the central node,

[

ABCD
DCBA

]

if M ∈ H(2) and
[

ABCDE
EDCBA

]

if M ∈ H(1, 1).

Proof: Let M ∈ H(2). Every Rauzy operation shortens one of the segments
A, B, C, or D. Proposition 4.3 in [32] states that, proceeding along the sequence,
every segment gets shortened infinitely many times. As A is only shortened on the
left half of the diagram and D is only shortened on the right half, we must pass
through the central node.

For M ∈ H(1, 1), the argument is similar. A is only shortened on the left half
of the diagram and E is only shortened on the right half, so we must pass through
the central node again by Proposition 4.3. ✷

6 Proof of Existence of L-cuts

In this section we prove Theorems 1.2 and 1.3. Due to Lemma 5.1, we assume that
the vh-simple surface M has a zippered rectangle representation with combinato-
rial datum given by the central node (Section 5). Since this combinatorial type
precludes fishtailing (Section 4), we will work with the polygonal presentation of
M , an octagon for M ∈ H(2) and a decagon for M ∈ H(1, 1) (Figures 4.1 and
4.3). Observe that these polygons are centrally symmetric. The central symmetry
induces on M an isometric involution η : M → M with six fixed points. This is
the Weierstrass involution of M considered as a Riemann surface (see [9] and [5]).
Note that η∗ : H1(M,R) → H1(M,R) takes any homology class to its opposite,
i.e., η∗ = −Id.
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The overall strategy of the argument is to find in M a certain rectangle R (see
Figure 2.1a). To be precise, ifM ∈ H(1, 1), by a rectangle we mean a homeomorphic
image of a closed rectangle in R

2 mapped into M via a local isometry preserving
the horizontal and vertical directions. If M ∈ H(2), we allow identification of
two diagonally opposite vertices, i.e., the map is continuous and 1-1 except for
that identification. The reason for this is that our R will have a pair of opposite
vertices at distinct singularities for M ∈ H(1, 1) and at the sole singularity for
M ∈ H(2). While the set of singularities is preserved by η, it will be key to ensure
that

η(R) 6= R. (6.1)

Indeed, if J is the saddle connection joining the opposite vertices ofR and we choose
an orientation on J , then (6.1) guarantees that η(J)J−1 forms a loop of distinct
saddle connections in M whose homology class is fixed by η∗ and thus is null. By
taking a vertical and a horizontal side from each R and η(R) (as in Figure 2.1a),
one forms distinct L-cuts K and K ′ that are homologous (actually homotopic)
rel their endpoints to J−1 and η(J), respectively. By this construction K−1K ′ is
null-homologous, making (K,K ′) a pair of parallel L-cuts exactly as asserted by
Theorem 1.2. (In particular, K and K ′ are simple arcs or loops, as stipulated.) To
establish Theorem 1.3, one has to additionally exhibit the decomposition of M for
each instance of R we construct, which is easy (if a bit tedious).

A+

B+ C+

D+

A−

B−

C−D−

E−

E+

R1

R2R+
1

R−

1

V

Figure 6.1: The candidate rectangle R1 has two triangular protrusions correspond-
ing to the triangular regions R+

1 and R−

1 in the decagon D (via the identifications
of D+/− and B+/−, respectively). R1 is free of invasions, i.e., it encounters singu-
larities only at its corners. R1 defines a rectangle in M . In contrast, the candidate
rectangle R2 is invaded by the vertex V and fails to define a rectangle in M .

The rest of this section is devoted to finding a rectangle R in M with the
desired properties. This will be done by taking a polygon P representing M and
considering up to five candidate rectangles, R1, R2, . . ., which are certain explicit
Euclidean rectangles in the plane containing P. We will examine each candidate
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rectangle R∗ to see if it defines a rectangle R in M under the tacit assumption
that any protrusions of R∗ (typically triangular) extending beyond P are to be
translated to the interior of P according to the edge identifications (Figure 6.1).
This process may fail to produce a rectangle R ⊂ M when the candidate rectangle
R∗ contains a vertex V of P (thus placing a conical singularity inside R). We will
refer to such a situation as an invasion of R∗ by V . (Figure 6.1 gives an example.)
On the other hand, if R∗ is not invaded then, as a matter of general principle,
it produces R ⊂ M that is only an immersed rectangle (i.e., one with overlap).
However, we shall see that R is in fact a bona fide rectangle in all instances we
examine.

Conclusion of Proof of Theorem 1.2 for M ∈ H(2): As discussed, we present

M by an octagon O with combinatorial datum

[

ABCD
DCBA

]

. We consider two

candidate rectangles: R1, with a diagonal homotopic to D + A, and R2, with a
diagonal homotopic to C +D + A; both are depicted in Figure 6.2. Observe that
neither of R1 and R2 is invariant under the central symmetry of O so (6.1) is
guaranteed. Our goal is to establish that, depending on O, at least one of the
rectangles R1 and R2 is free of invasion by a vertex and defines a rectangle in M .
In the process, we may have to replace O by the octagon (still with central node
combinatorics) obtained by performing some Rauzy operations on O.

A+ B+ C+

D+

A−

B−C−

D−

R1η(R1)

A+ B+ C+

D+

A−

B−C−

D−

R2
η(R2)

Figure 6.2: Candidate rectangles R1 and R2 for H(2).

For S ∈ {A,B,C,D}, S+ denotes the upper edge of O labeled S, i.e., the edge
that came from the upper union in the zippered rectangle. Likewise, S− denotes
the lower edge of O labeled S. We will refer to the segment length λS (Section 4),
as the width of S±. Since M has no vertical saddle connections λS > 0 for all S
and λA 6= λD, λA 6= λC + λD, and λA 6= λB + λC + λD. Also, since there are no
horizontal saddle connections in M , none of the edges of O is horizontal.

It can be assumed that λA > λD, perhaps at the cost of reversing the direction
of the vertical flow and relabeling the segments. Also, if λA > λB + λC + λD, then
one can perform a sequence of three successive type 1 operations on O (cf. Figure
5.2) and end back in the central node. Repeating this as many times as necessary
yields O for which λA < λB + λC + λD. Thus, the only remaining variability in O
we have to consider is whether λA is longer or shorter than λC + λD. Both cases
are illustrated in Figure 6.3.
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A+ B+ C+

D+

A−

B−C−

D−

R1

(a) λD < λA < λC + λD.

A+ B+ C+

D+

A−

B−C−

D−

R2

R1

V2

V1

(b) λC + λD < λA < λB + λC + λD.

Figure 6.3: Representative diagrams for M ∈ H(2) with λD < λA < λB+λC+λD.

Case 1: λD < λA < λC + λD. It is clear from Figure 6.3a, that no vertex can
invade R1 and R1 defines a rectangle R in M .

Case 2: λC + λD < λA < λB + λC + λD. Look at Figure 6.3b. If C has a
negative slope, R1 is still uninvaded and as in Case 1. Now, if C has positive slope,
the vertex V1 at the left end of C+ invades R1. However, V2 at the left end of B−

(which may have invaded R2 in Case 1) is now far enough to the left that R2 has
no invasion and defines a rectangle R in M . ✷

Conclusion of Proof of Theorem 1.3 forM ∈ H(2): One has to exhibit a splitting
of M into two genus one translation surfaces M1 and M2 for each of the two cases
considered above. We leave it to the reader to sketch K and K ′ onto Figure 6.3
(cf. Figure 2.1a) and see that K and K ′ are are essentially disjoint (i.e, only meet
at the singularity). Then, K ′K−1 being null-homologous guarantees that slicing
O along K and K ′ produces two polygons each yielding a translation surface Mi

(i = 1, 2). To be precise, this is only so after disjointing of two points, as discussed
in the introduction. The Mi are tori (after the L-cut slits are closed) by the Euler
characteristic argument from the introduction. (This can also be seen directly by
drawing versions of Figure 1.1.) M is a connected sum of M1 and M2, as asserted.
✷

Conclusion of Proof of Theorem 1.2 for M ∈ H(1, 1): As before, we present M

as a decagon with combinatorial datum of the central node, this time

[

ABCDE
EDCBA

]

.

We consider 5 candidate rectangles depicted in Figure 6.4: R1 with a diagonal
homotopic to D +E +A, R2 with a diagonal homotopic to E +A+B, R3 with a
diagonal homotopic to A+B+C, R4 with a diagonal homotopic to C+D+E, and
R5 with a diagonal homotopic to B + C +D. Again, (6.1) is guaranteed and we
have to show that, depending on D, at least one of the rectangles R1 through R5 is
free of invasion by a vertex of D and defines a rectangle in R ⊂M . To shorten the
phrasing we shall refer to such candidate rectangles simply as good. We use that
no edge S of D can be horizontal, λS > 0 for S ∈ {A,B,C,D,E}, and λA 6= λE ,
λA 6= λD + λE , λA 6= λC + λD + λE, and λA 6= λB + λC + λD + λE.
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A+
B+ C+

D+

A−

B−C−
D−

E−

E+
R1η(R1)

A+
B+ C+

D+

A−

B−C−D−

E−

E+

R2

η(R2)

A+B
+ C+

D+

A−

B−C−D−
E−

E+

R3
η(R3)

A+ B+
C+ D+

A−

B−

C−D−E−

E+

R4
η(R4)

A+
B+

C+

D+

A−

B−

C−D−

E−

E+
R5

η(R5)

Figure 6.4: Candidate rectangles R1 through R5 for H(1, 1).
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As before, we assume λA > λE, after perhaps reversing the vertical flow and
relabeling. Also, we can take that λA < λB + λC + λD + λE, as otherwise one can
transform D by a sequence of 4 consecutive type 1 operations (cf. Figure 5.3) until
D satisfies this inequality.

This leaves 3 major cases for D, again arranged by the relative length of λA
compared to sums of other lengths. (Cases 1 and 2 are depicted in Figure 6.5 and
Case 3 is depicted in Figure 6.6.)

A+

B+ C+

D+

A−

B−C−
D−

E−

E+

R1

(a) Case 1(a)

A+
B+ C+

D+

A−

B−C−
D−

E−

E+R1

R2

V1

(b) Case 1(b), V1 invasion of R1

A+

B+ C+

D+

B−

A−

C−

D−

E−

E+R1

R3

R2

V2
V3

(c) Case 1(b), V2 invasion of R1

A+

B+ C+

D+

A−

B−C−D−

E−

E+

R1

(d) Case 2

Figure 6.5: Representative diagrams for H(1, 1), cases 1 (λE < λA < λD+λE) and
2 (λD + λE < λA < λC + λD + λE).

Case 1: λE < λA < λD + λE.

• Subcase (a), λA + λB > λD + λE: R1 is clearly good.

• Subcase (b), λA + λB < λD + λE: We may well assume that R1 is not good.
Two vertices can invade R1: If B has negative slope, the vertex V1 at the left
end of B− invades R1. However, in this case R2 is good. Assuming now B
has positive slope (and R2 is invaded), another possibility is that the vertex
V2 at the left end of C− invades R1, but by doing so it must be higher than
the vertex V3 at the right end of B−, making R3 free of invasion.
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A+

B+ C+
D+

A−

B−C−D−

E−

E+

R1

V4

A+
B+ C+ D+

A−

B−

C−D−

E−

E+

R1

V4
R4

V5

A+
B+ C+

D+

A−

B−

C−D−

E−

E+

R1

V4

R4

V5R5

A+

B+ C+ D+

A−

B−C−D−

E−

E+

R1

V4
R4

V5

R5

R2

Figure 6.6: Representative diagrams for H(1, 1), case 3 (λC + λD + λE < λA <
λB + λC + λD + λE).

Case 2: λD + λE < λA < λC + λD + λE . R1 is good.
Case 3: λC + λD + λE < λA < λB + λC + λD + λE .

• Subcase (a), C has negative slope: the vertex V4 at the left endpoint of C+

will be above R1. So R1 has no invasion and it is good.

• Subcase (b), C has positive slope and the vertex V5 at the right end of D+

stays above V4: R4 is good.

• Subcase (c), C has positive slope and V5 drops below V4, and B has positive
slope: V5 invades R4 but does not invade R5. Since B has positive slope, V4
does not invade R5. R5 is good.

• Subcase (d), as in (c) but B has negative slope: R2 is clearly good.

✷

Conclusion of Proof of Theorem 1.3 for M ∈ H(1, 1): As for M ∈ H(2), one
has to see that K and K ′ are essentially disjoint, which can be done already by
looking at Figure 6.4, or by inspecting Figures 6.5 and 6.6 for each of the individual
cases. Thus we have a null-homologous simple loop K ′K−1 that cuts M into two
translation surfacesM1 andM2, as in Figure 1.1. Again, by the Euler characteristic
argument from the introduction (or direct laborious inspection), the Mi are tori
(with L-cut slits). ✷
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