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Abstract
We give a geometric proof of classical results that characterize Pisot numbers

as algebraic λ > 1 for which there is x 6= 0 with λnx → 0 (mod 1) and identify
such x as members of Z[λ−1] · Z[λ]∗ where Z[λ]∗ is the dual module of Z[λ].

A real number λ > 1 is called a Pisot number iff it is an algebraic integer and all
its Galois conjugates (other than λ) are of modulus less that one — the golden mean
(1+

√
5)/2 is an example. Pisot’s 1938 thesis [4] and, independently, Vijayaraghavan’s

1941 paper [7] contain the following beautiful characterization.

Theorem 1 (Pisot,Vijayaraghavan) Suppose that λ > 1 is an algebraic number
(over the field of rational numbers Q). The following are equivalent

(i) λ is a Pisot number;

(ii) There exists non-zero real x such that limn→∞ λnx = 0 (mod 1) (i.e.
limn→∞ min{|λnx − k| : k ∈ Z} = 0 where Z are rational integers).

Moreover, any x satisfying (ii) belongs to Q(λ), the field extension of Q by λ.

The property (ii) is responsible for Pisot numbers turning up in a variety of contexts
seemingly unrelated to their definition. The reader may want to savor the ensuing
connections by reading [5, 2]. Our interest in Pisot’s theorem stems from its role in
determination of spectrum for the translation flow on substitution tiling spaces, as
exhibited by [6] and further exploited in [1]. We shall not discuss that connection here
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and turn instead to our goal of supplying a proof of the theorem that offers a direct
geometrical insight — something that is missing from the considerations of the classical
proofs (as found in [3] or [5]). We shall also derive the following characterization of
the set

Xλ := {x ∈ R : lim
n→∞

λnx = 0 (mod 1)}. (1)

In [3], this result is also attributed to Pisot and Vijayaraghavan.

Theorem 2 (Pisot,Vijayaraghavan) Suppose λ > 1 is Pisot. Let p′ be the deriva-
tive of the monic irreducible polynomial of λ over Z, and Z[λ]∗ := 1

p′(λ)
Z[λ]. Then

x ∈ Xλ iff λnx ∈ Z[λ]∗ for some n ≥ 0; i.e.,

Xλ =
⋃

n≥0

λ−nZ[λ]∗ = Z[λ−1] · Z[λ]∗. (2)

We note that Z[λ]∗ is just an explicit form (as given by Euler) of the dual of the
module Z[λ] typically defined as Z[λ]∗ := {x ∈ Q(λ) : trace(xy) ∈ Z ∀y ∈ Z[λ]} and
that Z[λ]∗ is non-zero only if λ is an algebraic integer (see Prop. 3-7-12 in [8]). That
x ∈ Xλ for x ∈ Z[λ]∗ is clear by the following standard argument (emulating Theorem
1 in [5]). Let λ = λ1, λ2, . . . , λd be all the roots of p (the Galois conjugates of λ) and
x = x1, . . . , xd be the images of x under the natural isomorphisms Q(λ) → Q(λi),
xi ∈ Q(λi). Then

Z ∋ Tn := trace(λnx) =

d∑

i=1

λn
i xi = λnx +

d∑

i=2

λn
i xi, (3)

and so |λnx − Tn| → 0 due to the Pisot hypoythesis: |λi| < 1 for i = 2, . . . , d.

From now on, consider a fixed algebraic number λ > 1. Denote by p its monic
minimal polynomial, which is obviously irreducible. Let d := deg(p), and fix a d × d
matrix A over Q with eigenvalue λ. The companion matrix of p is one such A, and
any other is similar to it over Q. If λ is an algebraic integer then A can be taken over
Z. Conversely, if A preserves some lattice in L ⊂ Rd, AL ⊂ L, then λ is an algebraic
integer. Here by a lattice we understand a discrete rank d subgroup of Rd— Zd being
the simplest example.

We shall frequently use the fact that A is irreducible over Q: if W is a non-zero
subspace of Qd and A(W ) ⊂ W , then W = Qd (as otherwise the characteristic poly-
nomial of A|W would divide p). Also, by irreducibility of p, A has simple eigenvalues
and is diagonalizable over C so that we have a splitting

Rd = Es ⊕ Ec ⊕ Eu

where Es, Ec, Eu are the linear spans of the real eigenspaces corresponding to the
eigenvalues of modulus less, equal, and greater than 1, respectively. We shall see that,
for v ∈ Rd \ {0}, Anv → 0 iff v ∈ Es lies at the very heart of Pisot’s theorem. Below,
〈·|·〉 is the standard scalar product in Rd.
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Lemma 1 If 〈Anv0|k0〉 → 0 (mod 1) for some v0 ∈ Rd \ Es and k0 ∈ Zd \ {0}, then
A leaves invariant some lattice in Qd; i.e., λ is an algebraic integer.

Lemma 2 Suppose that A has entries in Z and k0 ∈ Zd \ {0}. If 〈Anv0|k0〉 →
0 (mod 1) for v0 ∈ Rd, then v0 ∈ Qd + Es.

Proof of Theorem 1: Taking x = 1 in (3) shows that (i) implies (ii), so it is left to
show (i) from (ii). Pick ω ∈ Rd to be an eigenvector of A corresponding to λ, Aω = λω.
Fix k0 ∈ Zd \ {0}. Observe that 〈k0|ω〉 6= 0 by irreducibility of the transpose AT of A
(since {q ∈ Qd : 〈q|ω〉 = 0} is AT invariant). Thus, in the linear span linR(ω) of ω
over R, we can find v0 so that x = 〈v0|k0〉. In this way,

λnx = λn〈v0|k0〉 = 〈Anv0|k0〉, v0 ∈ linR(ω). (4)

From x 6= 0, v0 6∈ Es and so λ must be an algebraic integer by Lemma 1. By Lemma 2,
v0 = q0 + z for some z ∈ Es and q0 ∈ Qd; and q0 6= 0 from v0 6∈ Es. Consider,
W := Qd ∩ (Es ⊕ linR(ω)). Irreducibility of A, AW ⊂ W and q0 ∈ W force W = Qd.
Thus Es ⊕ linR(ω) = Rd and λ is Pisot. 2

We turn our attention to proving the lemmas now. The two proofs will partially
overlap and could be combined into a single more compact argument, but we shall keep
them separate because (in applications) λ is often a priori known to be an algebraic
integer. In that case, Pisot’s theorem can be viewed as a feature of the dynamics of
the endomorphism f : Td → Td, x (mod Zd) 7→ Ax (mod Zd), induced by A on the
d-dimensional torus, Td := Rd/Zd. Beside the toral endomorphism f , our main tool
will be the concept of duality of lattices. Recall that the dual of a lattice L is defined
as L∗ := {v ∈ Rd : 〈v|l〉 ∈ Z ∀l ∈ L}. One easily checks that (Zd)∗ = Zd. For
any lattice L, after expressing it as L = BZd for some nonsingular matrix B, we have
L∗ = (BZd)∗ = (BT )−1Zd where BT is the transpose of B. In particular, L∗ is also a
lattice.

Proof of Lemma 1: Let V := {v ∈ Rd : 〈Anv|k0〉 → 0 (mod 1)} and K := {k ∈ Qd :
〈Anv|k〉 → 0 (mod 1) ∀v ∈ V }. These are subgroups of Rd, A(V ) = V , AT (K) = K,
and v0 ∈ V , k0 ∈ K. Irreducibility of AT forces linQ(K) = Qd so that we can find
linearly independent k1, . . . , kd ∈ K. Let Γ be the lattice generated by kj’s, Γ∗ be
its dual, and χj : Rd/Γ∗ → C be the associated basis characters on the torus Rd/Γ∗;
namely, χj(x (mod Γ∗)) := exp(2πi〈kj|x〉), x ∈ Rd, j = 1, . . . , d.

The convergence 〈Anv0|kj〉 → 0 (mod 1) translates to χj(A
nv0 (mod Γ∗)) →

1, which (by continuity of χj and compactness of Rd/Γ∗) is equivalent to
dist(Anv0 (mod Γ∗), χ−1

j (1)) → 0. Therefore, dist(Anv0 (mod Γ∗), G) → 0 where

G :=
⋂d

j=1 χ−1
j (1) = {0 (mod Γ∗)}, which is to say that

dist(Anv0, Γ
∗) → 0. (5)

Fix ǫ > 0 so that, for x, y ∈ AΓ∗ ∪ Γ∗, dist(x, y) < ǫ forces x = y. (This is possible
because AΓ∗/Γ∗ is discrete in Rd/Γ∗, as can be seen by picking a ∈ N so that aA has all
integer entries and observing that AΓ∗ ⊂ a−1Γ∗, which yields AΓ∗/Γ∗ ⊂ (a−1Γ∗)/Γ∗.)
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From (5), there are un ∈ Γ∗, n ∈ N, such that dist(Anv0, un) → 0. Since,
dist(un+1, Aun) ≤ dist(un+1, A

n+1v0)+dist(AAnv0, Aun), we have dist(un+1, Aun) → 0
and so, as soon as dist(un+1, Aun) < ǫ, it must be that un+1 = Aun. Therefore, for
some n0 ∈ N and all l ≥ 0, we have Alun0

= un0+l ∈ Γ∗. Now, from v0 6∈ Es, Anv0 6→ 0
so that un0

6= 0. But un0
∈ M := {v ∈ Γ∗ : Alv ∈ Γ∗ ∀l ≥ 0}, which makes M a

nonzero subgroup of Γ∗. Clearly AM ⊂ M . By irreducibility of A, linQ(M) = Qd so
that M is a lattice. 2

Proof of Lemma 2: Let f : Td → Td be the toral endomorphism associated to
A, χ : Td → C be the character associated to k0, χ(x (mod Zd)) := exp (2πi〈x|k0〉),
and set p := v0 (mod Zd). The hypothesis 〈Anv0|k0〉 → 0 (mod 1) translates to
χ(fn(p)) → 1, which is equivalent to dist(fn(p), G) → 0 where G := χ−1(1). We claim
that, in fact,

dist(fn(p), G∞) → 0, G∞ :=
⋂

n≥0

f−n(G). (6)

Indeed, otherwise fnk(p) → w 6∈ f−l(G) for some w, l ≥ 0, and nk → ∞; and so
fnk+l(p) → f l(w) 6∈ G contradicting dist(fn(p), G) → 0.

To identify G∞ as a finite subgroup of Td, consider its lift to Rd,

Γ := G∞ + Zd := {x ∈ Rd : x (mod Zd) ∈ G∞}.

Denote by Lk0
the smallest sublattice of Zd containing (AT )nk0 for all n ≥ 0. Its dual,

L∗
k0

, is a lattice in Qd. For v ∈ Rd, we have v ∈ Γ iff 〈Anv|k0〉 = 〈v|(AT )nk0〉 ∈ Z for
all n ≥ 0 iff v ∈ L∗

k0
. Thus G∞ = Γ/Zd where

Γ = L∗
k0

⊂ Qd. (7)

Let qn ∈ G∞ realize the distance in (6) so that dist(fn(p), qn) → 0 and thus also
dist(f(qn), qn+1) → 0. Since G∞ is discrete, there is n0 ∈ N such that

qn+1 = f(qn), n ≥ n0. (8)

Moreover, if we pick ǫ > 0 small enough and n1 > n0 large enough, then for every
n ≥ n1 we can write fn(p) = qn + xn + yn + zn for some unique xn ∈ Es, yn ∈ Ec,
zn ∈ Eu, each of norm less than ǫ. From (8), we have xn+1 = Axn, yn+1 = Ayn,
zn+1 = Axn for n ≥ n1. What is more, dist(fn(p), qn) → 0 forces yn → 0 and
zn → 0, which is only possible if yn1

= 0 and zn1
= 0. Thus fn1(p) = qn1

+ xn1
;

i.e., An1v0 = w + xn1
for some w ∈ Γ (with qn1

= w (mod Zd)). To summarize,
v0 ∈ A−n1Γ + Es = A−n1L∗

k0
+ Es ⊂ Qd + Es. 2

Remark 1 (addendum to Lemma 2) Under the hypotheses of Lemma 2,

{v ∈ Rd : 〈Anv|k0〉 → 0 (mod 1)} =
⋃

n≥0

A−nL∗
k0

+ Es (9)

where Lk0
is the smallest lattice in Zd containing (AT )nk0 for all n ≥ 0.

4



Proof of Remark 1: The “⊂” inclusion is demonstrated in the proof of Lemma 2. To
see “⊃”, it suffices to note that, if v ∈ L∗

k0
+Es, then v = w+x where w (mod Zd) ∈ G∞

and x ∈ Es. Thus 〈Anv|k0〉 becomes exponentially close to 〈Anw|k0〉 ∈ Z as n → ∞.
2

Proof of Theorem 2: The plan is to explicitly compute the objects invloved in the
preceding arguments for A that is the companion matrix of the polynomial p of λ,

p(x) = xd + ad−1x
d−1 + · · ·+ a0, ai ∈ Z.

The eigenvectors ω and ω∗ with Aω = λω, AT ω∗ = λω∗ can be found as

ω∗ :=
1

p′(λ)
· (a1 + a2λ + · · · + λd−1, . . . , ad−1 + λ, 1)

ω := (1, λ, λ2, . . . , λd−1).

These are normalized so that 〈ω|ω∗〉 = 1, which ensures that the projection onto linR(ω)
along Es = (ω∗)⊥ is given by pru(y) = 〈y|ω∗〉ω, y ∈ Rd. Note that the components of
ω∗ generate 1

p′(λ)
Z[λ], {〈u|ω∗〉| u ∈ Zd} = 1

p′(λ)
Z[λ].

Denote by e1, . . . , ed the standard basis in Rd, and set k0 := e1. Since ei =
(AT )i−1(e1) for i = 1, . . . , d, we have Lk0

= Zd. Hence, L∗
k0

= Zd.
If we write x = 〈v0|k0〉 for v0 ∈ linR(ω) — as in (4) in the proof of Theorem 1 —

then λnx → 0 (mod 1) iff 〈Anv0|k0〉 → 0 (mod 1) iff An1v0 ∈ L∗
k0

+ Es = Zd + Es for
some n1 ≥ 0, where the last equivalence hinges on Remark 1. Thus x ∈ Xλ are of the
form

x = λ−n1〈An1v0|k0〉 = λ−n1〈pru(u)|k0〉 = λ−n1〈u|ω∗〉〈ω|k0〉 = λ−n1〈u|ω∗〉 · 1 (10)

where u ∈ Zd and n1 ≥ 0. That is Xλ =
⋃

n1≥0 λ−n1 1
p′(λ)

Z[λ], as desired. 2

The readers accustomed to a more traditional framework will no doubt notice that,
in our setting, the scalar product 〈·|·〉 on Rd × Rd serves as the completion of the
trace form on Q(λ) × Q(λ), the two being related by 〈x|y〉 = trace(〈x|ω∗〉 · 〈ω|y〉) for
x, y ∈ Qd. This explains our remark about the nature of Z[λ]∗ from the beginning of
this note.
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