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Abstract

Diffeomorphisms of the two torus that are isotopic to the identity have
rotation sets that are convex compact subsets of the plane. We show that
certain line segments (including all rationally sloped segments with no ra-
tional points) cannot be realized as a rotation set.

AMS classification: 37E45, 37E30.

1 Introduction

Basic Notations: The integer lattice Z% in R? acts on the d-dimensional Cartesian
space R? by translations; the translation by v € Z? is denoted by T, : R? — R?.
The quotient T¢ := R?/Z% is a d-dimensional flat torus with the natural projection
mpa : R? — T¢ serving as a universal covering. We shall be interested in C'-
diffeomorphisms f : T¢ — T¢ that are C'-isotopic to the identity. Let Diffo(T%)
be the space of all such maps and Diffy(R?) be the space of their lifts to RY. We
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mention that any homotopic to the identity diffeomorphism of T? is automatically
isotopic to the identity (see page 328 in [27]) so that Diffy(R®) consists of the
diffeomorphism f : R* — R? that are Z%-equivariant (i.e. foT, = T, o f for all
v € Z2).

The maps in Diffy(T?) are commonly used to study systems of three coupled
oscillators. We shall not explain this well known connection in detail (see [3] and the
references therein) but instead we convey the idea via the paradigm of Huygens’s
clocks. Imagine Christiaan Huygens coupling three pendulum clocks of his making
by placing them on one shelf and taking the readings z,, and y, of the second and
third clock after n revolutions of the first (mother) clock for n = 0,1,.... That
there is f € Diffy(R?) such that (41, Yns1) = f(xn, Yn) is a sensible idealization.
The long time behavior of z,, and y, can be anywhere from simple to very chaotic
depending on f (i.e. the clocks’ design) — see e.g. [3]. Our main result roughly
says that, if the second clock has a well defined and irrational frequency, then the
third clock has a well defined frequency as well.

Theorem 1.1 If f € Diffy(R?) has the property that an irrational number o exists

such that, for any initial point (x,y) € R?, the iterates (xn,yn) = f(x,y) satisfy

lim z,/n = «,
n—0o0

then there is a number [ (rational or irrational) such that
lim y,/n =3
n— 00

for all (z,y) € R%.

When z, = z9 + na, f is a skew-product, and the theorem follows rather
easily from the ergodic averaging over the circle rotation by « [13, 16] — see also
[21, 32]. (In particular, the irrationality of « is clearly essential.) At the same
time, such real-analytic skew-products f exist with « and 3 independent over QQ
that are not uniquely ergodic (see 4.5 [13]'). This shows that the dynamics of f
may be nontrivial and that the obvious generalization of the theorem to the higher
dimensions fails. Indeed, let f : R2 — R2 be a lift of such an ezotic ezample with
two different ergodic measures p; and js, and pick a continuous ¢ : T? — R with

[ édp # [ ¢ dpa. For the map (z,y,2) > (f(2,9), 2 + 6((z,y) mod Z2)), which
is in Diffy(R?), we have lim,, . x,/n = a and lim,, 4 y,/n = 3 regardless of the
initial condition (zg, yo, z0), while lim,,_, 2, /n fails to have a common value: it
equals [ ¢ dp; for p;-typical (o, Yo, 20), ¢ = 1, 2.

!This example arises as the projective action of a SLs(R)-cocyle with positive Lyapunov
exponent but no hyperbolic structure. Proposition 3.1 in [15] assures that there is more than one
invariant measure.



In order to further connect with existing literature, let us recast our result in a
slightly more general form. Recall the rotation set p(f) of f € Diffy(R?),

o(f) ::ﬁcl([j {W: peRd}>. (1.1)

n=1 k=n

This is to say that p(f) collects all the limits points of the sequences of the form
fki(',';iii)*pi where k; — 0o and p; € R%. (The R? containing p(f) is rightfully thought
of as the real homology group H;(T?) but we suppress this distinction, c.f. [9].)
The set p(f) is always compact and connected [28]. In dimension d = 2, p(f) is
also convex [28] and much is known about its relation with the dynamics [6, 29,
25, 19, 17], yet it is still open what convex sets can be realized as rotation sets
[18, 20]. Thanks to Theorem 1.1, we now know that the vertical segments over an
irrational number are precluded. The following is an easy generalization obtained
by conjugation and flow-equivalence (see Section 2).

Theorem 1.2 Suppose that f € Diffy(T?), f e Diffy(R?) us its lift, and the
rotation set p(f) 15 contained in a line. If either of the two conditions below holds:
(i) the line has rational slope and contains no rational points,

(i) the line contains a unique rational point and that point is not in p(f),

then the rotation set p(f) is just a single point. (Here by a rational point we mean
a point with both coordinates that are rational numbers.)

For comparison, let us paraphrase the conjecture of Franks and Misiurewicz in-
spired by the complete classification of the rotation sets for toral flows in [10].

Conjecture 1 (Franks and Misiurewicz) Suppose that f € Diffy(R?) is such
that the rotation set p(f) is contained in a line and either

(a) the line contains no rational points, or

(b) the line contains a unique rational point, which is not an endpoint of p(f),

then the rotation set p(f) is just a single point.

Thus the two possibilities that remain open are when the line has irrational slope
and either misses all rational points (case (a)) or contains exactly one rational
point that sits strictly inside the segment p(f) (case (b)). Ruling out the first
possibility is particularly nagging as it would show that a periodic point free and
area preserving? f € Diffy(T?) has a well defined rotation vector, i.e. p(f) is a
point. This can be deduced because such maps have no rational points in their
rotation sets ([6, 8| see also [12, 5, 17]). We hope that our methods will ultimately
lead to a resolution of the problem, and we offer Theorem 1.2 as a step in that
direction. Let us also comment that the C'-regularity required of f is most likely

an excessive assumption: our key estimates depend on mere quasiconformality of

2The Reeb flow shows that the measure preservation assumption is necessary (see e.g. [28]).



f. Homeomorphic counterexamples presumably exist although they may be quite
elusive.

Our arguments break up into two parts: topological and analytical. The topo-
logical part hinges on the following result reminiscent of the Brouwer plane trans-
lation theorem (c.f. [31, 7] and the references therein).

Theorem 1.3 (Translation Loop Theorem) Suppose that f € Diffy(T?) and
f € Diffy(R?) is its lift such that the rotation set p(f) is contained in a line L
with rational slope and no rational points, and let Ly be the line through the origin
parallel to L. Then, for any n € N, there is a smooth closed simple loop v in T?
— called a translation loop — that is homologous to the loop \ := Ly (mod Z?) and
such that v,..., f"(v) are disjoint. Moreover, the ordering of 7, ..., f*(y) on T?
is the same as that of A, ..., T™(\) where T is a translation of T? that maps Ly to
L.

In the context of Theorem 1.1, v is a (0,1)-loop on T? and ~,..., f*(y) are
ordered on T? in the same way as 0,q,...,na are ordered on T — see Fig-
ure 1.1. Furstenberg’s classical skew-product example [26], which is of the form
fi(zy) = (x+a+g(y),y+B) with p(f) = (o, ), demonstrates that there may
be no one v such that f"(y) N~y =0 for all n € N. The reason is that f™(v) gets
smeared all over T? with increasing of n so that f™(v) has to eventually intersect
any fixed (0, 1)-loop. This highlights the fact that f need not be semi-conjugated
to the irrational circle rotation R, : T — T. Nevertheless, our theorem shows
that there is no combinatorial obstruction and such approzrimate semi-conjugacies
exist in the following sense (resembling Rohlin’s periodic approximation). Let
p/q < a < p./q. be a pair of Farey neighboring fractions approximating «, and
let v be the translation loop for n = q+q. — 1. Denote by J the annulus bounded
by v and f9(y) and by J, the annulus bounded by v and f%(v). By the standard
combinatorics of R, the family

Jooo fETN D), o TN (1.2)

covers all of T? without overlap (Figure 1.1). It is now easy to produce h : T — T
so that Ryoh(p) = ho f(p) for p & fa=~1(J)U f91(J,) by extending (via dynamics)
any continuous map J U J, — [R%(0), R%(0)] that sends f%(v), v, and f9(v) to
R(0), 0, and R%(0), correspondingly. Such h nearly semi-conjugates f to R, in
the sense that max,cp2 dist(R, o h(p) — ho f(p)) < |p/q — p+/qx|-

From another point of view the translation loop theorem is a result on existence
of renormalizations. The boundary curves of JU.J, are naturally identified by f979+
so that (J U J,)/(f9(p) ~ f%(p)) = T?, and the return map to J U J, descends to
a homeomorphism Ry, (f) : (JUJ,)/ ~— (JUJ,)/ ~. Conjugated with some
(normalizing) homeomorphism 71 : (J U J,)/ ~ — T?, Rus.(f) is again a map in
Diffy(T?) and constitutes a renormalization of f. In contrast to the renormalization
described in [22], this procedure engages only one coordinate of the rotation set



and also applies to annulus maps (with well defined rotation vector). Section 5
contains more details; however, a more systematic study of renormalization and a
discussion of its position among other existing renormalization schemes is relegated
to [23].

Q\ rsey 4
0 — PO~
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Figure 1.1: Translation Loop and Renormalization (p/q =4/5, p./q. = 3/4)

Continued fraction approximation py/qx — « yields a whole sequence of the as-
sociated renormalizations and raises a general question: Under what circumstances,
the renormalizations converge, or are otherwise well behaved in some precisely de-
fined sense? A sufficiently strong answer may as well secure conjugacy to the trans-
lation (but will not come easily, c.f. [14]). A very weak answer, regarding only the
conformal modulus of the renormalized tori, already suffices for the analytical part
of the proof of Theorem 1.1. Concretely, the subadditive property of the conformal
modulus shall guarantee that Z?;Bl mod(f7(J)) + E?;é mod(f7(J,)) < C where
C'is a universal constant (and mod(A) stands for the modulus of the annulus A in
T? ~ C/(Z+iZ)). This roughly means that the annuli of the partition (1.2) get thin
as q and g, become large so that f resembles in some sense a skew-product of circle
homeomorphisms®— for which the rotation set is a point, as we have already men-
tioned. This is of course a caricature of the actual proof and the success is not im-
mediately obvious, if only because “conformally thin” is not necessarily “geometri-
cally thin”. We shall uniformize the larger annuli f7(JUJ,) to A; := Tx[0,a;] C C
and then consider the open cascade of mappings f; : A; — A;,; induced by f. The
family {f;};en generally fails to be uniformly C'* due to the unbounded geometry of
fi(7) — c.f. Furstenberg’s example — yet {f;};en is manifestly uniformly quasi-
conformal. This facilitates the use of the quasi-invariance of the extremal length in
order to bound the displacement of f;’s and to control the geometry of f7(JU.J,)’s
— see Section 6.

Let us also briefly comment on the proof of the translation loop theorem. We
study the suspension flow ¢ on T? x T ~ T® for which the translation loop corre-

3The renormalizations degenerate to 1-dimensional maps.



sponds to (0,1,0)-loop I" in T? such that ¢*(T) UT = () for ¢ € [0,n]. The key idea
is to seek I' as the intersection of a pair of global cross-sections ¥ and X, (both
being 2-tori). In the simplest case, such cross-sections are flat and lift to planes in
R3. The complement of the two planes in R?® constitutes four wedges, and at least
one wedge is forward flow-invariant so that it contains the full forward orbit of the
line of intersection of the two planes, which is a lift of I" (c.f. Figure 4.1). Now,
the narrower and more irrationally sloped the wedge, the longer I flows without
intersecting its initial position, thus securing a substantial translation time (n).
Of course, flat cross-sections may be unattainable, and we use the following topo-
logically invariant definition to single out the pairs of cross-sections that generate
translation loops.

Definition 1.1 A pair (X, X,) of embedded (and cohomologically different) tori in
T3 is called clean if the tori intersect transversally along a single closed loop. If,
additionally, ¥ and X, are cross-sections to a flow, then the pair (X,%,) is called
a clean pair of cross-sections.

In this way, the key to the translation loop theorem is existence of an appropriate
clean pair of cross-sections. Here, the individual cross-sections are readily supplied
by the classical result of Fried [11], and the bulk of the work is devoted to isotoping
them into a clean pair. The following general question transcends the narrow
context of our arguments: Under what circumstances, can one adjust by isotopy
a collection of global cross-sections to a flow on a manifold so that their mutual
intersections are the simplest possible topologically? In [22], we give a positive
answer for triples of cross-sections to a flow on T® and, as a result, we discover
the combinatorics of maps in Diffy(T?) that have a well defined and non-resonant
rotation vector. Apparently, the idea of exploiting the flow to shed light on the map
(and not vice versa, as pioneered by Poincaré) has a lot to offer and goes beyond
its simplest incarnation as the classical flow equivalence. At the same time, our
arguments can and should be distiled into purely two-dimensional proofs — if only
for the sake of freeing them from intuitive yet non-trivial geometric topology in R?
used in Section 3. We have restrained from doing so to preserve the simplicity of
the original geometric ideas.

Let us finish with a quick outline of what follows. A preliminary Section 2
reviews the interplay between rotation sets and flow-equivalence (reducing Theo-
rem 1.2 to Theorem 1.1 in the process). Sections 3 and 4 demonstrate the transla-
tion loop theorem. Section 5 is a digression devoted to renormalization of torus and
annulus maps. Section 6 contains the analytical estimates that combine with the
translation loop theorem to establish Theorem 1.1 (and thus Theorem 1.2). Sec-
tion 7 gathers the general extremal length estimates needed in Section 6. Finally,
Appendix 1 supplies some classical yet hard to find geometric topology needed in
Sections 2 and 3.



2  Preliminaries on Flow Equivalence

In this preliminary section, we review the interplay between the maps in Diffy(T?)
and flows on T® with Fried’s [11] serving as our main source. We also reduce
Theorem 1.1 to Theorem 1.2.

For concreteness, we identify the real homology H;(T?) with R® by choosing the
basis made of the standard loops (in the coordinate directions). First, we suspend
f € Diffy(T?) into a flow as follows. We embed the R? acted upon by f in R® as
the (z,y)-plane .

S = {(2,9,0) : (w,y) € R*},

and we embed the corresponding two-torus T? acted upon by f in T? as
8§ = mrs(8) = {(2,9,0) : (z,y) (mod Z°) € R*}.

We use a smooth isotopy joining identity to f to generate a flow ¢ : R x T — T?
whose time-one-map is f, ¢'|s = f. There is the (unique) lifted flow ¢ : R x R —
R3; and the lifts of f are given as T(;lb’l) o ¢'|s where a,b € Z. We may as well
assume that

f=Tgh1 00" s (2.1)

Now, ¢ (as any flow on T?) has its rotation set defined as the rotation set
of the time-one-map in R, p(¢) := p(@'). Likewise, the rotation vector of p €
T3 is p(p, d) := lim, s0(¢7(p) — p)/7 computed on any lift  of p (provided the
limit exists). The homological direction of p under ¢, as defined in [11], is the
projectivization [p(p, )] of p(p, ¢) where

v-Ry ifv#£0,
[v] == :
0 if v=20,

is considered an element of the collection of rays in R*® with 0 added as an extra
isolated point. The set of homological directions of ¢ is [p(¢)] := {[v] : v € p(d)}.
Unlike p(¢), [p(¢)] it is determined already by the oriented foliation of the flow.
Since ¢ is a suspension of f, 0 &€ [p(¢)] and an easy computation yields

[(p(f), 1)] = [p(9)): (2:2)

Another basic (and easy) fact is that conjugating ¢ to v = hodoh™! via a
homeomorphism A : T® — T yields

[p(¥)] = Alp(9)] (2.3)

where A € SL3(Z) is induced by the linear action of h on the homology H;(T?) &
R3.

Now, recall that a cross-section to a flow is a codimension one smooth subman-
ifold that is transversal to the flow and meets its every flowline. A cross-section X
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to ¢ is of course necessarily diffeomorphic to T? (because ¥ X R is a Z-cover of T?
and therefore Z%-quotient of R*). The classical result of David Fried on existence
of cross-sections (Theorem D in [11]) reads in our context as follows.

Theorem 2.4 (Fried) Suppose that ¢ is a flow on T® and we are given an indi-
visible integer 1-cohomology class o, o : R® — R. If « is positive on the set of
vectors in [p(@)] (i-e. a(v) >0 if [v] € [p(@)]), then ¢ has a cross-section X in the
cohomology class of a.

Let us relate [p(¢)] and the rotation set of the return map to a cross-section .
Suppose that o : T> — T? is an embedding and X := ¢(T?) is a cross-section to ¢.
We have the return map ¢y : ¥ — ¥ and the induced map f € Diffy(T?) on T? is

fi=0tog¢sgoo.

To recover lifts of f from ¢, fix some lift 5 : R2 — R? and set ¥ = 5(R?). Let
u,v € Z® be the images of (1,0) and (0,1) under the map induced by o on the
first homology. Let w € Z?, be such that ¥ + w is the lift of ¥ adjacent to ¥ in
the positive flow direction: i.e. ¥ + w is the connected component of 74 () first
hit by flow lines departing from % . Let éz : ¥ — ¥ + w be the holonomy along
the flow lines: i.e. ¢s(p) is the (unique) intersection with ¥ 4 w of the flow line
through p € &. It is easy to see that, f : R — R? given by

fi=6"oT, ogso06

is a lift of f and that it does not depend on the choice of &. (Replacing w by
w + au + bv, a,b € Z produces all other lifts of f.) We claim that

[(p(f),1)] = Alp(o)), (2.4)

where A = A(yw) is induced by the linear mapping sending (1,0,0), (0, 1,0),
(0,0,1) to u, v, w, respectively. For a proof, note that the formula (2.3) reduces
the problem to the case when v = (1,0,0), v = (0,1,0), and w = (0,0, 1), the case
already covered by (2.2).

Putting together Fried’s theorem and formula (2.4) yields the following result.

Theorem 2.5 Suppose that A C R? is a rotation set of some f € Diffy(R2). If
u,v,w € Z> are a basis of Z* over Z such that [A x {1}] is contained in the open
halfspace bounded by the plane lin{u, v} that contains w, then

AN=A7 (A D)0 {(z,y,t) 0 t=1}

(u,v,w)

is a rotation set of some f' € Diffy (R?) such that f and f' are lifts of flow equivalent
torus maps.



Corollary 2.1 Under the assumptions of Theorem 2.5, if L is a projective linear
transformation,

_(anr 4 apy + a1z, a7 + azy + ass)
L(l‘, y) = )
a31T + azaly + ass

with the coefficient matriz A = (ay)?;—, in SLy(Z) and a3 + azy + as3 # 0 for
(z,y) € A, then A" := L(A) is a rotation set of some f' € Diffy(R?).

Reduction of Theorem 1.2 to Theorem 1.1 (via Corollary 2.1). First, suppose
f satisfies the hypothesis (i) of Theorem 1.2, i.e. A = p(f) is contained in a line
y = s/r - x + ¢ where s/r is a reduced fraction. Let s,/r, be a Farey neighbor of
s/r so that rs, — sr, = 1, and take L(x,y) = (sx —ry, s,z —r,y). Then A’ = L(A)
is contained in a vertical line + = ¢ and we are done by invoking Theorem 1.1.
Second, suppose that f satisfies the hypothesis (ii) of Theorem 1.2 with (p,q)/n
being the only rational point on the line. The rotation set A := p(T(;qu) o fn) =

np(f) — (p,q) is then contained in a line through origin, and 0 ¢ A so that A C
{X (%o, 40) : A > 0} for some point (zg,yo) € R?. Take L(z,y) := (z/y, —1/y).
Then A" = L(A) is contained in the line x = z(/yy and we may invoke Theorem
1.1 again. O

3 Existence of Clean Pairs of Cross-Sections

We fix a C'-flow ¢ on T? and its lift ¢ on R*. Let p/q and p,/q, (with q,q, > 0)
be any two adjacent Farey fractions such that p./q. < p/q, which is to say that

P Ps
A= € SLy(Z).
(qq*> 2(2)

Throughout this section, we assume that the homological directions of ¢ are con-
tained in the wedge between (p,0,q) and (ps,0,q.):

Hypothesis (H) [p(¢)] C [{a- (p,0,9) +b-(ps,0,9:) +¢-(0,1,0) : a,b,c > 0}].

In view of (2.2), (H) holds when ¢ is a suspension of f € Diffy(R?) and p(f) C
(p«/as, p/q) X R, which is the case under the assumptions of Theorem 1.1 if p, /q. <
o < p/q. (In fact, (H) forces that ¢ is a suspension flow for some f € Diffy(T?).)

Considering R® as the (z,y,t)-space, we write [w]y1(rs) and [w,]y1(rs) for the
1-cohomology classes of the 1-forms

w = qdx — pdt,

Wy 1= —qydx + p.dt.



By hypothesis (H), [w]g1(rs) and [w.]y1(rs) are positive on [p(¢)] so that Fried’s
result (Theorem 2.4) assures existence of two global embedded cross-sections to ¢:
¥ in [w]y1ersy and X, in [w,]y1(rs). The goal of this section is to show that ¥ and
¥, can always be adjusted to form a clean pair of cross-sections (as defined in the
introduction).

Theorem 3.6 (Efficient Cut) Under the assumption (H) there exists a clean
pair of cross-sections ¥ and X, in the cohomology classes [w]gi(rsy and [w.|m (13,
respectively.

Remark 3.1 If ¥ and X, are initially transversal to each other, then the theorem
will be shown by isotoping only one of the cross-sections (X or X, ) so that the other
cross-section is left unchanged.

Proof of Theorem 3.6. Let ¥ and X, be the cross sections in the right co-
homology classes supplied by the Fried’s result. We fix smooth embeddings
0,0, : T — T3 such that ¥ = ¢(T?) and X, = 0.(T?). We assume that o
and o, are orientation preserving when taking T? with the standard orientation
and X and X, oriented so that w > 0 and w, > 0. (Thus a positively oriented
2-frame tangent to X together with the vector field of ¢ forms a positively oriented
3-frame in T2.)

By the Thom transversality theorem, a C''-small perturbation of o and o, can
be arranged so that ¥ and X, are transversal. Thus X N, becomes 1-dimensional
smooth closed submanifold of T®, and the classification of 1-manifolds asserts that
YN, =TU...UT, where each I'; is a smooth embedded circle (a loop).

The embeddings 0,0, induce monomorphisms on the homologies, 0,0, :
H,(T?) — H,(T?), and we have

o1 (H.(T?)) = lin{(p,0,q), (0,1,0)} = ker(w) (3.1)
0.1 (H,(T?)) = lin{(p.,0,q.), (0,1,0)} = ker(w,). (3.2)

Thus the homology classes of I';’s satisfy [[';]x,(rs) € lin{(0,1,0)}. The preimages
of I';’s on T? are

i =0 NI, [oilm s € lin{(0,1)}
and
Oy 1= 0'*71(1—‘7;), [a*i]Hl(']Tz) € hn{((), ].)},

where i = 1,...,r. Moreover, if ® : Hy(T®) x Ho(T?) — H;(T?) is the intersection
product, then we have:

r

Z [F’i]Hl(T?’) — [E F‘l E*]Hl ('11"3) — [E]H2(T3) ® [E*]Hz(T?’) — (0, 1, 0),

1=1
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(where an appropriate orientation is put on I';’s). In this way, if » = 1, then I'y
is a loop with [I'1],(rs) = (0,1,0), making (X, X,) a clean pair of cross-sections.
In the rest of this proof, we assume that » > 1 and show how to isotope o, to
diminish 7 by one without destroying the property that X, is a cross-section to ¢.
We shall consider two cases separately.

Case 0: There is k, 1 < k < r, such that I'y is null-homotopic.

Clearly, I'; is null-homotopic in T® iff ¢; is null-homotopic in T?. Consider then
all the null-homotopic loops «;. Each such loop bounds a smooth 2-disc A; in T?,
and any two such discs are either disjoint or contained one in another. We may
fix k with Ay minimal with respect to inclusion so that Ay is disjoint from all «;
with ¢ # k. Let also A,; be the 2-disc bounded by a,; in T?. (We do not insist
that A, contains no other null-homotopic ay;’s.) In T?, we have D := o(Ay)
and D, := 0,(A,;) that are two smoothly embedded (closed) discs that intersect
(transversally) along I'y. Thus D U D, is a smoothly embedded sphere except for
the singularity along I';. By a version of Schonflies Theorem (in the appendix) the
sphere bounds a 3-disk B in T%.

The flow is transversal through the union of the 2-dimensional interiors D¢ U
D¢ = 0B \ T'y. For specificity, we assume that ¢ enters B through D? (i.e. the
normal component of the vector field 4|,_o¢'(p) points inside B for all p € D?).
Otherwise, one should use the reversed flow in the following arguments. We claim
that, since ¢ enters through D?, ¢ must exits through D°. Indeed, otherwise, ¢
enters B through D° U D?, which implies that, for p in the interior of B, the
positive flowline {¢*(p)}i>o is contained in B. It follows that p(p,¢) = 0, which
contradicts 0 ¢ p(¢) as guaranteed by hypothesis (H).

For an open neighborhood U of B in T?, denote by Up the connected component
of ¥ NU that contains D. To localize our isotopy, we shall need U satisfying the
following conditions (see Figure 3.1):

(i) U is a smoothly embedded open 3-disk in T?;
(ii) Up is a 2-disk and Up N X, = T;

(iii) Up cuts U into exactly two connected components of which one, denoted U,
is entered by the flow along Up;

(iv) 5, NnU =D, U(E,NU").

In fact, for sufficiently small € > 0, the mutual transversality of ¥, ¥, and the flow
¢ assures that U equal to the e-neighborhood of B satisfies the above hypotheses
(consult Figure 3.1). We skip the routine proof.

We shall deform now ¥, inside U as follows. Take y : T> — [0, 1] to be a smooth
(bump) function with x|y > 0 and x|pspy = 0. Let ¢ : R x T> — T° be the flow ¢
with speed multiplied by x, i.e. 4|,o¢)'(p) = x(p) - &|,=0¢'(p) for p € T®. Clearly,
1 is the identity outside U, and the orbit of ¢ starting at p € U must hit oU (for
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Figure 3.1: Removing a null-homotopic loop from ¥ N X, (in a cross-cut view).

otherwise its rotation vector would be zero by (i)). Consider ¥ : T — T3 \ U
given by ¢®(p) = lim;_,o, % (p). (For p € U, ¥>(p) is the first time ¢'(p) hits
oU.) We claim that

PR(E)NS AU =0 (3.3)
(as it is suggested by Figure 3.1). Indeed, from (iii), U~ = (0U~ N oU) U Up,
where the flow ¢ fixes 0U~ N OU and enters U~ through Up. Therefore, U™ is
Y-invariant and *°(U~) C U~ NOU = oU~ \ %; in particular, p>®°(U")NE =0
so that

YU~ NE)NE =0. (3.4)
At the same time, ¥*(D,) C ¥>(D) C ¥*(U") because if p € D? then ¢'(p)
moves into B for small ¢ > 0 only to exit B and enter U~ through D for some later
t (c.f. (iii)). Hence,

P (D)NECYP™U)NE = 0. (3.5)
Combining (3.4), (3.5), and the hypothesis (iv) establishes the claim (3.3).
Now, claim (3.3) and (ii) yield

SNYP(S,) = (SN2 (ES)\U)U(Snyg™(E)nU) c (Ens \T)ubc |J T
i=1,ik
For large t, > 0, the above inclusion implies (by compactness) that
snyt(s)c Y I
i=1,i#k
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Hence, upon replacing 3, with 1% (X,), the number of connected components of
>N Y, drops from r to at most » — 1; and the modification does not change the
cohomology class of ¥, because ¢ o g, : T? — T? is manifestly isotopic to o,.

Case 1: All loops T';, 1 < i <, are essential (of homology type £(0,1,0)).

In this case all o;’s and a,;’s are of type +(0,1). In particular, a;’s cut T? into
annuli. Consider one such annulus A bounded by «; and «;. Denote by A, the
annulus bounded by «,; and «;. (Note that there may be other a,,’s inside A,.)
Also, let A :=0(A) and A, :=0,(A,). Clearly, AN A, =T, Ul';. Thus AU A, is
a smoothly embedded 2-torus in T® except for singularities along I'; and I';. We
clarm that one can select A so that the embedding sends the fundamental group of
AUA, to the cyclic subgroup generated by a (0, 1,0)-loop. The idea — see Figure 3.2
— is to make sure that ¥ and X, intersect at I'; and I'; with opposing signs (in
the sense of the intersection homology), which can be formalized as follows. Let )y
and X, be some connected lifts in R?* of ¥ and ¥,, respectively. In view of (3.1),
the collection 7y (J;_, I';) of all lifts of the loops I'; can be written as

E+Zn (5, +2Z% = (i + Z(ps, 0, q*)) N (i* +Z(p, 0, q)) _

SN (2 Y7 (p, 0,q)> 4 Z(p.,0,q.). (3.6)

Therefore, since r > 1, N (f) + k(p,0 q)) must have more than one component

for some k € Z. We may as well assume that k = 0 (by an_appropriate choice of
3.,). Let then I'; and F be two distinct components of ¥ N Y,. We may choose I
and F adjacent on ¥ (1n the sense that the strip between I; and F in ¥ is free of
)y ‘) The strips bounded by T, and F inY and X, project to two annuh A and A,,
respectively; both bounded by T’ and I';, AU A, is by construction deformable to
I'; (or I';), which ends the proof of the claim.

In view of the claim, Alexander’s theorem on torus embeddings (in the ap-
pendix) assures that A U A, bounds a solid torus B 2 T x D* in T°.

The flow is transversal through the 2-dimensional interiors A°UA? = 0B\ (I'; U
I';). From this point on the argument is very similar to that in Case 0 — compare
Figures 3.1 and 3.2.

For specificity and at the expense of perhaps reversing the flow, we assume that
¢ enters B through A2. We claim that then ¢ necessarily exits through A°. Indeed,
otherwise, ¢ enters B through A° U A?, which implies that, for p in the interior
of B, the positive flowing {¢'(p) };>¢ is contained in B. Since B deforms onto a
(0,1,0)-loop in T2, p(p, ¢) € lin{(0,1,0)} contradicting the hypothesis (H).

Now, for an open neighborhood U of B in T?, let U, be the connected compo-
nent of X NU that contains A. We shall need U satisfying the following conditions:

(i) U is a smooth solid torus that deforms to B in T%;

(ii) Ua is an annulus and Uy N, =1, UTY;

13



Figure 3.2: Removing a pair of (0,1,0) loops from ¥ N X,.

(iii) U4 cuts U into exactly two connected components, of which one, denoted by
U~, is entered by the flow along Uy;

(iv) Z,NnU =AU (. NU").

Again, we omit the proof that transversality of 3, ¥, and the flow assures that
U equal to the e-neighborhood of B satisfies the hypotheses for sufficiently small
e > 0.

We shall deform 3, inside U to remove I'; UI'; from ¥ NX,. Exactly as in Case
0, take x : T> — [0, 1] with x|y > 0 and x|rs\y = 0; and take ¢ : R x T® — T°
with |0 (¢'(p) = X(p)%i=0(¢'(p)), p € T®. There is again > : T — T*\ U,
Y™ (p) = limy_,o ¥ (p) such that ¢>°(p) is the first time ¢'(p) hits OU, as forced
for p € U by the hypothesis (H). We claim that p*°(X,) "X NU = (. The
corresponding proof from Case 0 goes through almost verbatim with D and D,
replaced by A and A, — we skip it.

Finally, (ii) and the claim yields

S NYP(E,) = (SNYe () \U)U(ENe™®(S,)NTU) C (SN, \TU) C U Iy
k=1,k+#i,j

For large ¢y > 0, we have then

SNy c Y T

k=1,k#1,5
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The embedding ™ o o, : T? — T® is the sought after improvement of o,, which
reduces the number of connected components of ¥ N X, by at least two. This ends
the description of the induction step and thus finishes the proof of the theorem. O

4 Translation Loop from Clean Intersection

With a goal of establishing the translation loop theorem (Theorem 1.3), we shall
consider now the suspension flow of f together with a clean pair of cross-sections ¥
and ¥, in the cohomology classes of —qdx + pdt and q.dx — p.dt, as constructed in
the previous section. The translation loop v will be obtained from the (0, 1, 0)-loop
[':=XNX, by flowing I' to the original cross-section & = T?. Recall the guiding
idea: the lifts ¥ and %, bound a forward invariant wedge W+ in R? — c.f. Figure
4.1 — so that I = NS, (a lift of T') satisfies ¢*(I) C ¢! (W) C W for all t > 0
and so ¢'(I') NT" = () for a long time provided p, ps, q, and q, are large (i.e. W+ is
narrow). A more careful analysis of how W™ projects to T® will explain the exact
ordering of the iterates of +.

For a precise formulation, we lift the flow ¢, the cross-section &, and I' to
the suspension covering R*/A = T? x R where A = Z(1,0,0) + Z(0,1,0); and we
distinguish the corresponding lifted objects by a hat. (The lifts to the universal
cover are distinguished by tilde.) In particular, S is an embedded torus pierced
by the flow lines of ¢ in the ¢-direction (0,0,1), and [ is a simple loop in R3 /A of
homology type (0,1). Let qgs : R3/A — S be the projection along the flowlines,
i.e. ps(p) :== o*(p) NS for p € R*/A. We define

= gg(l)  and = mps(9)
where 7ps : R® /A — T2 is the natural projection.

Theorem 4.7 (Technical Version of Translation Loop Theorem) If f ¢
Diffy(R?) and p(f) C (p«/9+,P/q) X R (so that its suspension flow ¢ satisfies
the hypothesis (H) from Section 3), the projection v of a clean intersection of
cross-sections to the torus S (as defined above) is a smooth simple (0,1)-loop in S
with a property that v, ..., f979"Y(y) are disjoint and, for any o € (p/q, p+/q«),
there is an orientation preserving homeomorphism h : T? — T? such that

h(v;) = mr2{(z,y) € R® : & = ja} for j=0,...,9+q. — 1.

The translation loop theorem follows by first conjugating f via a toral automor-
phism so that the line £ containing the the rotation set becomes = = const (c.f.
Corollary 2.1) and then applying the theorem above to pairs of Farey fractions
pP./d« < a < p/q that approximate « sufficiently close. The rest of this section is
devoted to the proof of Theorem 4.7.

To ease our exposition, it is convenient to isotope T® so that ¥ and ¥, be-
come flat tori. This step is facilitated by a general Lemma 8.6 (in the ap-
pendix). Moreover, we shall change the basis in R® (and translate) so that the
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lifts ¥ and X, of ¥ and ¥, become the coordinate planes lin{(1,0,0), (0,1,0)}
and lin{(0,0, 1), (0,1,0)}, respectively. Technically, we are conjugating ¢ by the
diffeomorphism supplied by the lemma composed with the linear automorphism L
induced by L : R® — R3 such that

. g 0 —Px 5 ] 0 Px
L=10 1 0 and L'=10 1 0
-q 0 p q 0 g

We shall suppress this conjugacy and use the old notation. Figure 4.1 depicts

Figure 4.1: The Straightening Conjugacy. (Here, p/q = 4/5 and p./q. = 3/4.)

the situation. Note that now A = Z(q,, 0, —q) + Z(0, 1,0) and the standard cross-
section § is an embedded (possibly non-flat) torus homologous to the quotient
of the plane lin{(q.,0,—q),(0,1,0)}. The (“time”) deck translation, originally
T0,0,1), is now represented by Tt := T(_p, 0p)- The (conjugated) flow yields the
(conjugated) map f via the analogue of (2.1):

T(_p*aozp)il © ($1|S~ = f and T(_p*aozp)il © (£1|‘§ = f (47)

Also, keep in mind that the positive wedge, W* = {(z,y,t) : x,t > 0}, is forward
invariant under the flow.

Now, consider for a moment R? (with coordinates (z,t)) and a straight line £
through points (0,q) and (q4,0) — see Figure 4.2. Let £~ be the open halfspace
bounded by £ that contains (0,0). Take the union of all the closed lattice squares
(i.e. Z* translates of [0, 1]?) with interior entirely contained in £~

H = U{Q @ is a lattice square with int(Q) C £ }.
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Figure 4.2: The Stepped Line. Here, p/q = 4/5 < o < 3/4 = p,/q.. The black
stepped line is 6 and the gray one is T,7'6. See that the lattice points on the circle
0/7.(q., —q) map under T,”" = Tjp, o_p) as follows: 49 — 47 — 45 — 43 — 51 —
As — 46 — 44 — F2. The inset depicts the iterates of T, “4, (labeled by 4); note
the identical order to that under the circle rotation by .

Define @ as the boundary of ﬁ_,
0:=0H -,

and observe that its projection 0 to the cylinder R? /T(q. _q) is an essential loop
because H ™ is invariant under T{q, _q). Finally, define

O :={(z,y,t): (x,t) €} = xRCR
and R )
O .= 7TR3/A(6) C Rg/A
where mgs/y : R3 — R3/A is the natural projection. We set out to show that 6

constitutes a cross-section to é and the induced return map (conjugated to f) has
a natural translation loop.
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One easily observes that 6 is a staircase-like broken line: as we traverse 6
from (0,q) to (qg«,0), the line can only step down vertically or move to the right
horizontally (i.e. either  or —t is increasing); in the process, we encounter q + q.

segments, denoted by 9~1, ..y Oq4q., With endpoints at the lattice points §; =
0; 011,10 =0,...,9+q, — 1. Consult Figure 4.2. In Rf/Z(q*, —q), we have the
corresponding segments 6y, ..., fq14. covering the loop # and overlapping only at

the endpoints 9y, ..., ¥q+q.—1. Therefore, by setting

~ ~

@i = WRs/A(@i) = él X T,

we get a covering of 6 by q + g, annuli, @1, . (:)q+q*, with pairwise disjoint
interiors. Let I';’s be the boundary circles of these annuli:

[i:=6,N0,11 =24 xT,

where 1 = 0,...,9+ g, — 1 and indexing is modulo q + q,. (f‘o will be the sough
after translation loop.)

Fact 4.1 Recall the “time translation” Ty := T(_p, 0,p)-
(i) O is compact and every flow line meets ) exactly once;

(ii) the holonomy ég = q3§|é :© = S is a homeomorphism;

(iii) ( q+q* L )\Ttil( ;1+(t)1* 1F> —FO;
(iv) Ue Ty = {To, T (Dy), ..., T (D)}

Proof. (i) Since ¢ is the lift of ¢ to the suspension covering, lim; ;o qgt(p) =
+o00 where +00 denotes the two ideal boundary components of the cylinder R® /A.
Because 6 separates R /T(q*,_q), 6 separates R® /A into two connected components,
which we denote ©~ and ©% so that —oco € ©~ and +oo € ©. Hence, every
flow-line of é must intersect ©. We have to argue that this intersection is unique.
It suffices to show that O is topologically transversal! to the flow, i.e. if p € 6
then there is € > 0 so that ¢[==0)(p) € ©~ and ¢®<(p) C OF. This, in turn, easily
follows from the staircase-like shape of é), the flow’s transversality to ¥ and X,,
and the forward invariance of the wedge W+,

(ii) Both S and O intersects every flow line exactly once, so the continuous map
q3§|é : © — S is onto and one-to-one, and thus it is a homeomorphism by virtue
of the compactness.

To show assertions (iii) and (iv) we establish the corresponding statements
about 0 and the lattice points 4; := 6; N 91+1 under the action of T(_,, o 1 see
Figure 4.2.

4 Although, appropriately defined, smooth transversality also holds.
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(iii) Observe that T(_p*,p)’l(é) sits in H~ (below ) because the definition of 6
is T{_p. p-equivariant and T(_,, o) (L) C L. Let U be then the bounded region
trapped between 6 and T(,p*,p)’l(é). We claim that U has unit area. Indeed,
since pg. — p«q = 1, the area swept in the parallel translation of the segment
[(0,9), (g«,0)] by the vector (—p.,p) is one; and it coincides with the area of U
because (by vanishing of divergence) the flux of the constant vector field (—p., p)
is the same through 6 and [(0,q), (q.,0)] (or any of their translates). Hence, U is a
single lattice square. Therefore, all lattice points of 6 except for one — the upper
right corner of U in Figure 4.2 — belong to T(,p*yp)_l(é). That the omitted lattice
point is 4o, follows from T{_,, p)% € £, which assures that 17{_,. ,)% ¢ 6.

(iv) Let ¢ : R?/T(q.,—q) — R be the quotient of the orthogonal projection R* —
R along L. It is easy to see that 9;’s are exactly the points v € Z?/Tq. _qNcl(L7)
with dist(v, £) < V/2; equivalently, {%,}38"" = {v € Z*/T(q.—q : (v) €
(=Vv/2,0]}.  Also, T(_p.p pushes L to the right: there is a > 0 such that
O(T(—p. p)(p)) = 6(p)+aforallp € R? /T(q, _q. In view of (iii), there is a well defined
A{l,...,q+q.—1} = {0,...,q+q. — 1} such that \(7) = j iff T(_,_ (%) = 9.
We have to show that {0,...,q9 + q. — 1} = {ig, A(ip), ..., A\ ¥"1(ig)} for some
ip with A979=~1(45) = 0. Observe that because a > 0, A has no cycles and, for
any 0 < i < q+q. — 1, there is a minimal k¥ = k(i) > 0 such that A\*(i) = 0.
Clearly, k(i) < q+q, — 1 as i, A(i),..., \*@ (i) must all be distinct (for lack of
cycles). Moreover, if k(i) = k(j) then i = j because A is one-to-one. Thus
k:{0,...,9+9q.—1} = {0,...,9+q. — 1} is one-to-one and therefore onto. The
io := k7 1(q + q. — 1) has the desired property. O

Conclusion of the proof of Theorem 4.7. (i) and (ii) of Fact 4.1 secure the
following commuting diagram

6 — S
Tt(@)J( qgll
1,(0) — T(S)- (4.8)
] no
@S .
6 — S
where éé, & and the unlabeled arrow are the natural holonomles between cross-

sections. By (iii) and (iv) of Fact 4.1, we have that gb T©) g the identity on the
set {To, ..., T, 979 +2(Ty)}. If we recall (4.7) to the effect that T, ' o ¢! = f, we
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deduce from (4.8) that the following diagram commutes

{f‘ﬂa ﬂ_l(fo)a e aTt_q_q*H(f‘o)} —

Tt_ll fl

~ ~

{Tt_l(ro)a'"7Tt_q_q*+1(ro)} E—

(4.9)

O —— Oy

It is now easy to see that 7 := éé(f‘o) is the sought after translation loop with the
required ordering of its iterates. Indeed, the homeomorphisms A asserted in the
theorem can be constructed as follows. Let hy : © — T? be the composition of

qgg with the identification between S and T2 (conjugating f with f). Let also hy, :

© — T2 be the analogous homeomorphisms when f is replaced by the translation
T, : (z,y) = (r+ a,y) (mod Z?) (which obviously satisfies all the hypotheses of
the theorem). That h = h, 0 h;l is as required follows readily by putting together
(4.8) and (4.9) with their counterparts for T;,. This completes the proof of Theorem
4.7. 0

5 Renormalization

This section is a digression and the readers interested only in the proof of Theo-
rem 1.1 should move on to Section 6 after reading Definition 5.2 below.

Definition 5.2 Given A = <z p*> € SLy(Z) with q,q. > 0, a map f € Diffy(T?)
" q+q.—1
§=0

is A-renormalizable iff there is a simple (0,1)-loop v such that (f*(7)) are

disjoint and ordered as (ja(mod 1))(;;8*71

is any number between p/q and p./qs.

(in the sense of Theorem 4.7), where «

In what follows, we attempt to shed some light on the definition by linking renor-
malization with flow equivalence. As we have already mentioned, a more complete
discussion is relegated to [23].

Proposition 5.1 Suppose that f € Diffy(T?) is A-renormalizable, J is the an-
nulus bounded by v and f(vy) and J/ ~ is the torus obtained by identifying the
boundary curves of J via f9. Then the suspension flow of f has a well defined cross-
section X in the cohomology class (—q,0,p) (represented by lin{(p,0,q),(0,1,0)}
(mod Z?)); and the map R;(f) : J/ ~ — J/ ~ induced by the first return to J
under f is conjugated to the Poincaré return map ¢y, : X — X for the flow.

The analogous proposition holds for the annulus J, bounded by v and f% (7).

Corollary 5.2 f < Diffo(T*) is A-renormalizable if and only if p(f) C
(P«/ax,p/q) x R for some lift f of f.
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Proof of Corollary 5.2. If f is A-renormalizable, then by the proposition we
have well defined cross-sections in the cohomology classes of lin{(p, 0, q), (0,1,0)}
(mod Z?) and lin{(p., 0, q.), (0,1,0)} (mod Z?), which implies the condition on the
rotation set by (2.4). The opposite implication is the content of Theorem 4.7. O

Sketch of Proof of Proposition 5.1. Let us first assume that ~ is obtained from
the intersection of a clean pair of cross-sections ¥ and X,. It suffices to show that
the first return map under f, f,uy. : JU J. — J U J,, is conjugated to the flow’s
first return map to X U X, ¢xus, : DUX, — Y UX,. Indeed, ¢y : ¥ — X is
simply the first return map to ¥ under ¢y x,. We shall use the notations of the
proof of Theorem 4.7 as found in the previous section. In particular, we have the
holonomy ég : © — S that served to define v := 7ps o qgg(f‘o), and we have the

stepped torus © = [JT ©; where each ©; C R3/A is a lift of one of the two

the (straightened) clean cross-sections 3 and X, in T?. Specifically, O, and (:)q+q*

are lifts of ¥ and ¥,, respectively — see Figure 4.2. Together with Tt_q((i)l) and
T: % (Ogiq. 1), they form the boundary of the region U x T C R3/A, where U
is the lattice square with its max vertex at 9 (as defined in the proof of (iii)

of Fact 4.1). A slice through U x T is depicted in Figure 5.1. The flow enters

Figure 5.1: The Return Map.

UxT C R/A via T,79(0,) U T,”% (Oqsq.) only to leave via ©; U Oqyq.; let
YT 9(01) UT, *(Ogtq.) = O1 U Oqgiq. be the associated holonomy.
Now, from diagram (4.8), f is conjugated to the map on © given by

_ ST O 26 _
f,::Tt lo¢é)t :¢%—1éoTc !

and, therefore, the restriction $g|é1uéq+q .6, U (:)q+q* — J U J, conjugates fj,,

to (li)luéqﬂ* (the return map to ©1 U Oq4, under f).
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At the same time f' = T, on most of © (see (iii) of Fact 4.1), and from the
action of T, " on O (see (iv) of Fact 4.1 ), one easily computes

0y Fee T =ve T ) ifpedy
O1UOq4q. ¢?t71© [¢) ﬂfq* (p) — w o ﬂfq* (p) 1fp c ®q+q*,

!
élUéth*
return map ¢y yx,. This shows that ¢yys, is conjugated to fr ;. — as we needed

to prove.

To finish the proof, we have to argue that if f € Diffy(T?) is A-renormalizable,
then the translation loop v arises from the intersection of a clean pair of cross-
sections ¥ and X, to the suspension flow (in the appropriate cohomology classes).

Descending to T%, we see from the above formula that factors to the

Consider now the two torus © = ?;rf* ©,. Because the ordering of
. _ N q+q«—1 ~
(fj('y))?;rg* "in T? is the same as that of (ﬂ_](f‘g)) . in ©, one easily
J:

constructs a homeomorphism h : T2 — © that maps f/(y) to T, 77(I) for
0 <j<q+aq,—1and such that f' := ho foh ! satisfies i = Tt
A 6oy = L1 M for j=0,...,q.— 2. On T, 9(0,)
and T, % (Oq4q.), We can write Flr-ar1@0)um o +1(044a.) = 9° T, ' for some
g: T, (0 UT, % (Og1q.) — ©1UOq .. Now, a routine construction yields a flow
supported in U x T that enters via 7, 9(0;) UT, ™% (Oq.q.), leaves via ©; UOq4q.,
and realizes g as its holonomy. This flow factors down to a certain flow ¢ on T?
(since U x T is a fundamental domain). By construction, ¥ = lin{(1,0,0), (0,1,0)}
(mod Z3) and ¥ = 1in{(0,0,1),(0,1,0)} (mod Z3) are cross-sections to ¢; and ¢
is (conjugated to) the suspension flow of f' or, equivalently, the suspension flow of

f. O

It is also natural to consider R,y (f) : (JUJ,)/ ~ — (JU J,)/ ~ induced
by the return map to J U J, with ~ being again the natural identification of the
boundaries (which makes (J U J,)/ ~ a torus).

for j=0,...,9— 2 and f’|Tt7j(

Corollary 5.3 The conjugacy classes of Ry (f) : J/ ~—= J/ ~, R;.(f) : .| ~ —
Ji) ~, and Ryu5.(f) : (JUJ)/ ~ = (JU.J,)/ ~ are independent of the choice of

v. Moreover, they are flow equivalent to f.

Sketch of Proof of Corollary 5.3. Proposition 5.1 contains the assertion about
Rs(f). As to Ryus. (f), the two cross sections ¥ and ¥, constructed in the proof
of the proposition can be cut along ¥ N X, perturbed, and glued back together to
form a cross-section in the cohomology class of lin{(p—ps,0,q9—q.), (0,1,0)} (mod
Z?). Ryus.(f) is naturally conjugated to the corresponding return map (much like

R,(f)). B

Any map of the form no R,(f)ont : T* — T? (where n : R,(f) — T?
is a homeomorphisms) is called a p/q-renormalization of f. Likewise, any map of
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the form no Ryuy.(f)on™t : T2 — T? (with n : Ryus(f) — T?) is called a
A-renormalization of f.

Before leaving this section, we note that doubling the annulus to a torus and
applying Theorem 4.7 yields the following result.

Corollary 5.4 Suppose that f : T x [0,1] — T x [0, 1] is an orientation preserving
diffeomorphisms isotopic to the identity and f : Rx[0,1] — Rx [0, 1] is its lift. If
has a well defined and irrational rotation number « (i.e. lim, ner(f”( )—p) =
a for all p € R x [0,1]), then f is infinitely renormalizable in the sense that, for
every pair of Farey neighbors p/q and p./q., there exists a simple curve 7 joining

the two boundary components of T x [0, 1] such that (fi(y));ig*_l are disjoint and

ordered as (ja(mod 1))355~ h

There is a conjecture (dating back to G. Birkhoff) that if f is an area preserving and
sufficiently smooth annulus map satisfying the hypotheses of the corollary, then f
is actually conjugated to the rigid rotation for Diophantine « [14]. Corollary 5.4
may be the natural foundation for the global renormalization approach to this
question (c.f. Question 3.2 in [14]).

6 Rotation Estimates

This section contains the analytical part of the proof of Theorem 1.1. By virtue of
the the translation loop theorem (Theorem 4.7) we may assume that f € Diffy(T?)

P Px
q

is A-renormalizable for A = ) € SLy(Z) where p/q and p./q. constitute a

*

pair of Farey neighbors approximating «. Theorem 1.1 follows by letting p/q and
p./q. converge to o and applying the following more precise result.

Theorem 6.8 (technical version of Theorem 1.1) There exists C : [1,00) X
N — (0,400) such that lim,, o C(K,m) = 0 for every K > 1 and, if f €

Diffy(T?) is K-quasiconformal and A-renormalizable with a lift f, then

diam(p(f)) < (K, max{g,q.}).
The rest of this section is devoted to the proof of Theorem 6.8. In addition to

f € Diffy(T?), we fix its lift f € Diffy(R?) and the translation loop v C T? as in
Definition 5.2. For specificity, we shall assume that

a. > q.

Writing v; := f7(7), we take .J; to be the closed annulus in T? bounded by ~; and
Vj+q; and Ji; to be the closed annulus in T? bounded by 7; and 7,44, (c.f. Figure
1.1). FOI']EZ set

Uj = J; U Jyj, JjEL.
Also, choose a lift U, of Uy and set Uj = fJ(UO).

The ordering of (ja)q+g on T secures the following hypotheses for k € Z.
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e Covering Property: {Up;}3=;" covers T%: U?*:Bl Upyj = T?;

e Overlap Property: {Ukﬂ-}?’;gl overlaps no more than twice: Uy 1= Jp4 ;U
Jpy; and each family {J5y; 390" and {J 4 00" is essentially disjoint (i.e.
the interiors are pairwise disjoint.)

The sole role of Covering Property is to assure the following:

Fact 6.2 p(f) = p(f,Us) (where p(f,Up) is defined as in (1.1) with the extra
requirement that p € Uy.)

Proof. Only p(f) C p(f,Us) requires an argument. Consider v € p(f), that is
v = lim; o f (p;)/n; for some p; € R? and n; — oco. By Covering Property,
there are k;, 0 < k; < q. — 1, such that p; € Uy;; equivalently, p;- = [ (p;) € Up.
Having fixed lifts p; of p}, we estimate

1f @) = oG <= max —|[ff(y) —y].

yeR2, 0<k<q.—

It follows that v = lim; ., f™ (;)/n; = lim; o f7 (7;)/nj € p(f,Uy). O

Overlap Property is to be viewed in the context of the following variation on
the subadditive property of the conformal modulus demonstrated in Section 7.
(Below, we assume the standard identification of R? with the complex numbers C
and consider T? = R? /Z? as the conformal torus T? = C/(Z +iZ).)

Lemma 6.1 (subadditivity) Suppose that {Vj}jvz1 is a finite family of embedded
annuli in T? each of homology type (0,1), and suppose that {V}};‘[:l has the m-
overlap property defined as follows: there are m essentially disjoint families {VJZ };-v:p
I =1,...,m, of (0,1)-annuli in T such that {V/}]", are also essentially disjoint
and cover V; for each j =1,...,N. Then

N
ZmOd’ﬂ“Q(‘/}') <m?
j=1

where mody:(V;) < 1 stands for the modulus of the annulus V; in T?.

If we denote
a;j = modry2(U;),

*

then the lemma applied to {Ukﬂ-}‘;:gl yields

Fact 6.3 Fork € Z, a, <1 and Z?Lﬂ**l a; < 8.

To proceed, we fix a (reference) point
g € f(y) C U,
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and its lift ¢ € C. We also set, for 7 > 0,
g = f(q) and g == f(q).

Our ultimate goal is to estimate the difference Im(f™(§)) —Im(f™(p)) for any p with
7(p) € Up. The idea is to first perform the analogous comparison in the intrinsic
uniformizing conformal coordinates on U;’s (c.f. Claim 6.1 ahead). To this end, we
denote by B, the cylinder of (modulus a) obtained as the quotient of the strip

B,:={2€C:0<Re(z) <a}

by the Z-action generated by z — z + 4. For each j > 0, let ¢; : B,, — U; be a
homeomorphism conformal on the interior of B,;; and select lifts 1); : Baj — Uj,
mjo1); = 1 omj, where m; : Baj — By, is the canonical projection. The dynamics

induces f; : By, — B defined by the diagram

aj+1

The restrictions of fj’s to the imaginary line line are
G R=R gy)=filw)/i,  j=0.
Since 1; are determined only up to rotation, we can impose a normalization
(q;) =0
so that 3

We introduce now, for K > 1, a family F¢x of maps ¢ satisfying the following
conditions:

(i) ¢ : By — By is a K-quasiconformal homeomorphism with a,b < 1;
(ii) ¢(z+ 1) = ¢(z) + 1 for all z;
(iii) ¢(0) = 0.
The corresponding family of restrictions to the imaginary axis is
Fe={pn:R—=R: 3¢ € F% uly) := o(iy)/i for all y € R}.

We record the key property of fj’s.
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Fact 6.4 Let K := K(f) be the quasiconformal distortion of f. The maps f] and
fj_1 belong to FCx; and thus g; and LZ]J-_I belong to FXy.

This is a consequence of the following variation on the classical result of Mori.

Lemma 6.2 (Mori) F g (and thus F~g ) is an equicontinuous® family (i.e. given
K > 0 and € > 0, there is 0 > 0 such that |z — w| < § implies |¢(z) — p(w)| < €
for any ¢ € FCx).

Define G : R — R as the upper envelope of FC:

Gr(y) =sup{u(y) : p€ Fg}.

The equicontinuity and monotonicity of functions in FXx and the fact that pu €
FRi implies =t € F® guarantee that G is a continuous increasing function.
Also, Gk(y + k) = Gk(k) + y so that Gk is a lift of an orientation preserving
circle homeomorphism. Moreover, Gk (y) > y for y € R with Gk (k) = 0 exactly
for k € Z. In particular, the rotation number p(Gg) = 0.

Fact 6.5 Forj € Z, v € [0,a,], and y € R,

Proof. Again, this depends on the following general bound demonstrated in the
following section.

Lemma 6.3 (Shear Estimate) If 0 < a,b < 1 and ¢ : B, — By is K-
quasiconformal then

m(é(x + i) — Im($(0 + iy))| < 2Kb,  0<z<aycR

Indeed, from the lemma and the definition of Gx we have

Im(f(z,y)) < Im(f;(0,9)) + 2Kaj1 = §;(y) + 2Kaj41 < Gk(y) + 2Kaj.

O
Now, (beside the already fixed ¢) we fix a point p € Uy and its lift p € C. For
j >0, we set

=), =970,  y=Im(z).
We shall use that p(Gx) = 0 and a;’s are small to secure the following key claim.
Claim 6.1 There is C = C(K,q,) > 0 with limg, o, C(K,q,) = 0 such that

limsup [y;]/j < C(K, q.).

J—00

Sactually, uniformly Holder
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Before proving the claim, let us see that Theorem 6.8 already follows via the
following general lemma (again relegated to Section 7).

Lemma 6.4 (Isthmus Estimate) If ¢ : B, — C is a conformal univalent map
such that ¢(z + 1) = ¥ (z) + 14, then, for any z,w € B,, we have

IIm(¢(2)) — Im(¢(w))| < [Im(z) — Im(w)| + 2V a - Area + 4
where Area is the Fuclidean area of the annulus (By,)/Z (i.e. of ¥([0,a] x [0, 1])).

Indeed, because the conformal mapping @n : Ban — Un sends 0 and z, to ¢, and
Pn, correspondingly (and the area is bounded by that of T?), the lemma combines
with Claim 6.1 to secure

Im(p,) — Im(g I
lim sup [T (Pn) = Tm(Gn)| < lim sup [T (zn)| < C(K,q.)

Theorem 6.8 follows immediately by arbitrariness of p € Uy and Fact 6.2. O

Proof of Claim 6.1. We show only that limsup;_,. y;/j < C(K,q.) because
the other inequality, lim sup;_, ., —y;/j < C(K,qs.), follows by reversing the y-axis.
Clearly ;.1 = Im(f;(x; + iy,)), so Fact 6.5 yields

Yj+1 S GK(y]) + 2Kaj+1, ] Z 0. (62)

Thus, if we define (#;)32, recursively by

tj+1 = GK(t]) + 2Ka,j+1, to = Yo, (63)
then the monotonicity of G'x implies that
yi <tj,  j=>0. (6.4)

It suffices then to estimate ¢;’s.

Since a; < 1 and the Poincaré rotation number is a monotonic function of the
circle homeomorphism (see e.g. [2]), we have a trivial bound limsup;_, t;/j <
p(Gk) + 2K. To improve the estimate, we shall use Fact 6.3. Fix an arbitrary
v > 0. From Fact 6.3, for any k € N, we estimate a la Chebyschev’s inequality:

q«—1

#{j: aryy >8/va., 0<j<q.}-8/va. < Y @y <8,

J=0, ap4+;>8/vq.

#{J 0 akry <8/vqs, 0 <j < quf > (1 —7)qs. (6.5)
For any n € N, by dividing {1,...,n} into blocks of length q., we conclude

40 a; > 8/va,, 0< ) <n} < v(n/a, +1)q. (6.6)
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Let M C N be the set of indices for which ay is small,

M ={k: ap <8/vq.}.

In q,
T

where |-| stands for the integer part. Because the modulus is a quasi-invariant and
fj is K-quasiconformal, we have

For k € M, set

Aj41 S Kaj.
By applying this urﬁf‘;{J times, we get for k € M that
8 .
aj; < ﬁ for all J € Ik

The definition (6.3) of ¢;’s implies then that

8 16K’

tig1n <Gg(t;)+9 0:=2K-K- =
7+l = K(])+ ) v q* l/\/q—*7

j€ I (6.7)

Now, write
ULk=Susius,u...
keM
where Sy, s > 0, are contiguous segments (i.e. S; = {45, A;+1,...,Bs; — 1, Bs}
for some Ay, B; € N). For j € S, we have (6.7) so the standard estimate of
displacement via the rotation number p(Gk + ) yields

tmax S, — tmins, < p(Gk +0) - (max Sy — min Sy) + 1.

On the other hand, for j ¢ S, taking into account that a; < 1, we have a trivial
bound

tj_|_1 — tj S maX(GK(y) - y) + 2K.
yeR

To combine the two estimates, for an arbitrary n € N, we note that the car-
dinality of Sy’s is at least |lnq./(2InK)| + 1, which guarantees that there is
I <n/(|lnq,/(2In K)| + 1) such that maxS; > n. Assuming for specificity that
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n € M (so that n € S;), we estimate

lny1 —to =
min Sp—1 max Sp min S;—1 max S
Z tei—ti+ > twi—ti+ Y G-t Yttt
J=min Sp j=max Sp+1 j=min S
Jj=min S
<#{j: 0<j<n, j¢50U51U52U---}'mgé<(GK(y)—y+2K)
Y

+ (#So+#S1+ ... +#S,1+n—minS)) - p(Gg +6) +1

Ing, -
< u-n(n/q*+1)q*m3X(GK(y) —y+2K)+n-p(Gg +0)+n- Q;anJ " 1>

where we used (6.6) to estimate the cardinality in the first term. A very similar
estimate holds when n ¢ M, and one concludes that

th Ing, -
hin%solip% < hin%soljpg < l/(maX(GK( )— y)+2K)+p(GK+5)+<\‘2?anJ + 1) :
Taking v := 1/Inq,, we claim that the right hand side of the last inequality
constitutes the sought after bound C(K,q.). This follows readily because p(Gg) =
0 and 0 — p(Gk + 0) is continuous (since the rotation number is a continuous

function of a circle map).
|

7 Extremal Length Estimates

We supply now the proofs of the general lemmas invoked in the previous section
for the proof of Theorem 6.8. The common feature of all the arguments is their
dependence on the extremal length [1]. Recall that if I' is a family of rectifiable
curves in C then the extremal length of I" is

AT :=sup{Lr(p)?/A(p) : p: M — [0,00) measurable with A(p) # 0,00}

where

Li(p) i= inf{Lv(p):/7p|dz|: 761“} and  A(p) :://pZd:rdy.

(Here, |dz| = y/dx?+ dy?.) In the more general case when I' is contained in
a Riemannian surface, one has to replace |dz| and dzdy by the length and area
elements of the Riemannian metric. The extremal length is a conformal invariant
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and often can be readily computed. For instance, if [' is a family of all rectifiable
loops of homotopy type (1,0) in the flat torus T? = R?/Z* = C/(Z + iZ), then
A(l') =1 from the Grotzsch inequality (see [1]).

Proof of Lemma 6.1. Our proof is an extension of the standard argument
for superadditivity of extremal length as found in [1]. (Application of Jensen’s
inequality and a bit different choice of p below are the only novel elements.)

Let {V; } . be annuli of homology type (0,1) in T? with the m-overlap property,
meaning that there are m essentially disjoint families of (0,1)-annuli, {V]} Y j=1
[ =1,...,m, such that V; = ", Vl is an essentlally disjoint sum for each j =
1,..., N. The goal is to see that Z " mod(V;) < m?. If T'; is to denote the family
of all rectifiable arcs in Vj Connectlng the two boundary Components of Vj, then
the modulus a; of Vj is given by

a; = A(Ly).

Consider arbitrary measurable p; : V; — [0,00) with A(p;) # 0,00 and
Ly, (pj) > 0 for j = 1,...,N. We shall think of p; as extended to all of T* by
zero. Since multiplication of p; by a constant does not affect L, (p;)?/A(p;), we
may assume that A(p;) = Lr;(p;). Let I' be a family of all rectifiable loops of
homotopy type (1,0) on T?. Note that, given v € T and 1 < j < N, we have
v; C v NV that belongs to I'; because v has to cut across V; for topological
reasons. Set

N N
p = Zp] , p(l) = ZPJXVJI , for 1 S { S m,
=1 =1

where x4 stands for the characteristic function of the set A. Clearly,

- (4) >
P Zp a.e. and p> 1r<n]zgjcvpj

For any v € I', the essential disjointness hypotheses imply

N

P23 D Ly (o) Z 2w (P 2_ L, (p)
22 ) 2 3 o

Therefore, the arbitrariness of v € T" yields
N
m-Le(p) = 3 Ln, (py). (7.1)
j=1
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Also, from the essential disjointness of {V/}}_, for each I = 1,...,m, (p¥)? =
Z] 1 p] XV’ a.e., and we can use the convexity of z — 22 to estimate as follows

Alp;) Z//pJXV, ZZ//%XV

y 7j=1 Il=1

-1/ ;@“))Qy/m- /] (épm):mp)/m. (72)

The combined inequalities (7.1) and (7.2) yield

2 (S I o/m) (&
AT) = Lr(p)/Alp) 2 m Y Al =1/m (Z%(m))

where the last equality uses the normalization Ly, (p;) = A(p;). The arbitrariness

of p;’s yields
) > 1/m? (Z)\ )

Because A(I') = 1, we are done. O

Proof of Lemma 6.3. Let 0 < a,b <1 and ¢ : B, — By, be a K-quasiconformal
homeomorphism. Fix z = « + iy € B, and set yy := Im(4(0 + iy)) and y, =
Im(¢(z + iy)). To show the lemma we have to argue that |y; — yo| < 2Kb.

Consider the family I' of all rectifiable curves traversing B, and hitting the
horizontal segment I := {z € B, : Im(z) = y}; namely,

I':'={y:[0,1] = B, : Re(y(0)) =0, Re(y(1)) = a, Im(y(¢)) = y for some ¢ € [0, 1]}.
Every horizontal segment in the family
={n:[0,1] = By: n(t) =tb+ic, c€ [yo,y]}

clearly hits ¢(I), which means that I'y C ¢(I'). By the quasi-invariance of ex-
tremal length, monotonicity of extremal length, and the Grotzsch formula for the
rectangle’s modulus (in that order), we have

ML)/ K < A(o() < A(Ty) = b/lyr = wol.

To estimate A(I'), we take p: B, — [0,00) to be the characteristic function of the
rectangle Q := {z € B, : Im(z) € [y — a,y + a]}. Clearly, A(p) = 2a*. Moreover,
for any v € I, the geometry (see Figure 7.1) forces the length of v N @ to be at
least a, i.e. L,(p) > L,no(1l) > a. Hence,

AT) > a?/(2a%) = 1/2.
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n

Yo

Figure 7.1: Shear Estimate. (Some example curves from I" are pictured on the left.)

Putting together the two displayed inequalities yields the desired bound:
1/2 < AI) < K- A(B(1) < KAL) = Kb/|yr — yol.

O

Proof of Lemma 6.2. This is a variant of Mori’s theorem (see Theorem 4.1 in
Chapter II of [24]). Denote ), := {z € B, : 0 < Im(z) < 1}. The restrictions
of maps in F-k to the fundamental domain @, belong to the family {¢ : Q, —
B, K-q.c. homeo. onto image, a,b < 1}, which is equicontinuous with respect to
the spherical metric on the force of Mori’s theorem because the range of each such
¢ clearly omits two points of definite spherical distance (take e.g. 3 and 3+14). The
equicontinuity of FCx with respect to the Euclidean metric on C will follow if we
find R > 0 such that ¢(Q,) C {|2] < R} for all ¢ € F k.

For ¢ € FC, #(0) = 0 and ¢(i) = i so that 0 < Im(¢(iy)) < 1forall0 <y < 1.
Lemma 6.3 implies then that —2Kb < Im(¢(x+iy)) < 1+2Kb for any z+iy € Q.
Therefore, R = /(1 + 2K)% + 12 is as required. O

Proof of Lemma 6.4. Recall that ¢ : B, — C is conformal, univalent, and
equivariant: ¢(z +1i) = ¢(z) + ¢ for z € B,. Let I'y be the family of horizontal
segments cutting across the fundamental domain Q = {z € B, : 0 < Im(z) < 1},

Fo={n:[0,1] = B, : n(t) =ta+ic, ce€|0,1]}, ATy) = a.

For I' := ¢(I'y), we have A\(I') = A(I'y) = a because 1 is conformal. By taking the
metric on the annulus ¢(B,)/Z induced by the standard metric on C, the definition
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of \(T') yields
inf L(7)*/A(1(Q)) < A(I) = a.

vel’

We can find then v € I' of length L(v) < y/a - A(¢(Q)).
Fix now w,z € B,. For any k € Z, the quadrilateral bounded by v + k¢ and

v+ (k+ 1)i in ¥(B,) is a fundamental domain; therefore, it contains ¢(z) for
some k (which we fix). The vertical line through (2) hits v + ki at some point
p € v+ ki with |[p—1(z)| < 1. Analogously, | € Z and ¢ € 7+ can be found with
l¢ — ¥ (w)| < 1. By the triangle inequality,

[Tm(p(2) — Im(¢p(w))] < [¢(2) = P(w)] < |p - ¢] + 2.

Furthermore, the length estimate on v and the triangle inequality again give

p—ql < |k —1]-1+2-diam(y) < [k = [ +2v/a - A((Q)).

Similarly, since ¢~!(7) is a horizontal segment, we have

[Im(2) — Im(w)| > [Im(¢*(p)) —Im(y*(q))| =2 =k — | - 2.

By putting the three inequalities together, we get the assertion of the lemma:

Im(t(=) - Im(t(w))] < [Im(2) — Im(w)] +2y/a- AW(Q)) + 4.

8 Appendix: Embeddings into T°.

The existence of a clean pair of cross-sections in Section 3 depended on two in-
tuitively obvious facts: a sphere embedded in T® bounds a topological 3-disk; a
two-torus T? embedded in T? bounds a topological solid torus. These, however,
are not easy to prove and require (c.f. Alexander’s horned sphere) hypothesis on
reqularity of the embeddings. For instance, it suffices to require that the embed-
dings are polyhedral or extend to bi-collar neighborhoods, which is the case for the
piecewise smooth embeddings we encountered. Below we indicate how to deduce
the results we used in Section 3 from readily available classical theorems.

Theorem 8.9 (Schonflies Theorem in T?) If g : S? — T® is a piecewise
smooth embedding, then M := g(S?) bounds a topological 3-disk in T® and g extends
to an embedding G : B> — T3.

The reduction to the classical Schonflies Theorem [30] about embeddings into R3
will be afforded by the following simple lemma from general topology, the proof of
which we leave as an exercise.
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Lemma 8.5 Suppose m is an open and locally injective mapping (between metric
spaces). If A is compact with A connected, On(A) # 0, and 7|94 is injective, then
7|a is injective.

Sketch of Proof of Theorem 8.9: Lift g to g : S — R®. Smoothness assures that
G(S?) has a tubular neighborhood in R?, so that g can be extended to an embedding
S? x [-1,1] — T* — we skip the details of this routine construction. By the
classical Schonflies Theorem (as found in [4]), §(S?) bounds a 3-disk in R® and g
extends to an embedding G : B> — R®. The map G := 7w o G (where 7 is the
universal covering) is clearly an extension of g. That G is an embedding follows
from the lemme applied to 7r|@(133). a

The following result is reminiscent of Alexander’s theorem on the embeddings
of T? into S3.

Theorem 8.10 (Alexander’s Theorem in T?) If g : T — T° is a piecewise
smooth embedding and the induced map on the first homology is of rank one, then
M = ¢(S?) bounds a solid 3-torus B in T* and g extends to an embedding G :
B? x T — T3.

Sketch of Proof of Theorem 8.10: No generality is lost in assuming that H,(T?)
is mapped to lin{(1,0,0)} in H,(T?). (Recall, we use the standard identification
of H,(T?) with R3.) As before, smoothness yields a nice tubular neighborhood of
g(T?) in T?; which (by PL approximation) assures that g(T?) is polyhedral and
two sided in T? (see [30] for definitions). Since the kernel of the action induced by
g on the fundamental group is non-trivial, the Loop Theorem (see page 193 in [30])
supplies a (polyhedral) two disk A in T® with A not contractible in g(T?) and
such that A N g(T?) = JA. Let ¢ : B> — T® be the embedding onto 6(B?) = A.
Now, cut T? along the loop v := ¢g~!(0A) and cap each end of the resulting cylinder
with a 2-disk as depicted below. Having identified the resulting two-sphere with

¢ .

T3

Figure 8.1:

S2, g and two disjoint copies of § combine to form an immersion g, : S? — T%. The
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lift §; : S2 — R? of ¢ is an embedding and extends to an embedding G, : B> — R?
by Schonflies Theorem (the polyhedral version found in [30]). Now, the natural
identification of the two disks on S? yields a solid torus B; and the map G; descends
to G : B — T3 that extends g. It is not difficult to see that G is an embedding. O

Finally, let us show the following lemma employed in Section 4 to straighten
the cross-sections.

Lemma 8.6 (Straightening) Given two smoothly embedded two-tori in T that
intersect transversally along a simple loop, there is a homotopic to the identity
diffeomorphism of T® that maps each of the two tori to a flat torus (i.e. a torus
obtained as a quotient of a sub-plane in R?).

Sketch of Proof of Lemma 8.6: We fix two copies of a 2-torus, T? and T2, and
think of them as the flat sub-tori in T® of cohomology type (0,0,1) and (1,0, 0),
respectively.

Let 0 : T2 — T% and o, : T2 — T3 be the two smooth embeddings in the
lemma, and set ¥ = o(T?) and X, = o(T?). Since the intersection product of ¥
and X, is a class of a simple loop (c.f. Section 3), ¥ and X, must be in different
cohomology classes. For simplicity, let us assume that ¥ is cohomologous to T?
and X, is cohomologous to T2, as this can always be achieved by post-composing
the embeddings with an appropriate automorphism of T®. Therefore, I' := ¥ N X,
is a (0,1,0) loop in T?. It can be arranged® that o := ¢~'(T") and a, := 0,7 '(T)
are (0, 1) loops. Now, take two copies of T? each sliced along a, and two copies of
T? each sliced along «; and put together the four resulting annuli to form a torus
M as hinted by the figure below.

TZ
T2
- <T R3/(2Z x Z x 27)
TZ
T3 T
%, /

Figure 8.2:

by precomposing the embeddings with an automorphism of T?
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The embeddings o and o, naturally induce f : M — T® and its lift f : M —
R3/(2Z x Z x 27) to a bigger torus is an embedding (unlike f). By Theorem 8.10,
f extends to the solid torus B bounded by M. This extension factors through the
natural identifications on M = 9B to yield some F; : B/ ~ = T? — R*®/(2Z x
Z x 2Z). From the construction, F) is easily seen to descend to an embedding
F : T® — T? that extends o and o,. Equally easy is to see that F induces the
identity on the first homology and therefore must be homotopic to the identity. O
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