
IOP PUBLISHING NONLINEARITY

Nonlinearity 20 (2007) 2047–2060 doi:10.1088/0951-7715/20/9/002

A toral flow with a pointwise rotation set that is

not closed

Jaroslaw Kwapisz

Department of Mathematical Sciences, Montana State University, Bozeman,

MT 59717-2400, USA

E-mail: jarek@math.montana.edu

Received 30 December 2006, in final form 8 June 2007

Published 25 July 2007

Online at stacks.iop.org/Non/20/2047

Recommended by K M Khanin

Abstract

We give an example of a C1 flow on the two-dimensional torus for which the

pointwise rotation set is not closed.

Mathematics Subject Classification: 37E45, 37E30, 37E35

1. Introduction

The classical idea of the Poincaré rotation number of an orientation preserving circle

homeomorphism found many fruitful adaptations in the context of other dynamical systems

for which one can sensibly talk about limiting average displacement (or winding) of orbits

in the phase space. (See [2, 17] for surveys.) In particular, in the theory of nonlinear

oscillations, a system of d coupled periodically forced oscillators often exhibits an invariant

d-dimensional torus and therefore induces a homeomorphism F : T
d → T

d , T
d := R

d/Z
d ,

that is homotopic to the identity. (See, e.g. [1] and references therein.) For such F , upon fixing

a lift F̃ : R
d → R

d , one can speak of the average winding along the fundamental cycles of T
d

for an orbit segment of a point p ∈ T
d as measured by the average displacement

F̃ n(p̃) − p̃

n
,

where p̃ ∈ R
d is a lift of p. In the uncoupled linear case, the above quotient is just the vector

of frequencies of the individual oscillators, (k1, . . . , kd). In general, the rotation set is meant

to collect all asymptotic ‘frequency’ vectors exhibited by the system and thus is formed by

taking a limit of the average displacements as n → ∞. However, how the limit is formalized

is a matter of choice and may lead to different sets. Perhaps the most natural impulse is to take

only the well defined pointwise limits and form the following pointwise rotation set:

ρpp(F̃ ) :=
{

lim
n→∞

1

n
(F̃ n(p̃) − p̃) : p̃ ∈ R

d , the limit exists

}

. (1.1)
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This set is of obvious interest as it accounts for asymptotic behaviour of actual orbits, but it is

awkward to study because the limit often fails to exist for many orbits and is hard to compute

for those orbits for which it does exist. That difficulty can be elegantly minimized (see [14] and

also [8, 16]) by either considering the average displacements of invariant measures or, more

simply, by taking the very liberal approach of admitting into the rotation set all accumulation

points of the average displacements for long orbit segments:

ρ(F̃ ) :=
{

lim
i→∞

1

ni

(F̃ ni (p̃i) − p̃i) : p̃i ∈ R
d , ni ∈ N, ni → ∞

}

. (1.2)

An immediate advantage of this approach is that ρ(F̃ ) is compact by design; and it is convex

for d � 2 by a result in [14]. This offers a welcome a priori simplification in the still very

incomplete taxonomy of possible rotation sets [5,11,12]. On the other hand, simple examples

(e.g. example 1 in [13]) show that ρpp(F̃ ) may be a non-convex proper subset of ρ(F̃ ). It is

the purpose of this note to reinforce the sentiment that ρpp(F̃ ) is more unwieldy than ρ(F̃ ) and

show that it can fail to be closed even for dynamics of as low complexity as those associated

with a flow on T
2.

Theorem 1.1. There exists a C1-diffeomorphism F : T
2 → T

2 that is the time-one-map of

a C1-flow for which the pointwise rotation set ρpp(F̃ ) is not closed. Specifically, ρ(F̃ ) is

an irrationally sloped segment containing (0, 0) and ρpp(F̃ ) contains a sequence of points

converging to a limit point strictly inside the segment ρ(F̃ ) but fails to contain that limit point.

Note that any flow (F t )t∈R on T
2 uniquely lifts to a flow (F̃ t )t∈R on R

2, so the time-one-

map F 1 has a preferred lift F̃ := F̃ 1. By a result in [5], the rotation set ρ(F̃ ) of that lift is

either a point or a line segment that has to contain 0 as an endpoint if its slope is irrational.

Theorem 1.1 should be contrasted with the situation for degree one circle maps and

orientation preserving homeomorphisms of the annulus for which the analogues of ρpp(F̃ )

and ρ(F̃ ) coincide (and thus ρpp(F̃ ) is closed) as shown in [9] and [7], respectively. On the

other hand, in higher dimensions, d � 3, the absence of the restrictions imposed by the planar

topology facilitates a number of counterexamples (cf [13,14]) including a construction in [16]

of a real analytic diffeomorphism of T
3 for which both ρpp(F̃ ) and the subsequential pointwise

rotation set,

ρp(F̃ ) :=
{

lim
i→∞

1

ni

(F̃ ni (p̃) − p̃) : p̃ ∈ R
d , ni ∈ N with ni → ∞

}

, (1.3)

fail to be closed.

One can show that ρp(F̃ ) coincides with ρ(F̃ ) in our example so it is still an open problem

if ρp(F̃ ) can fail to be closed for a homeomorphism of T
2. Also, our reliance on the Denjoy

counterexample leaves open a perhaps more important question whether ρpp(F̃ ) can fail to be

closed for a diffeomorphism of T
2 that is C2 smooth.

The rest of this introduction is devoted to an outline of the construction. Our example

belongs to the class of flows on T
2 that have a single stationary point of the saddle-node

type. Such flows can be constructed (section 2) by taking an orientation preserving C1-

diffeomorphism of the circle, f : T → T, and moving along the orbits of the suspension flow

of f with variable speed prescribed by a non-negative C1 function V that is positive except

for a single zero at some point p0 = (s0, y0). This construction has been used to illustrate

various dynamical pathologies for quite some time: it can be found in [15], and it was injected

into the theory of rotation sets by an example (attributed in [6] to Katok) of a flow for which

limt→∞(F̃ t (p)−p)/t fails to exist for some p. In [5], it was also suggested for a more detailed

study of the rotation set (with f taken to be an irrational rotation).
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We restrict attention to the interesting case when the rotation number α of f is irrational

and the resulting flow is transitive. The diffeomorphism f has a unique invariant measure λ,

and the flow has an invariant measure µ equivalent to the suspension of λ as soon as the function

1/V is integrable with respect to µ, which is exactly when the return time φ(x) of a point

(x, 0) back to the horizontal cross-section T × {0} is integrable with respect to λ. The generic

points of the measure µ contribute to ρpp(F̃ ) a non-zero vector ρ of magnitude inversely

proportional to the average return time ψ̄ :=
∫

φ dλ (see fact 2.2). That is in addition to

(0, 0) ∈ ρpp(F̃ ) contributed by the stationary point p0. Crucially, it can be arranged (section 5)

that no other vectors beside ρ and 0 are present in ρpp(F̃ ). This requires sufficiently benign

behaviour of φ near the singularity s0 where φ(s0) = +∞ and hinges on the orbits of f

avoiding repeated extremely close passes near s0. Specifically, we show that ρpp(F̃ ) = {0, ρ}
provided V (x, y) behaves like |x − s0|b + |y − y0|c near p0 = (s0, y0) with b, c > 1 satisfying

1/b + 1/c > 1 (to make 1/V integrable) and the rotation number α is the golden mean.

Those hypotheses are far from being optimal and rather aim at simplifying the exposition. In

particular, we benefit from the particularly simple self-inducing scheme for the golden rotation

(section 3).

Our ultimate example utilizes f that is a Denjoy example (section 4) exhibiting a minimal

Cantor set � whose complement is made of infinitely many orbits of wandering components:

. . . , I
(k)
−1 , I

(k)
0 , I

(k)
1 , . . ., k ∈ N. The measure µ is supported on a Denjoy continuum (the

suspension of �) the complement of which is made of infinitely many immersed discs D(k),

k ∈ N, winding on T
2. This allows carrying out a sequence of perturbations (with the C1-

norms tending to zero) each judiciously slowing the flow on D(k) with a goal of placing in the

pointwise rotation set ρpp(F̃ ) a vector ρk , k ∈ N, so that limk→∞ ρk = Cρ with C ∈ (0, 1)

and Cρ �∈ ρpp(F̃ ) (section 6).

In order to preserve the C1 smoothness, slowing within each D(k) is effected on an infinite

sequence of squares that converge to the stationary point p0. This step depends on the squares

being sufficiently big to allow for gentle (C1-small) slowing and therefore—in the simplest

instance when c = b with b ∈ (1, 2)—requires that, on passing near p0, the width of D(k) is

bounded from below by the distance to p0 raised to a power b′′ < b (see (6.9)). Because the

squares have to be placed on sufficiently many passes of D(k) near p0 to affect the average

return times, gentleness of slowing dictates suitably slow decay of the gap lengths in the Denjoy

example; specifically, we take |I (k)
n | ∼ e−k(|n| + k)−D where D > 1 satisfies D < b′′ < b

(see (4.1)).

2. The flow as a special representation

Given an orientation preserving circle diffeomorphism f : T → T, we form a quotient

T
2
f := (T × R)/〈D〉 where 〈D〉 is the group generated by the (deck) transformation

D(x, y) := (f (x), y −1). We shall often think of T
2
f as the square [0, 1]2 with the appropriate

boundary identifications and describe its points by the (standard) coordinates (x, y). T
2
f is

to serve as a convenient model of the standard torus T
2 = T × R/Z in terms of which the

rotation set was defined. Therefore, upon fixing a suitable isotopy {f y}y∈[0,1] joining f 0 = Id

and f 1 = f , we perform a C1-diffeomorphic identification T
2 → T

2
f via the quotient of

H : T × R → T × R, H(x, y) := (f y(x), y) where f y := f ⌊y⌋ ◦ f y−⌊y⌋. (Here ⌊y⌋
is the largest integer not exceeding y.) Also, lifting the isotopy {f y}y∈[0,1] to an isotopy

{f̃ y : R → R}y∈[0,1] on R so that f̃ 0 = Id yields a lift f̃ := f̃ 1 of f ; let α ∈ R denote the

rotation number of f̃ .
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Consider on T
2
f a (vertical) vector field of the form V (x, y) ∂

∂y
where V is a C1-smooth

function on T
2
f that vanishes at a single point p0 = (s0, y0) and is positive otherwise. For now,

we only ask that p0 is located off the cross-section T × 0 but, ultimately, p0 will be carefully

placed with an eye on the dynamics of f (see the last paragraph of section 4). Denote the flow

associated with V ∂
∂y

by (F t )t∈R. The return time φ(x) of (x, 0) to the circle T × 0 is given by

φ(x) :=
∫ 1

0

1

V (x, y)
dy, x ∈ T. (2.1)

Clearly, φ is finite, positive and C1 at all x �= s0 (where φ(s0) = +∞); and for any φ with

these three attributes and a small ǫ > 0, one can produce V for which the return time function

agrees with the given φ at x �∈ (s0 − ǫ, s0 + ǫ). The behaviour of φ near s0 cannot be as freely

prescribed but all we need is the following.

Fact 2.1. Suppose b, c > 1. If V (x, y) is of the form

V (x, y) = |x − s0|b + |y − y0|c (2.2)

on a neighbourhood of its zero (s0, y0), then φ(x) behaves like |x − s0|−b+b/c near s0;

specifically, the one sided limits with x → s0 of |x − s0|b−b/cφ(x) are finite and non-zero.

Proof. It suffices to compute the divergent part of the integral (2.1); namely, φ1(x) :=
∫ δ

0
(xb + yc)−1 dy where we assumed for a moment (to avoid clutter) that s0 = y0 = 0 and

δ > 0 was taken so that V (x, y) = |x|b + |y|c for |x| + |y| < 2δ. The substitution u := yx−b/c

yields

xb−b/cφ1(x) = xb−b/c

∫ δ

0

x−b(1 + (yx−b/c)c)−1 dy =
∫ δx−b/c

0

(1 + uc)−1 du,

which converges to
∫ ∞

0
(1 + uc)−1 du as x → 0+. �

Given b, c > 1, there are plenty of C1-functions V generating φ that satisfies the assertions

of fact 2.1. We shall employ one such V in section 6.

Let us now compute the rotation set of the time-one-map F 1 in terms of φ. By associating

with every (x, y) of the fundamental domain T× [0, 1] with x �= s0 the point h(x, y) := (x, t),

where t = t (x, y) is the time it takes to flow (x, 0) to (x, y), we can conjugate the dynamics of

F t that are not asymptotic to p0 to the dynamics of the special flow (T t
φ)t∈R constructed over f

and under the roof function φ. This is to say that T t
φ ◦h(x, y) = h◦F t (x, y) for all t, x, y with

x �∈ {f n(s0) : n ∈ Z}, where the map T t
φ is the time-t-map of the vector field ∂

∂t
on the space

Xφ := {(x, t) : x ∈ T, 0 � t � φ(x) < +∞} with the identifications (x, φ(x)) ∼ (f (x), 0),

x �= s0.

Consider the set of Birkhoff averages of φ,

Af (φ) :=
{

lim
n→∞

1

n
Sn

f (φ)(x) : x ∈ T, the limit exists

}

, (2.3)

where Sn
f (φ)(x) := φ(x) + · · · + φ(f n−1(x)). (Taking x = s0 places +∞ in Af (φ).)

Fact 2.2.

ρpp(F̃
1) = (1/Af (φ)) · (α, 1). (2.4)

Proof. To compute the rotation set, we have to work in the universal cover R
2 of T

2. This

is achieved by conjugating the lifted flow F̃ t on the universal cover R × R of T
2
f via the

identification H̃ : R×R → R×R that is the (unique) lift of H fixing the x-axis. Without risk
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of confusion we shall write F̃ t for that conjugated flow in this proof. Fix p ∈ R
2 for which

v := limt→∞(F̃ t (p)−p)/t exists. If v = 0, then v ∈ (1/Af (φ)) · (α, 1) due to +∞ ∈ Af (φ).

Suppose then that v �= 0. As v is unaffected by moving p along its flow line or by a deck

transformation, we may well assume that p = (x, 0) for some x ∈ R. From v �= 0, for every

n ∈ N, there is tn ∈ R such that the y-coordinate of F̃ tn(p) is n. In fact, tn = Sn
f (φ)(x) by the

very definition of φ; and we can write

F̃ tn(p) − p

tn
=

(

n

tn

)

(f̃ n(x) − x, n)

n
. (2.5)

Taking the limit with n → ∞ secures v ∈ (1/Af (φ)) · (α, 1).

Finally, any non-zero v in (1/Af (φ)) · (α, 1) is of the form v = (limn→∞
1
n
Sn

f (φ)(x))−1 ·
(α, 1) �= 0 and thus belongs to ρ(F̃ 1) by again considering p = (x, 0) in (2.5). �

3. Self-inducing

Computation of Af (φ) requires some understanding of the combinatorics (ordering) of the

orbits for the circle map f or, equivalently, for the rotation Rα : T → T, Rα(x) := x + α, to

which f is monotonically semi-conjugated. Recall that, to simplify this task, we take α to be

the golden mean,

α =
√

5 − 1

2
= 0.618 033 98 . . . , (3.1)

thus making Rα self-similar under the inducing map g : [0, 1] → [0, 1] given by

g(x) =
{

1 − α−1x if x ∈ [0, α],

2 − α−1x if x ∈ [α, 1],
(3.2)

the graph of which is depicted in the upper right corner of figure 1. Below, we review the

connection between g and Rα in detail necessary for our subsequent arguments (cf [4]).

The continued fraction expansion of α is [1, 1, 1, . . .] with the associated continued

fraction approximants pn/qn → α formed from the Fibonacci sequences (pn)
∞
n=0 =

(0, 1, 1, 2, 3, 5, . . .) and (qn)
∞
n=0 = (1, 1, 2, 3, 5, . . .); the latter also given by

qn =
1

1 + α2
(α)−n +

α2

1 + α2
(−α)n. (3.3)

Dynamically, upon fixing any x0 ∈ T, if we let xk := Rk
α(x0), the points xqn

are

characterized as the closest returns to x0; that is |xqn
− x0| = min{|xi − x0| : 0 < i � qn}.1

It is convenient to cut T at x1 and identify the resulting segment [x−
1 , x+

1 ] with U0 := [0, 1]

(see figure 1). Note that x0 gets identified with α2 = 1 − α ∈ [0, 1], a fixed point of g. For

the most part, we will be dealing with a fixed x0 and we suppress the dependence of this

construction on x0.

The segments Jn, n � 0, joining x0 to xqn
(with J0 = [x0, x

+
1 ] and J1 = [x−

1 , x0]) have

the property that the family (called the nth dynamical partition for Rα)

Pn := {Jn, . . . , R
qn+1−1
α (Jn), Jn+1, . . . , R

qn−1
α (Jn+1)} (3.4)

covers T and has pairwise disjoint interiors. We choose to record the combinatorics of Pn by a

mapping fn : T → Jn+1∪Jn that translates each long segment of the partition (i.e. Ri
α(Jn)) onto

Jn and each short segment (i.e. Ri
α(Jn+1)) onto Jn+1. (Apart from fn being possibly two-valued

1 For a, b ∈ T, we write |a − b| for their standard distance on the circle T := [0, 1]/ ∼.
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Figure 1. Centre: the dynamical partitions P0, P1, P2 and (in solid arrows) the first return interval

exchanges R0, R1, R2; Ri and Ri+1 coincide up to scaling and orientation reversal by α−1σ . Left: f1

and f2 with laps labelled by the number of iterates of R−1
α leading back to U1 and U2, respectively.

Right: rescaled f1 and f2 coincide with g and g2 where g := α−1σ ◦ f1.

at the endpoints {x1, . . . , xqn+qn+1−1}, fn(p) is uniquely defined as the first backward entry into

Un := Jn ∪ Jn+1, i.e. fn(p) = R−i
α (p) ∈ Un, where i � 0 is minimal.) By construction, we

have

f −1
n (q) =

{

{q, R1
α(q), . . . , Rqn−1

α (q)} if q ∈ Jn+1\{x0},
{q, R1

α(q), . . . , Rqn+1−1
α (q)} if q ∈ Jn\{x0}.

(3.5)

Now, Rα can be presented as the interval exchange R0 : U0 → U0 swapping J1 = [x−
1 , x0]

and J0 = [x0, x
+
1 ] as depicted at the top centre of figure 1. The first return to U1 = J1 ∪ J2 =

[x−
1 , x2] under R0 is, in turn, the interval exchange R1 : U1 → U1 swapping J1 and J2. Using

α2 + α = 1, one checks that R1 is conjugated to R0 via rescaling by α−1 followed by an

isometric orientation reversal σ :

R0 ◦ σ ◦ α−1 = σ ◦ α−1 ◦ R1. (3.6)

An easy induction argument shows then that Pn results from repeating the subdivision process

that refines P0 to P1, which can be expressed as

fn = αnσ n ◦ gn, (3.7)

where αnσ n := αn ◦ σ n = σ n ◦ αn : [0, 1] → Jn ∪ Jn+1 sends α2 to x0 and identifies [0, α2]

with Jn+1 and [α2, 1] with Jn. (Compare the left- and right-hand sides of figure 1.)

From (3.7), g−n = f −1
n ◦ αnσ n and g−n ◦ gn = f −1

n ◦ fn. Therefore, from (3.5), we see

that preimages of points under iterates of g constitute orbit segments of Rα; in particular, for

p ∈ [0, 1]\{x0, . . . , xqn+qn+1−1}, (for which gn(p) is uniquely defined) we have

g−n ◦ gn(p) =
{

{q, R1
α(q), . . . , Rqn−1

α (q)} if gn(p) ∈ [0, α2),

{q, R1
α(q), . . . , Rqn+1−1

α (q)} if gn(p) ∈ (α2, 1],
(3.8)

where q := αnσ n(gn(p)) is the first entry of R−i
α (p), i � 0, into Un = Jn ∪ Jn+1.

4. Denjoy example and singularity placement

As explained before, the diffeomorphism f : T → T used in our ultimate construction (in

section 6) is a Denjoy example with infinitely many distinct orbits of gaps (i.e. wandering
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intervals). Below, we recount the construction of such f (cf [3, 10]) with a goal of finding

points s0 (to later serve as the singularity locus of the return time function φ) that are not too

closely approached by the wandering intervals.

Consider an infinite collection {x(k)
m : m ∈ Z}, k ∈ N, of distinct orbits of Rα labelled so

that Rα(x(k)
m ) = x

(k)
m+1. We intend to blow up each point x(k)

m into a segment I (k)
m of length

l(k)
m := (|m| + k)−De−k, (4.1)

where D > 1 so that L :=
∑

k,m l(k)
m < +∞. (Later, in (6.1), we shall further restrict D.) To

this end, the formula

h0(x) :=



x +
∑

m,k:0�x
(k)
m <x

l(k)
m



 , x ∈ [0, 1], (4.2)

defines a monotonic function h0 : [0, 1] → [0, L + 1] which is continuous except for a jump

of magnitude l(k)
m at each x(k)

m . The segment I (k)
m is defined as the span of this jump:

I (k)
m := [h(x(k)

m ), h(x(k)
m ) + l(k)

m ]. (4.3)

To construct f , set

j0(x) := 1 +
∑

m,k

b(k)
m (x), x ∈ [0, L + 1], (4.4)

where b(k)
m is a continuous function supported on I (k)

m with
∫

I
(k)
m

1 +b(k)
m = l

(k)
m+1 and max |b(k)

m | �

2(l(k)
m )−1

∫

I
(k)
m

b(k)
m (as is the case for a suitable tent function over I (k)

m ). The last inequality

amounts to max |b(k)
m | � 2(l

(k)
m+1/l(k)

m − 1); so the maximum converges to 0 as |m| + k → ∞
securing continuity of the function j0. Assuming that α is not among the x(k)

m so that h0(α) is

a singleton, we set

f0(x) := h0(α) +

∫ x

0

j0(t) dt mod(L + 1), x ∈ [0, L + 1]. (4.5)

After rescaling [0, L + 1] to [0, 1], h0 and f0 yield h and f : T → T such that f is a C1-

diffeomorphism, h ◦ Rα = f ◦ h, and f (I (k)
m ) = I

(k)
m+1 for k ∈ N, m ∈ Z, as desired. The

following bound on the jumps of h will be used in section 6.

Fact 4.1. For a.e. s ∈ T, the derivative h′(s) exists and equals 1 and we have

∀D′∈(0,D) ∃C>0 ∀τ∈T |h(τ+) − h(τ−)| � C|τ − s|D′
. (4.6)

(Here h(τ±) := limt→τ± h(t).)

Proof. The Cantor set � obtained by removing the interiors of the segments I (k)
m is the

unique minimal set for f . Since its measure |�| is positive and f ′(x) = 1 for x ∈ � by

(4.4), the unique invariant measure for f is just the Lebesgue measure restricted to �, Leb|�.

Under a semiconjugacy of f to Rα , Leb|� must map to the Lebesgue measure on T, i.e.

h−1
∗ (Leb|�) = Leb and so (h−1)′(x) exists and equals 1 for a.e. x ∈ �. As h is also a.e.

continuous, h′(s) = 1/(h−1)′(h(s)) = 1 for a.e. s ∈ T.

For the proof of (4.6), we fix D′ ∈ (0, D) and consider a jump locus τ = x(k)
m since for other

τ there is nothing to prove. Denote sn := Rn
α(s), n ∈ Z. We note that |x(k)

m −s0| = |x(k)
0 −s−m|,

rewrite (4.6) as
∣

∣

∣
x

(k)
0 − s−m

∣

∣

∣
� (C−1e−k(|m| + k)−D)

1
D′ , (4.7)
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and see that it suffices to prove that a.e. s0 ∈ [0, 1] belongs to all but finitely many sets

G(k)
m :=

{

s0 : dist
(

x
(k)
0 , {s−m, . . . , sm}

)

>
e

−k

D′

|m| D

D′

}

, (k, m) ∈ N × Z. (4.8)

Because qn ∼ α−n (i.e. {qn/α
−n}n∈N ⊂ [c−1, c] for some c > 0, cf (3.3)), to each m ∈ Z we

can associate qn comparable to |m| so that ⌊qn/2⌋ > |m| and the complement of G(k)
m satisfies

(G(k)
m )c ⊂

{

s0 : dist
(

x
(k)
0 , {s−⌊qn/2⌋+1, . . . , s⌈qn/2⌉−1}

)

� Ce
−k

D′ αn D

D′
}

, (4.9)

where C > 0 is some constant independent of k, m, n. The right-hand side of (4.9) coincides

in measure with that of its image under R
⌈qn/2⌉−1
α ,

D(k)
n :=

{

s0 : dist
(

x
(k)
0 , {s−qn+2, . . . , s0}

)

� Ce
−k

D′ αn D

D′
}

, (4.10)

and to be done (via Borell–Cantelli lemma) all we need is the summability
∑

k,n∈N

|D(k)
n | < +∞. (4.11)

To prove (4.11), after fixing k ∈ N, we shall use the inducing scheme introduced in

the previous section with x0 := x
(k)
0 to estimate |D(k)

n |. Note that, since the return time to

Un = Jn ∪ Jn+1 (under Rα) is at least qn, among the points {s−qn+2, . . . , s0} at most one can

belong to Un; and if such a point exists it equals fn(s0), the first backward entry into Un. It

follows that |x(k)
0 − fn(s0)| � C1 dist(x

(k)
0 , {s−qn+2, . . . , s0}) for a suitable C1 that depends on

α only (concretely, C1 = α−1). Thus, factoring in that |x(k)
0 − gn(s0)| = α−n|x(k)

0 − fn(s0)|
(from (3.7)), we see that

D(k)
n ⊂

{

s0 :
∣

∣

∣
x

(k)
0 − gn(s0)

∣

∣

∣
� C2e− k

D′ α( D

D′ −1)n
}

= g−n(B(k)
n ), (4.12)

where C2 := C1C and

B(k)
n :=

{

y :
∣

∣

∣
x

(k)
0 − y

∣

∣

∣
< C2e− k

D′ α( D

D′ −1)n
}

. (4.13)

Now, the map g has an invariant measure µ∗ that is absolutely continuous with respect to

the Lebesgue measure with the density equal to

ψ∗(x) :=















1

1 + α2
for x ∈ [0, α2],

α−1

1 + α2
for x ∈ [α2, 1].

(4.14)

We can therefore write

min ψ∗ |D(k)
n | � µ∗(D

(k)
n ) � µ∗(g

−n(B(k)
n )) = µ∗(B

(k)
n ) � max ψ∗|B(k)

n |

= max ψ∗C2e− k

D′ α( D

D′ −1)n. (4.15)

Since
∑

n,k e− k

D′ α( D

D′ −1)n < ∞, the desired summability condition (4.11) follows. �

The above argument shows that only a null measure set of s0 can belong to infinitely many

sets in the middle of (4.12). As a consequence, there is a full measure set of s0 ∈ T such that

∀ζ>0, k∈N ∃δ>0 ∀n∈N|x(k)
0 − gn(s0)| > δαζn. (4.16)

(Note that the action of g on T above depends on k because so does the identification of [0, 1]

with T effected by cutting T at the point x
(k)
1 and placing x

(0)
k at a fixed point of g, see section 3.)

Therefore, it is possible to select a point s0 satisfying the assertions of fact 4.1 (including

h′(s0) = 1 and (4.6) with s = s0) as well as the inequality (4.16). Because h can be
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precomposed with a rotation, we may additionally arrange that h(s0) = s0 (just for notational

expediency). In what follows, we shall assume that the point p0 = (s0, y0) at which the speed

function V vanishes is placed so that the sole singularity of the return time function φ occurs

at such s0.

5. Pre-perturbation rotation set

This section is devoted to the proof of the following proposition implying (via fact 2.2) that

the pointwise rotation set consists of two points only provided the return time function φ is

majorized near the singularity locus s0 by |x − s0|−γ with γ ∈ (0, 1); as it is the case (with

γ := b − b/c) for the φ in fact 2.1 as soon as φ is integrable (i.e. when 1/b + 1/c > 1).

Proposition 5.1. Suppose that φ is positive continuous on T\{s0} and that there exists C1 > 0

and γ ∈ (0, 1) so that

φ(x) � C1|x − s0|−γ , x ∈ T\{s0}. (5.1)

Let f be either the golden rotation Rα or the Denjoy example constructed in section 4. Then

the set of Birkhoff averages of φ satisfies

Af (φ) = {ψ̄, ∞}, (5.2)

where ψ̄ is the average of φ with respect to the unique ergodic measure of f . Moreover, in the

Denjoy case, if z belongs to one of the wandering segments I
(k)
0 , k ∈ N, then

lim
m→∞

1

m
Sm

f (φ)(z) = ψ̄. (5.3)

Proof. In the course of this proof, C2, C3, C4, etc denote some suitable constants that depend

on f and φ only. We focus on the Denjoy case which requires a superset of the arguments

needed for f = Rα (in which case we set h := Id).

Recall that, at each x ∈ T, h is continuous or has a jump with well defined one sided

limits h(x±) := limy→x± h(y). Set, for x ∈ T \ {s0},
ψ(x) := max

z∈[h(x−),h(x+)]
φ(z) and ψ−(x) := min

z∈[h(x−),h(x+)]
φ(z). (5.4)

For x �∈ {x(k)
m }k∈N,m∈Z (the locus of jumps of h), ψ− and ψ are continuous at x and coincide:

ψ(x) = ψ−(x) = φ◦h(x). As a consequence of the monotonicity of h together with s0 = h(s0)

and h′(s0) = 1 (per the last paragraph of section 4), we have

lim
x→s0

max
z∈[h(x−),h(x+)]

z − s0

x − s0

= lim
x→s0

h(x) − s0

x − s0

= h′(s0) = 1,

which guarantees that (5.1) has an analogue for ψ :

ψ(x) �

{

max
z∈[h(x−),h(x+)]

C1

∣

∣

∣

∣

z − s0

x − s0

∣

∣

∣

∣

−γ
}

|x − s0|−γ
� C2|x − s0|−γ , x ∈ T\{s0}. (5.5)

In particular, ψ is integrable:

ψ̄ :=
∫

T

ψ− =
∫

T

ψ < +∞.

(Actually, from the proof of fact 4.1,
∫

T
ψ =

∫

�
φ where � is the minimal set of f .)

By the definition of ψ and ψ−, if x ∈ T and z ∈ [h(x−), h(x+)] (which includes z = h(x)

for x �∈ {x(k)
m }k∈N,m∈Z), then the Birkhoff sums over f and over Rα are related by

Sm
Rα

(ψ−)(x) � Sm
f (φ)(z) � Sm

Rα
(ψ)(x), m ∈ N. (5.6)
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Another preliminary observation is that

lim inf
m→∞

1

m
Sm

Rα
(ψ−)(x) � ψ̄, x ∈ T, (5.7)

as can be seen by approximating2 ψ− by continuous ψN � ψ− so that
∫

ψN →
∫

ψ− = ψ̄

as N → ∞ and then writing lim infm→∞
1
m

Sm
Rα

(ψ−)(x) � limm→∞
1
m

Sm
Rα

(ψN )(x) =
∫

ψN ,

where the second pointwise limit exists by the unique ergodicity of Rα .

In view of (5.6) and (5.7), to establish (5.2), it suffices to show that, for any x0 ∈ T whose

forward Rα-orbit misses s0, there is a sequence (nj ) ⊂ N, nj → ∞, such that

lim sup
j→∞

1

qnj

S
qnj

Rα
(ψ)(x0) � ψ̄. (5.8)

In order to prove (5.8), fix an arbitrary x0 ∈ T \ {R−n
α (s0) : n � 0}. If x0 = x

(k)
0 for some

k ∈ N, take δ, ζ ∈ (0, 1) as in (4.16) with ζ small enough so that

1 − (1 + ζ )γ > 0. (5.9)

We use the inducing map g defined in section 3 to determine (nj ) as follows. (Recall that x0 is

identified with α2 ∈ [0, 1] and is fixed by g.) We have gn(s0) �= x0 for all n � 0 as otherwise

s0 ∈ g−n(x0) putting (via (3.8)) s0 on the forward Rα-orbit of x0, contrary to our assumption

on x0. The expansiveness of g supplies nj → ∞ and δ > 0 (which we may take the same as

above) such that

|x0 − gnj (s0)| > δ for all j ∈ N. (5.10)

Now, fix an arbitrary n ∈ N of which we require that n = nj for some j unless x0 = x
(k)
0

for some k. This is so that the conjunction of (4.16) and (5.10) secures the following key

ingredient of our subsequent estimates

|x0 − gn(s0)| > δαζn. (5.11)

We are ready to majorize the Birkhoff average 1
m

Sm
Rα

(ψ)(x0) for any m ∈ N such that

qn−1 � m � qn. For an arbitrary (small) � > 0, we shall estimate separately the two terms of

the sum

1

m
Sm

Rα
(ψ)(x0) =

1

m

∑

τ∈{x0,...,xm−1}, |τ−s0|��

ψ(τ) +
1

m

∑

τ∈{x0,...,xm−1}, |τ−s0|<�

ψ(τ). (5.12)

The first term equals 1
m

Sm
Rα

(ψ (�))(x0) where ψ (�) is a truncation of ψ :

ψ (�)(t) :=
{

ψ(t) if |t − s0| � �,

0 if |t − s0| < �,
(t ∈ [0, 1]). (5.13)

The point of this observation is that

lim sup
m→∞

1

m
Sm

Rα
(ψ (�))(x) �

∫

ψ (�)
� ψ̄, x ∈ T, (5.14)

as can be seen by appoximating with continuous ψN � ψ (�) so that
∫

ψN →
∫

ψ (�) as

N → ∞ and arguing as for (5.7).

To estimate the second term in (5.12), we use the properties of g. From (3.8), the preimage

g−n(α2) = {x0, . . . , xqn+1−1} is the union of g−n(α2
−) := limt→α2

−
g−n(t) = {x0, . . . , xqn−1}

and g−n(α2
+) := limt→α2

+
g−n(t) = {x0, . . . , xqn+1−1}. Since g is a Markov map with a constant

slope α−1 (cf figure 1), there is C3 > 1 such that g−n(α2) consists of at most C3α
−n points

2 This hinges on the measure of the set of discontinuity points of ψ− being zero.
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no two closer to each other than C−1
3 αn. Also, (5.11) amounts to |α2 − gn(s0)| > δαζn and

implies that dist(s0, g
−n(α2)) > C−1

3 δα(1+ζ )n. Thus, using (5.5), we can estimate the second

term in (5.12) by

1

m

∑

τ∈g−n(α2
−), |τ−s0|<�

ψ(τ) �
1

m
2C2(C

−1
3 δα(1+ζ )n)−γ +

1

m
2

⌈C3�α−n⌉
∑

k=1

C2(kC−1
3 αn)−γ , (5.15)

where the first term accounts for the two points τ ∈ g−n(α2
−) closest to s0 and the second

term accounts for all other τ ∈ g−n(α2
−) with |τ − s0| < � by exploiting their linear

ordering on both sides of s0 with the spacing bounded below by C−1
3 αn. Therefore, since

also
∑⌈C3�α−n⌉

k=1 k−γ ∼
∫ C3�α−n

k=1
k−γ dk ∼ (C3�α−n)1−γ and m−1 ∼ q

−1
n ∼ αn, we have

1

m

∑

τ∈g−n(α2
−), |τ−s0|<�

ψ(τ) � C4α
(1−(1+ζ )γ )n + C5α

nα−γ n(α−n)1−γ �1−γ

� C4α
(1−(1+ζ )γ )n + C5�

1−γ

.(5.16)

In view of (5.9), the inequalities (5.16) and (5.14) guarantee that given ǫ > 0 one can take

� > 0 small enough so that, once qn−1 � m � qn are sufficiently large, we have

1

m
Sm

Rα
(ψ)(x0) � ψ̄ + ǫ. (5.17)

As this applies, in particular, to m = qn for n = nj and all large j ∈ N, we obtain our goal

inequality (5.8) (and thus secure (5.2)).

Finally, in the case when x0 = x
(k)
0 for some k ∈ N, we placed no restrictions on n ∈ N

so (5.17) holds for all sufficiently large m ∈ N. This yields the ‘moreover part’ (5.3) of the

proposition if one also brings to bear (5.7) and (5.6). �

6. Perturbation and conclusion

We finalize the construction of the example and the proof of theorem 1.1 by describing the

perturbation that is the object of the following proposition.

Proposition 6.1. Suppose that a C1 function V satisfies the hypotheses of fact 2.1, its

associated return time function φ and the circle map f satisfy the hypotheses of proposition 5.1

(so that Af (φ) = {ψ̄, ∞}), and that the exponents b, c, D > 1 are such that

1/b + 1/c > 1 and b > D and cD > b. (6.1)

Given a bounded increasing sequence (ck)k∈N ⊂ (ψ̄, ∞) such that c∞ := limk→∞ ck does not

belong to the sequence, it is possible to perturb V to a C1 function Vnew for which the return

time φnew satisfies

{ψ̄, c1, c2, . . . ,∞} ⊂ Af (φnew) ⊂ [ψ̄, c∞) ∪ {∞}. (6.2)

Proof of proposition 6.1. Fix a sequence (ck)k∈N ⊂ (ψ̄, ∞) as in the hypothesis. We shall

modify φ on some of the gaps I (k)
m to secure (6.2) and only then describe how to construct a

C1 function Vnew that realizes this modified φnew.

We seek φnew in the form

φnew(x) := φ(x) + β(x), β(x) :=
∑

k∈N

∞
∑

j=j
(k)
0

a
(k)
j β

I
(k)

n
(k)
j

(x), (6.3)
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where j
(k)
0 , n

(k)
j and a

(k)
j are yet to be chosen and βJ is a non-negative bump function supported

on the length |J |/2 central subsegment of J , symmetric about the centre of J , with maximum

1, and with the C1-norm proportional to |J |−1.

Fix σ > 0 small and η > 1 large so that

b′′ := (D + σ)(1/η + 1) < b (6.4)

as made possible by D < b. In the course of the proof, we shall use C6, C7, etc to denote

suitable constants that depend only on f and φ. Let

Nj := ⌊j η+1⌋.

Because Nj+1 − Nj � C6j
η, the Rα-orbit segment x

(k)
Nj

, . . . , x
(k)
Nj+1

contains a point; denote it

by x
(k)

n
(k)
j

, Nj � n
(k)
j < Nj+1, such that

∣

∣x
(k)

n
(k)
j

− s0

∣

∣ < C7j
−η for j ∈ N. (6.5)

(That an Rα-orbit segment of length N is C8/N dense is apparent for N = qn from the

dynamical partition PN (see (3.4)), and it follows for any N by considering qn � N < qn+1.)

Having selected n
(k)
j , we take a

(k)
j > 0 so that 1

n
(k)
j +1

(a
(k)
1 + · · · + a

(k)
j ) = ck − ψ̄ (j ∈ N).

In view of (5.3), at the centre point z
(k)
0 of I

(k)
0 , we then have

lim
j→∞

1

n
(k)
j + 1

S
n

(k)
j +1

f (φnew)(z
(k)
0 ) = ψ̄ + (ck − ψ̄) = ck (6.6)

because S
n

(k)
j +1

f (φnew)(z
(k)
0 ) = S

n
(k)
j +1

f (φ)(z
(k)
0 ) + a

(k)

j
(k)
0

+ · · · + a
(k)
j .

The subsequential limit (6.6) already guarantees existence of the limit

lim
n→∞

1

n
Sn

f (φnew)(z
(k)
0 ) = ck (6.7)

since, for any sufficiently large n ∈ N, we can find j with n
(k)
j < n � n

(k)
j+1, and we have

S
n

(k)
j +1

f (φnew)(z
(k)
0 ) � Sn

f (φnew)(z
(k)
0 ) � S

n
(k)
j+1+1

f (φnew)(z
(k)
0 ), (6.8)

where limj→∞
n

(k)
j+1+1

n
(k)
j +1

→ 1 due to
Nj+1

Nj
∼ (1 + 1/j)η+1 → 1. (Note that the choice of j

(k)
0 is

immaterial for (6.7); we shall commit to it only later to assure C1-smoothness of Vnew.)

We are ready to prove (6.2). The first inclusion is clear by design (combine (5.2) and (6.7)).

To see the other inclusion, consider x ∈ T with a finite limit c := limn→∞
1
n
Sn

f (φnew)(x) that

is not ψ̄ . By proposition 5.1, such x has to be in one of the gaps I (k)
m , and we may well assume

that x ∈ I
(k)
0 for some k ∈ N as the limit is insensitive to replacing x by R−m

α (x). By utilizing

(5.3) of proposition 5.1 and the fact that the bump functions β
I

(k)
m

have the maxima at the centres

z(k)
m of the gaps, we can write

c − ψ̄ = lim
n→∞

1

n
Sn

f (φnew)(x) − lim
n→∞

1

n
Sn

f (φ)(x) = lim
n→∞

1

n
Sn

f (β)(x)

� lim
n→∞

1

n
Sn

f (β)(z
(k)
0 ) = lim

n→∞

1

n
Sn

f (φnew)(z
(k)
0 ) − lim

n→∞

1

n
Sn

f (φ)(z
(k)
0 ) = ck − ψ̄.

Hence, c � ck < c∞, and the second inclusion in (6.2) follows.

We are left with showing that the φnew constructed above can arise from a C1-flow (F t )t∈R

on T
2
f of the type described in section 2. We have to modify the speed function V , originally

generating φ as its return time, to account for the series β of bump functions added to form
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φnew in (6.3). Recall that V has its sole zero at p0 = (s0, y0). Consider the family of squares

R
(k)
j = I

(k)

n
(k)
j

× J
(k)
j , k, j ∈ N, with centres on the line y = y0. By using (4.1) for the lengths

|I (k)
m |, we see that the side length of the square compares to the distance

d
(k)
j := dist((s0, y0), R

(k)
j )

as follows:

l
(k)

n
(k)
j

= e−k(n
(k)
j + k)σ (n

(k)
j + k)−D−σ

� 1
2
(j (1+η))−D−σ = 1

2
(j−η)(D+σ)(1/η+1)

� C8(d
(k)
j )(D+σ)(1/η+1) = C8(d

(k)
j )b

′′
, (6.9)

where the first inequality holds for j � j
(k)
0 with j

(k)
0 chosen at this point suitably large for

each k ∈ N and the second inequality follows from (6.5) coupled with h′(s0) = 1 (as stipulated

by the choice of s0 in the last paragraph of section 4).

On the other hand, upon fixing D′ ∈ (1, D) with D − D′ small enough so that b < D′c
(as secured by the hypothesis (6.1)), the inequality (4.6) and h′(s0) = 1 imply that

l
(k)

n
(k)
j

< C9(d
(k)
j )D

′
. (6.10)

Therefore, when d
(k)
j is sufficiently small and the points (x, y) of R

(k)
j are close enough to

p0 so that V (x, y) is given by (2.2), we see that the term |x − s0|b is of order (d
(k)
j )b and

thus dominates the term |y − y0|c � C ′
9(l

(k)

n
(k)
j

)c < C ′
9(C9(d

(k)
j )D

′
)c ∼ (d

(k)
j )D

′c. This yields a

majorization of the maximum value of V on R
(k)
j :

max
R

(k)
j

V � C10(d
(k)
j )b. (6.11)

The inequalities (6.9), (6.10) and (6.11) give us all necessary control of the geometry involved

in the perturbation.

Looking at (6.3), our task is to slow the flow down inside R
(k)
j in such a way that the time

of flight through R
(k)
j along the vertical segment with ordinate x is increased by a

(k)
j β

I
(k)

n
(k)
j

(x).

We shall not burden the reader with explicit formulae for how to achieve that but rather explain

why this can be done so that the resulting function Vnew is still C1. It is a fortunate fact that

the size of the C1 perturbation can be solely controlled by the distance d
(k)
j of R

(k)
j to (s0, y0)

and the C0-norm of V |
R

(k)
j

; it is insensitive to the magnitude of the a
(k)
j (i.e. the severity of the

slowing). Indeed, imagine that we want to stop the flow completely on the central subsquare

Q
(k)
j of R

(k)
j with the side length 1

2
l
(k)

n
(k)
j

. That would entail lowering the speeds to zero from

values not exceeding the order of (d
(k)
j )b (see (6.11)) in a distance at least of order (d

(k)
j )b

′′

(see (6.9)). This can be done by adding to V a C1 function supported on R
(k)
j and of the

C1-norm majorized by C11(d
(k)
j )b−b′′

. Since b − b′′ > 0 (cf (6.4)), as d
(k)
j → 0, the C1-norms

of the perturbations on the R
(k)
j tend to 0. Because the squares {R(k)

j }
k∈N,j�j

(k)
0

have p0 as its

only accumulation point (as it follows from (6.9)), this guarantees that the perturbations they

support constitute a series of functions converging in the C1-norm. The limit function Vnew is

guaranteed to be C1. �

Proof of theorem 1.1. Fix b, c, D > 1 so that (6.1) holds. (For instance, taking any

b = c ∈ (1, 2) and then picking D ∈ (1, b) will do.) It is easy to produce a function V

for which the hypotheses of proposition 6.1 are satisfied, and then the flow associated with the

C1 function Vnew supplied by proposition 6.1 has the desired rotation set. �
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