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Abstract
We give a geometric proof of classical results that characterize Pisot numbers

as algebraic A > 1 for which there is z # 0 with A"z — 0 (mod 1) and identify
such x as members of Z[A~!] - Z[\]* where Z[\]* is the dual module of Z[\].

A real number \ > 1 is called a Pisot number iff it is an algebraic integer and all
its Galois conjugates (other than A) are of modulus less that one — the golden mean
(14+/5)/2 is an example. Pisot’s 1938 thesis [4] and, independently, Vijayaraghavan’s
1941 paper [7] contain the following beautiful characterization.

Theorem 1 (Pisot,Vijayaraghavan) Suppose that A > 1 is an algebraic number
(over the field of rational numbers Q). The following are equivalent

(i) A is a Pisot number;

(ii)) There exists non-zero real x such that lim, A"z = 0 (mod 1) (ie.
lim, oo min{|A\"z — k| : k € Z} = 0 where Z are rational integers).

Moreover, any x satisfying (ii) belongs to Q(\), the field extension of Q by A.

The property (ii) is responsible for Pisot numbers turning up in a variety of contexts
seemingly unrelated to their definition. The reader may want to savor the ensuing
connections by reading [5, 2]. Our interest in Pisot’s theorem stems from its role in
determination of spectrum for the translation flow on substitution tiling spaces, as
exhibited by [6] and further exploited in [1]. We shall not discuss that connection here
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and turn instead to our goal of supplying a proof of the theorem that offers a direct
geometrical insight — something that is missing from the considerations of the classical
proofs (as found in [3] or [5]). We shall also derive the following characterization of
the set

Xy:={zeR: lim A"z =0 (mod 1)}. (1)

n—oo

In [3], this result is also attributed to Pisot and Vijayaraghavan.

Theorem 2 (Pisot,Vijayaraghavan) Suppose A\ > 1 is Pisot. Let p' be the deriva-

tive of the monic irreducible polynomial of X over Z, and Z[\|* := —<Z[\. Then

ey
x € Xy iff \"xw € Z[A\]* for somen > 0; i.e.,

Xo= A2 =ZN -z (2)

n>0

We note that Z[A]* is just an explicit form (as given by Euler) of the dual of the
module Z[A] typically defined as Z[A\]* := {z € Q(\) : trace(zy) € Z Vy € Z[\]} and
that Z[A]* is non-zero only if A is an algebraic integer (see Prop. 3-7-12 in [8]). That
x € X, for x € Z[A]* is clear by the following standard argument (emulating Theorem
Lin [5]). Let A = A1, Ao, ..., Ag be all the roots of p (the Galois conjugates of \) and
r = x1,...,Tq be the images of x under the natural isomorphisms Q(\) — Q(\;),
z; € Q(\;). Then

d d
7 > T, = trace(\"x) = Z ANwp=N"r + Z AT, (3)
i=1 =2

and so [\"x — T,| — 0 due to the Pisot hypoythesis: |\;| <1 for:=2,..., d.

From now on, consider a fixed algebraic number A > 1. Denote by p its monic
minimal polynomial, which is obviously irreducible. Let d := deg(p), and fix a d x d
matrix A over Q with eigenvalue A. The companion matrix of p is one such A, and
any other is similar to it over Q. If A is an algebraic integer then A can be taken over
Z. Conversely, if A preserves some lattice in L C R? AL C L, then \ is an algebraic
integer. Here by a lattice we understand a discrete rank d subgroup of R%— Z¢ being
the simplest example.

We shall frequently use the fact that A is irreducible over Q: if W is a non-zero
subspace of Q% and A(W) C W, then W = Q? (as otherwise the characteristic poly-
nomial of Aly would divide p). Also, by irreducibility of p, A has simple eigenvalues
and is diagonalizable over C so that we have a splitting

RY=FE°® E°p E*

where E®, E°, E“ are the linear spans of the real eigenspaces corresponding to the
eigenvalues of modulus less, equal, and greater than 1, respectively. We shall see that,
for v € R4\ {0}, A™v — 0 iff v € E° lies at the very heart of Pisot’s theorem. Below,
(-]} is the standard scalar product in R%



Lemma 1 If (A™v|ko) — 0 (mod 1) for some vy € R\ E* and ko € Z4\ {0}, then

A leaves invariant some lattice in Q%; i.e., X is an algebraic integer.

Lemma 2 Suppose that A has entries in Z and ko € 74\ {0}. If (A™vglko) —
0 (mod 1) for vy € R, then vy € Q¢ + E*.

Proof of Theorem 1: Taking x = 1 in (3) shows that (i) implies (ii), so it is left to
show (i) from (ii). Pick w € R? to be an eigenvector of A corresponding to \, Aw = \w.
Fix kg € Z%\ {0}. Observe that (kg|w) # 0 by irreducibility of the transpose AT of A
(since {g € Q?: (qlw) = 0} is AT invariant). Thus, in the linear span ling(w) of w
over R, we can find vy so that z = (vg|ko). In this way,

AN = )\n<1}0|/€0> = <An’Uo|k’0>, Vo € linR(w). (4)

From = # 0, vy € E® and so A must be an algebraic integer by Lemma 1. By Lemma 2,
Vo = qo + z for some z € E* and ¢y € Q% and ¢y # 0 from vy € E*. Consider,
W= QN (E* @ ling(w)). Irreducibility of A, AW C W and gy € W force W = Q%
Thus E* @ ling(w) = R? and ) is Pisot. O

We turn our attention to proving the lemmas now. The two proofs will partially
overlap and could be combined into a single more compact argument, but we shall keep
them separate because (in applications) A is often a priori known to be an algebraic
integer. In that case, Pisot’s theorem can be viewed as a feature of the dynamics of
the endomorphism f : T¢ — T% z (mod Z¢) — Ax (mod Z%), induced by A on the
d-dimensional torus, T¢ := R?/Z¢. Beside the toral endomorphism f, our main tool
will be the concept of duality of lattices. Recall that the dual of a lattice L is defined
as L* := {v € RY: (v|l) € Z VI € L}. One easily checks that (Z%)* = Z?. For
any lattice L, after expressing it as L = BZ? for some nonsingular matrix B, we have
L* = (BZ%* = (BT)71Z¢ where BT is the transpose of B. In particular, L* is also a
lattice.

Proof of Lemma 1: Let V := {v € R?: (A"v|ky) — 0 (mod 1)} and K := {k € Q¢ :
(A"v|k) — 0 (mod 1) Vv € V}. These are subgroups of R4, A(V) =V, AT(K) = K,
and vy € V, kg € K. Trreducibility of AT forces ling(K) = Q¢ so that we can find
linearly independent ki,...,kq € K. Let I' be the lattice generated by k;’s, I'* be
its dual, and x; : R?/T* — C be the associated basis characters on the torus R?/T*;
namely, x;(z (mod I'*)) := exp(27i(k;|z)), z € RY, j=1,...,d.

The convergence (A"vylk;) — 0 (mod 1) translates to x;(A"vy (mod I'*)) —
1, which (by continuity of x; and compactness of R?/T*) is equivalent to
dist(A"vg (mod F*),Xjfl(l)) — 0. Therefore, dist(A"vy (mod I'*),G) — 0 where
G := ﬂ?zl x; (1) = {0 (mod I'*)}, which is to say that

J
dist(A"vg, ") — 0. (5)

Fix € > 0 so that, for x,y € AT U T, dist(z,y) < € forces x = y. (This is possible
because AI'*/T'* is discrete in R?/I'*, as can be seen by picking a € N so that a4 has all
integer entries and observing that AT* C a™'T'*, which yields AT*/T* C (a™'T'*)/T*.)
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From (5), there are u, € T, n € N, such that dist(A"vy,u,) — 0. Since,
dist (w1, Aty) < dist(tng1, A" og) + dist(AA g, Au,), we have dist(uny1, Au,) — 0
and so, as soon as dist(u,y1, Au,) < €, it must be that u,,; = Au,. Therefore, for
some ng € N and all [ > 0, we have Alu,, = tn, 4 € I*. Now, from vy € E*, A"vy /0
so that u,, # 0. But u,, € M := {v € I'*: Alw € I'* V] > 0}, which makes M a
nonzero subgroup of I'*. Clearly AM C M. By irreducibility of A, ling(M) = Q? so
that M is a lattice. O

Proof of Lemma 2: Let f : T¢ — T¢ be the toral endomorphism associated to

A, x : T? — C be the character associated to ko, x(z (mod Z%)) := exp (2mi(z|ko)),

and set p := vy (mod Z%). The hypothesis (A"vp|ky) — 0 (mod 1) translates to

x(f™(p)) — 1, which is equivalent to dist(f™(p), G) — 0 where G := x~!(1). We claim
that, in fact,

dist(f"(p), Goo) = 0, G := [ F(G). (6)

n>0

Indeed, otherwise f™(p) — w ¢ f~'(G) for some w, [ > 0, and n; — oo; and so
ftl(p) — fl(w) € G contradicting dist(f"(p), G) — 0.
To identify G, as a finite subgroup of T%, consider its lift to R,

=G +7Z:={x cR?: 2 (mod Z%) € G }.

Denote by Ly, the smallest sublattice of Z¢ containing (AT)"kq for all n > 0. Its dual,
Ly, is a lattice in Q%. For v € RY, we have v € T" iff (A™v|ko) = (v|(AT)"ko) € Z for
all n > 0iff v € Lj, . Thus Gog = I'/Z* where

r=1rL; cQ® (7)

Let g, € G realize the distance in (6) so that dist(f"(p),¢,) — 0 and thus also
dist(f(qn), gni1) — 0. Since G is discrete, there is ng € N such that

Gn+1 = f(Qn)a n = ng. (8)

Moreover, if we pick € > 0 small enough and n; > ny large enough, then for every
n > ny we can write f"(p) = ¢, + x, + Yo + 2, for some unique z, € E* y, € E°,
z, € E", each of norm less than e. From (8), we have x,.1 = Az, yni1 = Ayn,
Zne1 = Az, for n > ny;. What is more, dist(f"(p),q,) — 0 forces y, — 0 and
2z, — 0, which is only possible if y,, = 0 and z,, = 0. Thus f"(p) = qn, + Tny;
ie., AMvyy = w + z,, for some w € ' (with ¢,, = w (mod Z%)). To summarize,
v e AMI + B =A™L; +E°CQi+E°. O

Remark 1 (addendum to Lemma 2) Under the hypotheses of Lemma 2,

{veR": (A™|kg) =0 (mod 1)} = | JA™L; + E° (9)

n>0

where Ly, is the smallest lattice in Z¢ containing (AT)"ky for all n > 0.
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Proof of Remark 1: The “C” inclusion is demonstrated in the proof of Lemma 2. To
see “D”, it suffices to note that, if v € Ly +FE*, then v = w+x where w (mod 73 € Gy

and x € E°. Thus (A"v|kq) becomes exponentially close to (A"wlky) € Z as n — oo.
O

Proof of Theorem 2: The plan is to explicitly compute the objects invloved in the
preceding arguments for A that is the companion matrix of the polynomial p of A,

p(x) =2 +ag12 -+ ag, a; €L

The eigenvectors w and w* with Aw = \w, ATw* = \w* can be found as

w ::p/(}\)-(a1+a2>\+"'+>\ ,...,ad_1+>\,1>

we= (LA N, \h),

These are normalized so that (w|w*) = 1, which ensures that the projection onto ling (w)
along E* = (w*)* is given by pr(y) = (y|w*)w, y € R% Note that the components of
w* generate W{\)Z[A], {u|lw*)| u € Z} = ZﬁZ[)\].

Denote by e,...,eq the standard basis in R?, and set kg := e;. Since ¢; =
(AT)7(ey) for i = 1,...,d, we have Ly, = Z*. Hence, Lj = Z°.

If we write z = (vg|ko) for vy € ling(w) — as in (4) in the proof of Theorem 1 —
then X"z — 0 (mod 1) iff (A™vo|ko) — 0 (mod 1) iff A"y € Lj, + E* = Z% + E* for
some n; > 0, where the last equivalence hinges on Remark 1. Thus x € X, are of the
form

r = A" (Ao |ko) = AT (prt(u) ko) = AT (u|w ) (wlko) = AT (u|w™) -1 (10)

where u € Z¢ and ny > 0. That is Xy = [J,, 50 A™™ p,%/\)Z[A], as desired. O

The readers accustomed to a more traditional framework will no doubt notice that,
in our setting, the scalar product (:|-) on R? x R serves as the completion of the
trace form on Q(\) x Q(X), the two being related by (z]y) = trace({z|w*) - (w]y)) for
z,y € Q% This explains our remark about the nature of Z[\]* from the beginning of
this note.
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