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mention that any homotopic to the identity di�eomorphism of T2 is automaticallyisotopic to the identity (see page 328 in [27]) so that Di�0(R2) consists of thedi�eomorphism ~f : R2 ! R2 that are Z2-equivariant (i.e. ~f � Tv = Tv � ~f for allv 2 Z2).The maps in Di�0(T2) are commonly used to study systems of three coupledoscillators. We shall not explain this well known connection in detail (see [3] and thereferences therein) but instead we convey the idea via the paradigm of Huygens'sclocks. Imagine Christiaan Huygens coupling three pendulum clocks of his makingby placing them on one shelf and taking the readings xn and yn of the second andthird clock after n revolutions of the �rst (mother) clock for n = 0; 1; : : :. Thatthere is ~f 2 Di�0(R2) such that (xn+1; yn+1) = ~f(xn; yn) is a sensible idealization.The long time behavior of xn and yn can be anywhere from simple to very chaoticdepending on ~f (i.e. the clocks' design) | see e.g. [3]. Our main result roughlysays that, if the second clock has a well de�ned and irrational frequency, then thethird clock has a well de�ned frequency as well.Theorem 1.1 If ~f 2 Di�0(R2) has the property that an irrational number � existssuch that, for any initial point (x; y) 2 R2 , the iterates (xn; yn) = ~fn(x; y) satisfylimn!1xn=n = �;then there is a number � (rational or irrational) such thatlimn!1 yn=n = �for all (x; y) 2 R2 .When xn = x0 + n�, ~f is a skew-product, and the theorem follows rathereasily from the ergodic averaging over the circle rotation by � [13, 16] | see also[21, 32]. (In particular, the irrationality of � is clearly essential.) At the sametime, such real-analytic skew-products f exist with � and � independent over Qthat are not uniquely ergodic (see 4.5 [13]1). This shows that the dynamics of fmay be nontrivial and that the obvious generalization of the theorem to the higherdimensions fails. Indeed, let ~f : R2 ! R2 be a lift of such an exotic example withtwo di�erent ergodic measures �1 and �2, and pick a continuous � : T2 ! R withR � d�1 6= R � d�2. For the map (x; y; z) 7! � ~f(x; y); z + �((x; y) mod Z2)�, whichis in Di�0(R3), we have limn!1 xn=n = � and limn!1 yn=n = � regardless of theinitial condition (x0; y0; z0), while limn!1 zn=n fails to have a common value: itequals R � d�i for �i-typical (x0; y0; z0), i = 1; 2.1This example arises as the projective action of a SL2(R)-cocyle with positive Lyapunovexponent but no hyperbolic structure. Proposition 3.1 in [15] assures that there is more than oneinvariant measure. 2



In order to further connect with existing literature, let us recast our result in aslightly more general form. Recall the rotation set �( ~f) of ~f 2 Di�0(Rd),�( ~f) := 1\n=1 cl 1[k=n( ~fk(p)� pk : p 2 Rd)! : (1.1)This is to say that �( ~f) collects all the limits points of the sequences of the form~fki (pi)�piki where ki !1 and pi 2 Rd . (The Rd containing �( ~f) is rightfully thoughtof as the real homology group H1(Td) but we suppress this distinction, c.f. [9].)The set �( ~f) is always compact and connected [28]. In dimension d = 2, �( ~f) isalso convex [28] and much is known about its relation with the dynamics [6, 29,25, 19, 17], yet it is still open what convex sets can be realized as rotation sets[18, 20]. Thanks to Theorem 1.1, we now know that the vertical segments over anirrational number are precluded. The following is an easy generalization obtainedby conjugation and 
ow-equivalence (see Section 2).Theorem 1.2 Suppose that f 2 Di�0(T2), ~f 2 Di�0(R2) is its lift, and therotation set �( ~f) is contained in a line. If either of the two conditions below holds:(i) the line has rational slope and contains no rational points,(ii) the line contains a unique rational point and that point is not in �( ~f),then the rotation set �( ~f) is just a single point. (Here by a rational point we meana point with both coordinates that are rational numbers.)For comparison, let us paraphrase the conjecture of Franks and Misiurewicz in-spired by the complete classi�cation of the rotation sets for toral 
ows in [10].Conjecture 1 (Franks and Misiurewicz) Suppose that ~f 2 Di�0(R2) is suchthat the rotation set �( ~f) is contained in a line and either(a) the line contains no rational points, or(b) the line contains a unique rational point, which is not an endpoint of �( ~f),then the rotation set �( ~f) is just a single point.Thus the two possibilities that remain open are when the line has irrational slopeand either misses all rational points (case (a)) or contains exactly one rationalpoint that sits strictly inside the segment �( ~f) (case (b)). Ruling out the �rstpossibility is particularly nagging as it would show that a periodic point free andarea preserving2 f 2 Di�0(T2) has a well de�ned rotation vector, i.e. �( ~f) is apoint. This can be deduced because such maps have no rational points in theirrotation sets ([6, 8] see also [12, 5, 17]). We hope that our methods will ultimatelylead to a resolution of the problem, and we o�er Theorem 1.2 as a step in thatdirection. Let us also comment that the C1-regularity required of f is most likelyan excessive assumption: our key estimates depend on mere quasiconformality of2The Reeb 
ow shows that the measure preservation assumption is necessary (see e.g. [28]).3



f . Homeomorphic counterexamples presumably exist although they may be quiteelusive.Our arguments break up into two parts: topological and analytical. The topo-logical part hinges on the following result reminiscent of the Brouwer plane trans-lation theorem (c.f. [31, 7] and the references therein).Theorem 1.3 (Translation Loop Theorem) Suppose that f 2 Di�0(T2) and~f 2 Di�0(R2) is its lift such that the rotation set �( ~f) is contained in a line Lwith rational slope and no rational points, and let L0 be the line through the originparallel to L. Then, for any n 2 N, there is a smooth closed simple loop 
 in T2| called a translation loop | that is homologous to the loop � := L0 (mod Z2) andsuch that 
; : : : ; fn(
) are disjoint. Moreover, the ordering of 
; : : : ; fn(
) on T2is the same as that of �; : : : ; T n(�) where T is a translation of T2 that maps L0 toL.In the context of Theorem 1.1, 
 is a (0; 1)-loop on T2 and 
; : : : ; fn(
) areordered on T2 in the same way as 0; �; : : : ; n� are ordered on T | see Fig-ure 1.1. Furstenberg's classical skew-product example [26], which is of the form~f : (x; y) 7! (x+ �+ g(y); y+ �) with �( ~f) = (�; �), demonstrates that there maybe no one 
 such that fn(
) \ 
 = ; for all n 2 N . The reason is that fn(
) getssmeared all over T2 with increasing of n so that fn(
) has to eventually intersectany �xed (0; 1)-loop. This highlights the fact that f need not be semi-conjugatedto the irrational circle rotation R� : T ! T. Nevertheless, our theorem showsthat there is no combinatorial obstruction and such approximate semi-conjugaciesexist in the following sense (resembling Rohlin's periodic approximation). Letp=q < � < p�=q� be a pair of Farey neighboring fractions approximating �, andlet 
 be the translation loop for n = q+ q�� 1. Denote by J the annulus boundedby 
 and f q(
) and by J� the annulus bounded by 
 and f q�(
). By the standardcombinatorics of R�, the familyJ; : : : ; f q��1(J); J�; : : : ; f q�1(J�) (1.2)covers all of T2 without overlap (Figure 1.1). It is now easy to produce h : T2 ! Tso that R��h(p) = h�f(p) for p 62 f q��1(J)[f q�1(J�) by extending (via dynamics)any continuous map J [ J� ! [Rq(0); Rq�(0)] that sends f q(
), 
, and f q�(
) toRq(0), 0, and Rq�(0), correspondingly. Such h nearly semi-conjugates f to R� inthe sense that maxp2T2 dist(R� � h(p)� h � f(p)) � jp=q� p�=q�j.From another point of view the translation loop theorem is a result on existenceof renormalizations. The boundary curves of J[J� are naturally identi�ed by f q�q�so that (J [ J�)=(f q�(p) � f q(p)) �= T2, and the return map to J [ J� descends toa homeomorphism RJ[J�(f) : (J [ J�)= � ! (J [ J�)= �. Conjugated with some(normalizing) homeomorphism � : (J [ J�)= � ! T2, RJ[J�(f) is again a map inDi�0(T2) and constitutes a renormalization of f . In contrast to the renormalizationdescribed in [22], this procedure engages only one coordinate of the rotation set4



and also applies to annulus maps (with well de�ned rotation vector). Section 5contains more details; however, a more systematic study of renormalization and adiscussion of its position among other existing renormalization schemes is relegatedto [23].
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Figure 1.1: Translation Loop and Renormalization (p=q = 4=5, p�=q� = 3=4)Continued fraction approximation pk=qk ! � yields a whole sequence of the as-sociated renormalizations and raises a general question: Under what circumstances,the renormalizations converge, or are otherwise well behaved in some precisely de-�ned sense? A su�ciently strong answer may as well secure conjugacy to the trans-lation (but will not come easily, c.f. [14]). A very weak answer, regarding only theconformal modulus of the renormalized tori, already su�ces for the analytical partof the proof of Theorem 1.1. Concretely, the subadditive property of the conformalmodulus shall guarantee that Pq��1j=0 mod(f j(J)) +Pq�1j=0 mod(f j(J�)) � C whereC is a universal constant (and mod(A) stands for the modulus of the annulus A inT2 ' C =(Z+iZ)). This roughly means that the annuli of the partition (1.2) get thinas q and q� become large so that f resembles in some sense a skew-product of circlehomeomorphisms3| for which the rotation set is a point, as we have already men-tioned. This is of course a caricature of the actual proof and the success is not im-mediately obvious, if only because \conformally thin" is not necessarily \geometri-cally thin". We shall uniformize the larger annuli f j(J[J�) to Aj := T�[0; aj ] � Cand then consider the open cascade of mappings fj : Aj ! Aj+1 induced by f . Thefamily ffjgj2N generally fails to be uniformly C1 due to the unbounded geometry off j(
) | c.f. Furstenberg's example | yet ffjgj2N is manifestly uniformly quasi-conformal. This facilitates the use of the quasi-invariance of the extremal length inorder to bound the displacement of fj's and to control the geometry of f j(J [J�)'s| see Section 6.Let us also brie
y comment on the proof of the translation loop theorem. Westudy the suspension 
ow � on T2 � T ' T3 for which the translation loop corre-3The renormalizations degenerate to 1-dimensional maps.5



sponds to (0; 1; 0)-loop � in T3 such that �t(�)[ � = ; for t 2 [0; n]. The key ideais to seek � as the intersection of a pair of global cross-sections � and �� (bothbeing 2-tori). In the simplest case, such cross-sections are 
at and lift to planes inR3 . The complement of the two planes in R3 constitutes four wedges, and at leastone wedge is forward 
ow-invariant so that it contains the full forward orbit of theline of intersection of the two planes, which is a lift of � (c.f. Figure 4.1). Now,the narrower and more irrationally sloped the wedge, the longer � 
ows withoutintersecting its initial position, thus securing a substantial translation time (n).Of course, 
at cross-sections may be unattainable, and we use the following topo-logically invariant de�nition to single out the pairs of cross-sections that generatetranslation loops.De�nition 1.1 A pair (�;��) of embedded (and cohomologically di�erent) tori inT3 is called clean if the tori intersect transversally along a single closed loop. If,additionally, � and �� are cross-sections to a 
ow, then the pair (�;��) is calleda clean pair of cross-sections.In this way, the key to the translation loop theorem is existence of an appropriateclean pair of cross-sections. Here, the individual cross-sections are readily suppliedby the classical result of Fried [11], and the bulk of the work is devoted to isotopingthem into a clean pair. The following general question transcends the narrowcontext of our arguments: Under what circumstances, can one adjust by isotopya collection of global cross-sections to a 
ow on a manifold so that their mutualintersections are the simplest possible topologically? In [22], we give a positiveanswer for triples of cross-sections to a 
ow on T3 and, as a result, we discoverthe combinatorics of maps in Di�0(T2) that have a well de�ned and non-resonantrotation vector. Apparently, the idea of exploiting the 
ow to shed light on the map(and not vice versa, as pioneered by Poincar�e) has a lot to o�er and goes beyondits simplest incarnation as the classical 
ow equivalence. At the same time, ourarguments can and should be distiled into purely two-dimensional proofs | if onlyfor the sake of freeing them from intuitive yet non-trivial geometric topology in R3used in Section 3. We have restrained from doing so to preserve the simplicity ofthe original geometric ideas.Let us �nish with a quick outline of what follows. A preliminary Section 2reviews the interplay between rotation sets and 
ow-equivalence (reducing Theo-rem 1.2 to Theorem 1.1 in the process). Sections 3 and 4 demonstrate the transla-tion loop theorem. Section 5 is a digression devoted to renormalization of torus andannulus maps. Section 6 contains the analytical estimates that combine with thetranslation loop theorem to establish Theorem 1.1 (and thus Theorem 1.2). Sec-tion 7 gathers the general extremal length estimates needed in Section 6. Finally,Appendix 1 supplies some classical yet hard to �nd geometric topology needed inSections 2 and 3. 6



2 Preliminaries on Flow EquivalenceIn this preliminary section, we review the interplay between the maps in Di�0(T2)and 
ows on T3 with Fried's [11] serving as our main source. We also reduceTheorem 1.1 to Theorem 1.2.For concreteness, we identify the real homologyH1(T3) with R3 by choosing thebasis made of the standard loops (in the coordinate directions). First, we suspendf 2 Di�0(T2) into a 
ow as follows. We embed the R2 acted upon by ~f in R3 asthe (x; y)-plane ~S := f(x; y; 0) : (x; y) 2 R2g;and we embed the corresponding two-torus T2 acted upon by f in T3 asS := �T3( ~S) = f(x; y; 0) : (x; y) (mod Z2) 2 R2g:We use a smooth isotopy joining identity to f to generate a 
ow � : R � T3 ! T3whose time-one-map is f , �1jS = f: There is the (unique) lifted 
ow ~� : R � R3 !R3 ; and the lifts of f are given as T�1(a;b;1) � ~�1j ~S where a; b 2 Z. We may as wellassume that ~f = T�1(0;0;1) � ~�1j ~S: (2.1)Now, � (as any 
ow on T3) has its rotation set de�ned as the rotation setof the time-one-map in R3 , �(�) := �(~�1): Likewise, the rotation vector of p 2T3 is �(p; �) := lim�!1(~�� (~p) � ~p)=� computed on any lift ~p of p (provided thelimit exists). The homological direction of p under �, as de�ned in [11], is theprojectivization [�(p; �)] of �(p; �) where[v] := (v � R+ if v 6= 0,0 if v = 0,is considered an element of the collection of rays in R3 with 0 added as an extraisolated point. The set of homological directions of � is [�(�)] := f[v] : v 2 �(�)g.Unlike �(�), [�(�)] it is determined already by the oriented foliation of the 
ow.Since � is a suspension of f , 0 62 [�(�)] and an easy computation yields[(�( ~f); 1)] = [�(�)]: (2.2)Another basic (and easy) fact is that conjugating � to  = h � � � h�1 via ahomeomorphism h : T3 ! T3 yields[�( )] = A[�(�)] (2.3)where A 2 SL3(Z) is induced by the linear action of h on the homology H1(T3) �=R3 .Now, recall that a cross-section to a 
ow is a codimension one smooth subman-ifold that is transversal to the 
ow and meets its every 
owline. A cross-section �7



to � is of course necessarily di�eomorphic to T2 (because �� R is a Z-cover of T3and therefore Z2-quotient of R3). The classical result of David Fried on existenceof cross-sections (Theorem D in [11]) reads in our context as follows.Theorem 2.4 (Fried) Suppose that � is a 
ow on T3 and we are given an indi-visible integer 1-cohomology class �, � : R3 ! R. If � is positive on the set ofvectors in [�(�)] (i.e. �(v) > 0 if [v] 2 [�(�)]), then � has a cross-section � in thecohomology class of �.Let us relate [�(�)] and the rotation set of the return map to a cross-section �.Suppose that � : T2 ! T3 is an embedding and � := �(T2) is a cross-section to �.We have the return map �� : �! � and the induced map f 2 Di�0(T2) on T2 isf := ��1 � �� � �:To recover lifts of f from ~�, �x some lift ~� : R2 ! R3 and set ~� = ~�(R2). Letu; v 2 Z3 be the images of (1; 0) and (0; 1) under the map induced by � on the�rst homology. Let w 2 Z3, be such that ~� + w is the lift of � adjacent to ~� inthe positive 
ow direction: i.e. ~� + w is the connected component of ��1T3 (�) �rsthit by 
ow lines departing from ~� . Let ~�~� : ~� ! ~� + w be the holonomy alongthe 
ow lines: i.e. ~�~�(p) is the (unique) intersection with ~� + w of the 
ow linethrough p 2 ~�. It is easy to see that, ~f : R2 ! R2 given by~f := ~��1 � T�1w � ~�~� � ~�is a lift of f and that it does not depend on the choice of ~�. (Replacing w byw + au+ bv, a; b 2 Z produces all other lifts of f .) We claim that[(�( ~f); 1)] = A[�(�)]; (2.4)where A = A(u;v;w) is induced by the linear mapping sending (1; 0; 0), (0; 1; 0),(0; 0; 1) to u, v, w, respectively. For a proof, note that the formula (2.3) reducesthe problem to the case when u = (1; 0; 0), v = (0; 1; 0), and w = (0; 0; 1), the casealready covered by (2.2).Putting together Fried's theorem and formula (2.4) yields the following result.Theorem 2.5 Suppose that � � R2 is a rotation set of some ~f 2 Di�0(R2). Ifu; v; w 2 Z3 are a basis of Z3 over Z such that [�� f1g] is contained in the openhalfspace bounded by the plane linfu; vg that contains w, then�0 := A�1(u;v;w)[(�; 1)] \ f(x; y; t) : t = 1gis a rotation set of some ~f 0 2 Di�0(R2) such that ~f and ~f 0 are lifts of 
ow equivalenttorus maps. 8



Corollary 2.1 Under the assumptions of Theorem 2.5, if L is a projective lineartransformation, L(x; y) = (a11x + a12y + a13; a21x+ a22y + a23)a31x + a32y + a33 ;with the coe�cient matrix A = (aij)3i;j=1 in SL3(Z) and a31x + a32y + a33 6= 0 for(x; y) 2 �, then �0 := L(�) is a rotation set of some ~f 0 2 Di�0(R2).Reduction of Theorem 1.2 to Theorem 1.1 (via Corollary 2.1). First, suppose~f satis�es the hypothesis (i) of Theorem 1.2, i.e. � = �( ~f) is contained in a liney = s=r � x + c where s=r is a reduced fraction. Let s�=r� be a Farey neighbor ofs=r so that rs�� sr� = 1, and take L(x; y) = (sx� ry; s�x� r�y). Then �0 = L(�)is contained in a vertical line x = c and we are done by invoking Theorem 1.1.Second, suppose that ~f satis�es the hypothesis (ii) of Theorem 1.2 with (p; q)=nbeing the only rational point on the line. The rotation set � := �(T�1(p;q) � ~fn) =n�( ~f) � (p; q) is then contained in a line through origin, and 0 62 � so that � �f� � (x0; y0) : � > 0g for some point (x0; y0) 2 R2 . Take L(x; y) := (x=y;�1=y).Then �0 = L(�) is contained in the line x = x0=y0 and we may invoke Theorem1.1 again. 23 Existence of Clean Pairs of Cross-SectionsWe �x a C1-
ow � on T3 and its lift ~� on R3 . Let p=q and p�=q� (with q; q� > 0)be any two adjacent Farey fractions such that p�=q� < p=q, which is to say thatA = �p p�q q�� 2 SL2(Z):Throughout this section, we assume that the homological directions of � are con-tained in the wedge between (p; 0; q) and (p�; 0; q�):Hypothesis (H) [�(�)] � [fa � (p; 0; q) + b � (p�; 0; q�) + c � (0; 1; 0) : a; b; c > 0g]:In view of (2.2), (H) holds when ~� is a suspension of ~f 2 Di�0(R2) and �( ~f) �(p�=q�; p=q)�R, which is the case under the assumptions of Theorem 1.1 if p�=q� <� < p=q. (In fact, (H) forces that ~� is a suspension 
ow for some ~f 2 Di�0(T2).)Considering R3 as the (x; y; t)-space, we write [!]H1(T3) and [!�]H1(T3) for the1-cohomology classes of the 1-forms! := qdx� pdt;!� := �q�dx+ p�dt:9



By hypothesis (H), [!]H1(T3) and [!�]H1(T3) are positive on [�(�)] so that Fried'sresult (Theorem 2.4) assures existence of two global embedded cross-sections to �:� in [!]H1(T3) and �� in [!�]H1(T3). The goal of this section is to show that � and�� can always be adjusted to form a clean pair of cross-sections (as de�ned in theintroduction).Theorem 3.6 (E�cient Cut) Under the assumption (H) there exists a cleanpair of cross-sections � and �� in the cohomology classes [!]H1(T3) and [!�]H1(T3),respectively.Remark 3.1 If � and �� are initially transversal to each other, then the theoremwill be shown by isotoping only one of the cross-sections (� or ��) so that the othercross-section is left unchanged.Proof of Theorem 3.6. Let � and �� be the cross sections in the right co-homology classes supplied by the Fried's result. We �x smooth embeddings�; �� : T2 ! T3 such that � = �(T2) and �� = ��(T2). We assume that �and �� are orientation preserving when taking T2 with the standard orientationand � and �� oriented so that ! > 0 and !� > 0. (Thus a positively oriented2-frame tangent to � together with the vector �eld of � forms a positively oriented3-frame in T3.)By the Thom transversality theorem, a C1-small perturbation of � and �� canbe arranged so that � and �� are transversal. Thus �\�� becomes 1-dimensionalsmooth closed submanifold of T3, and the classi�cation of 1-manifolds asserts that� \ �� = �1 [ : : : [ �r where each �i is a smooth embedded circle (a loop).The embeddings �; �� induce monomorphisms on the homologies, �1; ��1 :H1(T2)! H1(T3), and we have�1(H1(T2)) = linf(p; 0; q); (0; 1; 0)g = ker(!) (3.1)��1(H1(T2)) = linf(p�; 0; q�); (0; 1; 0)g = ker(!�): (3.2)Thus the homology classes of �i's satisfy [�i]H1(T3) 2 linf(0; 1; 0)g. The preimagesof �i's on T2 are �i := ��1(�i); [�i]H1(T2) 2 linf(0; 1)gand ��i := ���1(�i); [��i]H1(T2) 2 linf(0; 1)g;where i = 1; : : : ; r. Moreover, if � : H2(T3)�H2(T3)! H1(T3) is the intersectionproduct, then we have:rXi=1 [�i]H1(T3) = [� \ ��]H1(T3) = [�]H2(T3) � [��]H2(T3) = (0; 1; 0);10



(where an appropriate orientation is put on �i's). In this way, if r = 1, then �1is a loop with [�1]H1(T3) = (0; 1; 0), making (�;��) a clean pair of cross-sections.In the rest of this proof, we assume that r > 1 and show how to isotope �� todiminish r by one without destroying the property that �� is a cross-section to �.We shall consider two cases separately.Case 0: There is k, 1 � k � r, such that �k is null-homotopic.Clearly, �i is null-homotopic in T3 i� �i is null-homotopic in T2. Consider thenall the null-homotopic loops �i. Each such loop bounds a smooth 2-disc �i in T2,and any two such discs are either disjoint or contained one in another. We may�x k with �k minimal with respect to inclusion so that �k is disjoint from all �iwith i 6= k. Let also ��k be the 2-disc bounded by ��k in T2. (We do not insistthat ��k contains no other null-homotopic ��i's.) In T3, we have D := �(�k)and D� := ��(��k) that are two smoothly embedded (closed) discs that intersect(transversally) along �k. Thus D [D� is a smoothly embedded sphere except forthe singularity along �k. By a version of Sch�on
ies Theorem (in the appendix) thesphere bounds a 3-disk B in T3.The 
ow is transversal through the union of the 2-dimensional interiors Do [Do� = @B n �k. For speci�city, we assume that � enters B through Do� (i.e. thenormal component of the vector �eld ddt jt=0�t(p) points inside B for all p 2 Do�).Otherwise, one should use the reversed 
ow in the following arguments. We claimthat, since � enters through Do�, � must exits through Do. Indeed, otherwise, �enters B through Do [ Do�, which implies that, for p in the interior of B, thepositive 
owline f�t(p)gt>0 is contained in B. It follows that �(p; �) = 0, whichcontradicts 0 62 �(�) as guaranteed by hypothesis (H).For an open neighborhood U ofB in T3, denote by UD the connected componentof � \ U that contains D. To localize our isotopy, we shall need U satisfying thefollowing conditions (see Figure 3.1):(i) U is a smoothly embedded open 3-disk in T3;(ii) UD is a 2-disk and UD \ �� = �k;(iii) UD cuts U into exactly two connected components of which one, denoted U�,is entered by the 
ow along UD;(iv) �� \ U = D� [ (�� \ U�).In fact, for su�ciently small � > 0, the mutual transversality of �, ��, and the 
ow� assures that U equal to the �-neighborhood of B satis�es the above hypotheses(consult Figure 3.1). We skip the routine proof.We shall deform now �� inside U as follows. Take � : T3 ! [0; 1] to be a smooth(bump) function with �jU > 0 and �jT3nU = 0. Let  : R � T3 ! T3 be the 
ow �with speed multiplied by �, i.e. ddt jt=0 t(p) = �(p) � ddt jt=0�t(p) for p 2 T3. Clearly, is the identity outside U , and the orbit of � starting at p 2 U must hit @U (for11



Figure 3.1: Removing a null-homotopic loop from � \ �� (in a cross-cut view).otherwise its rotation vector would be zero by (i)). Consider  1 : T3 ! T3 n Ugiven by  1(p) := limt!1  t(p). (For p 2 U ,  1(p) is the �rst time �t(p) hits@U .) We claim that  1(��) \ � \ U = ; (3.3)(as it is suggested by Figure 3.1). Indeed, from (iii), @U� = (@U� \ @U) [ UD,where the 
ow  �xes @U� \ @U and enters U� through UD. Therefore, U� is -invariant and  1(U�) � @U� \ @U = @U� n �; in particular,  1(U�) \ � = ;so that  1(U� \ ��) \ � = ;: (3.4)At the same time,  1(D�) �  1(D) �  1(U�) because if p 2 Do� then  t(p)moves into B for small t > 0 only to exit B and enter U� through D for some latert (c.f. (iii)). Hence,  1(D�) \ � �  1(U�) \ � = ;: (3.5)Combining (3.4), (3.5), and the hypothesis (iv) establishes the claim (3.3).Now, claim (3.3) and (ii) yield� \  1(��) = (� \  1(��) n U) [ (� \  1(��) \ U) � (� \ �� n U) [ ; � r[i=1;i 6=k�i:For large t0 > 0, the above inclusion implies (by compactness) that� \  t0(��) � rXi=1;i 6=k�i:12



Hence, upon replacing �� with  t0(��), the number of connected components of� \ �� drops from r to at most r � 1; and the modi�cation does not change thecohomology class of �� because  t0 � �� : T2 ! T3 is manifestly isotopic to ��.Case 1: All loops �i, 1 � i � r, are essential (of homology type �(0; 1; 0)).In this case all �i's and ��i's are of type �(0; 1). In particular, �i's cut T2 intoannuli. Consider one such annulus � bounded by �i and �j. Denote by �� theannulus bounded by ��i and ��j. (Note that there may be other ��k's inside ��.)Also, let A := �(�) and A� := ��(��). Clearly, A \ A� = �i [ �j. Thus A [ A� isa smoothly embedded 2-torus in T3 except for singularities along �i and �j. Weclaim that one can select � so that the embedding sends the fundamental group ofA[A� to the cyclic subgroup generated by a (0; 1; 0)-loop. The idea | see Figure 3.2| is to make sure that � and �� intersect at �i and �j with opposing signs (inthe sense of the intersection homology), which can be formalized as follows. Let ~�and ~�� be some connected lifts in R3 of � and ��, respectively. In view of (3.1),the collection ��1T3 (Sri=1 �i) of all lifts of the loops �i can be written as(~� + Z3) \ (~�� + Z3) = �~� + Z(p�; 0; q�)� \ �~�� + Z(p; 0; q)� =~� \ �~�� + Z � (p; 0; q)�+ Z(p�; 0; q�): (3.6)Therefore, since r > 1, ~� \ �~�� + k(p; 0; q)� must have more than one componentfor some k 2 Z. We may as well assume that k = 0 (by an appropriate choice of~��). Let then ~�i and ~�j be two distinct components of ~�\ ~��. We may choose ~�iand ~�j adjacent on ~� (in the sense that the strip between ~�i and ~�j in ~� is free of~��). The strips bounded by ~�i and ~�j in ~� and ~�� project to two annuli A and A�,respectively; both bounded by �i and �j. A[A� is by construction deformable to�i (or �j), which ends the proof of the claim.In view of the claim, Alexander's theorem on torus embeddings (in the ap-pendix) assures that A [ A� bounds a solid torus B �= T � D 2 in T3.The 
ow is transversal through the 2-dimensional interiors Ao[Ao� = @B n(�i[�j). From this point on the argument is very similar to that in Case 0 | compareFigures 3.1 and 3.2.For speci�city and at the expense of perhaps reversing the 
ow, we assume that� enters B through Ao�. We claim that then � necessarily exits through Ao. Indeed,otherwise, � enters B through Ao [ Ao�, which implies that, for p in the interiorof B, the positive 
owing f�t(p)gt>0 is contained in B. Since B deforms onto a(0; 1; 0)-loop in T3, �(p; �) 2 linf(0; 1; 0)g contradicting the hypothesis (H).Now, for an open neighborhood U of B in T3, let UA be the connected compo-nent of �\U that contains A. We shall need U satisfying the following conditions:(i) U is a smooth solid torus that deforms to B in T3;(ii) UA is an annulus and UA \ �� = �i [ �j;13



Figure 3.2: Removing a pair of (0; 1; 0) loops from � \��.(iii) UA cuts U into exactly two connected components, of which one, denoted byU�, is entered by the 
ow along UA;(iv) �� \ U = A� [ (�� \ U�).Again, we omit the proof that transversality of �, �� and the 
ow assures thatU equal to the �-neighborhood of B satis�es the hypotheses for su�ciently small� > 0.We shall deform �� inside U to remove �i[�j from �\��. Exactly as in Case0, take � : T3 ! [0; 1] with �jU > 0 and �jT3nU = 0; and take  : R � T3 ! T3with ddt jt=0( t(p)) = �(p) ddt jt=0(�t(p)), p 2 T3. There is again  1 : T3 ! T3 n U , 1(p) := limt!1  t(p) such that  1(p) is the �rst time �t(p) hits @U , as forcedfor p 2 U by the hypothesis (H). We claim that  1(��) \ � \ U = ;. Thecorresponding proof from Case 0 goes through almost verbatim with D and D�replaced by A and A� | we skip it.Finally, (ii) and the claim yields� \  1(��) = (� \  1(��) n U) [ (� \  1(��) \ U) � (� \ �� n U) � r[k=1;k 6=i;j�k:For large t0 > 0, we have then� \  t0(��) � rXk=1;k 6=i;j�k:14



The embedding  t0 � �� : T2 ! T3 is the sought after improvement of ��, whichreduces the number of connected components of �\�� by at least two. This endsthe description of the induction step and thus �nishes the proof of the theorem. 24 Translation Loop from Clean IntersectionWith a goal of establishing the translation loop theorem (Theorem 1.3), we shallconsider now the suspension 
ow of f together with a clean pair of cross-sections �and �� in the cohomology classes of �qdx+pdt and q�dx�p�dt, as constructed inthe previous section. The translation loop 
 will be obtained from the (0; 1; 0)-loop� := � \ �� by 
owing � to the original cross-section S = T2. Recall the guidingidea: the lifts ~� and ~�� bound a forward invariant wedge W+ in R3 | c.f. Figure4.1 | so that ~� = ~�\ ~�� (a lift of �) satis�es ~�t(~�) � ~�t(W+) � W+ for all t > 0and so �t(�) \ � = ; for a long time provided p; p�; q; and q� are large (i.e. W+ isnarrow). A more careful analysis of how W+ projects to T3 will explain the exactordering of the iterates of 
.For a precise formulation, we lift the 
ow �, the cross-section S, and � tothe suspension covering R3=� �= T2 � R where � = Z(1; 0; 0) + Z(0; 1; 0); and wedistinguish the corresponding lifted objects by a hat. (The lifts to the universalcover are distinguished by tilde.) In particular, Ŝ is an embedded torus piercedby the 
ow lines of �̂ in the t-direction (0; 0; 1), and �̂ is a simple loop in R3=� ofhomology type (0; 1). Let �̂Ŝ : R3=� ! Ŝ be the projection along the 
owlines,i.e. �̂Ŝ(p) := �̂R(p) \ Ŝ for p 2 R3=�. We de�ne
̂ := �̂Ŝ(�̂) and 
 := �T3(
̂)where �T3 : R3=�! T3 is the natural projection.Theorem 4.7 (Technical Version of Translation Loop Theorem) If ~f 2Di�0(R2) and �( ~f) � (p�=q�; p=q) � R (so that its suspension 
ow � satis�esthe hypothesis (H) from Section 3), the projection 
 of a clean intersection ofcross-sections to the torus S (as de�ned above) is a smooth simple (0; 1)-loop in Swith a property that 
; : : : ; f q+q��1(
) are disjoint and, for any � 2 (p=q; p�=q�),there is an orientation preserving homeomorphism h : T2 ! T2 such thath(
j) = �T2f(x; y) 2 R2 : x = j�g for j = 0; : : : ; q+ q� � 1.The translation loop theorem follows by �rst conjugating f via a toral automor-phism so that the line L containing the the rotation set becomes x = const (c.f.Corollary 2.1) and then applying the theorem above to pairs of Farey fractionsp�=q� < � < p=q that approximate � su�ciently close. The rest of this section isdevoted to the proof of Theorem 4.7.To ease our exposition, it is convenient to isotope T3 so that � and �� be-come 
at tori. This step is facilitated by a general Lemma 8.6 (in the ap-pendix). Moreover, we shall change the basis in R3 (and translate) so that the15



lifts ~� and ~�� of � and �� become the coordinate planes linf(1; 0; 0); (0; 1; 0)gand linf(0; 0; 1); (0; 1; 0)g, respectively. Technically, we are conjugating � by thedi�eomorphism supplied by the lemma composed with the linear automorphism Linduced by ~L : R3 ! R3 such that~L = 0@ q� 0 �p�0 1 0�q 0 p 1A and ~L�1 = 0@p 0 p�0 1 0q 0 q�1A :We shall suppress this conjugacy and use the old notation. Figure 4.1 depicts
~L~L�1Tt ~S~S

W+~� W+~�� Tt ~S~S ~�� ~�x
t

Figure 4.1: The Straightening Conjugacy. (Here, p=q = 4=5 and p�=q� = 3=4.)the situation. Note that now � = Z(q�; 0;�q) + Z(0; 1; 0) and the standard cross-section S is an embedded (possibly non-
at) torus homologous to the quotientof the plane linf(q�; 0;�q); (0; 1; 0)g. The (\time") deck translation, originallyT(0;0;1), is now represented by Tt := T(�p�;0;p). The (conjugated) 
ow yields the(conjugated) map ~f via the analogue of (2.1):T(�p�;0;p)�1 � ~�1j ~S = ~f and T(�p�;0;p)�1 � �̂1jŜ = f̂ : (4.7)Also, keep in mind that the positive wedge, W+ = f(x; y; t) : x; t > 0g, is forwardinvariant under the 
ow.Now, consider for a moment R2 (with coordinates (x; t)) and a straight line Lthrough points (0; q) and (q�; 0) | see Figure 4.2. Let L� be the open halfspacebounded by L that contains (0; 0). Take the union of all the closed lattice squares(i.e. Z2 translates of [0; 1]2) with interior entirely contained in L�:~H� :=[fQ : Q is a lattice square with int(Q) � L�g:16



0

1

2

3

4
5

6

7

8~
8
~
2~
1
~
0

~
4 ~
6 ~
7~
8 ~
0~
1

~�1~�2 ~�3
~
08 ~
00~
01~
02 ~
03~
04 ~
05~
06 ~
07~
08 ~
00~
01~
02 ~
03

U
~�q+q�

L� (0; 0) L
~
5~
3

~
7
T(p�;0;�p) = Tt�1

Figure 4.2: The Stepped Line. Here, p=q = 4=5 < � < 3=4 = p�=q�. The blackstepped line is ~� and the gray one is Tt�1~�. See that the lattice points on the circle~�=Z(q�;�q) map under Tt�1 = T(p�;0;�p) as follows: 
̂0 ! 
̂7 ! 
̂5 ! 
̂3 ! 
̂1 !
̂8 ! 
̂6 ! 
̂4 ! 
̂2. The inset depicts the iterates of Tt�i
̂0 (labeled by i); notethe identical order to that under the circle rotation by �.De�ne ~� as the boundary of ~H�, ~� := @ ~H�;and observe that its projection �̂ to the cylinder R2=T(q�;�q) is an essential loopbecause ~H� is invariant under T(q�;�q). Finally, de�ne~� := f(x; y; t) : (x; t) 2 ~�g �= ~� � R � R3and �̂ := �R3=�( ~�) � R3=�where �R3=� : R3 ! R3=� is the natural projection. We set out to show that �̂constitutes a cross-section to �̂ and the induced return map (conjugated to f̂) hasa natural translation loop. 17



One easily observes that ~� is a staircase-like broken line: as we traverse ~�from (0; q) to (q�; 0), the line can only step down vertically or move to the righthorizontally (i.e. either x or �t is increasing); in the process, we encounter q + q�segments, denoted by ~�1, : : :, ~�q+q� , with endpoints at the lattice points ~
i :=~�i \ ~�i+1, i = 0; : : : ; q + q� � 1. Consult Figure 4.2. In R2=Z(q�;�q), we have thecorresponding segments �̂1, : : :, �̂q+q� covering the loop �̂ and overlapping only atthe endpoints 
̂0; : : : ; 
̂q+q��1. Therefore, by setting�̂i := �R3=�( ~�i) �= �̂i � T;we get a covering of �̂ by q + q� annuli, �̂1, : : :, �̂q+q� , with pairwise disjointinteriors. Let �̂i's be the boundary circles of these annuli:�̂i := �̂i \ �̂i+1 �= 
̂i � T;where i = 0; : : : ; q + q� � 1 and indexing is modulo q + q�. (�̂0 will be the soughafter translation loop.)Fact 4.1 Recall the \time translation" Tt := T(�p�;0;p).(i) �̂ is compact and every 
ow line meets �̂ exactly once;(ii) the holonomy �̂Ŝ̂� := �̂Ŝj�̂ : �̂! Ŝ is a homeomorphism;(iii) �Sq+q��1i=0 �̂i� n Tt�1 �Sq+q��1i=0 �̂i� = �̂0;(iv) Sq+q��1i=0 �̂i = f�̂0; Tt�1(�̂0); : : : ; Tt�(q+q��1)(�̂0)g.Proof. (i) Since �̂ is the lift of � to the suspension covering, limt!�1 �̂t(p) =�1 where �1 denotes the two ideal boundary components of the cylinder R3=�.Because �̂ separates R2=T(q�;�q), �̂ separates R3=� into two connected components,which we denote �̂� and �̂+ so that �1 2 �̂� and +1 2 �̂+. Hence, every
ow-line of �̂ must intersect �̂. We have to argue that this intersection is unique.It su�ces to show that �̂ is topologically transversal4 to the 
ow, i.e. if p 2 �̂then there is � > 0 so that �̂[��;0)(p) � �̂� and �̂(0;�](p) � �̂+. This, in turn, easilyfollows from the staircase-like shape of �̂, the 
ow's transversality to � and ��,and the forward invariance of the wedge W+.(ii) Both Ŝ and �̂ intersects every 
ow line exactly once, so the continuous map�̂Ŝ j�̂ : �̂ ! Ŝ is onto and one-to-one, and thus it is a homeomorphism by virtueof the compactness.To show assertions (iii) and (iv) we establish the corresponding statementsabout �̂ and the lattice points 
̂i := �̂i \ �̂i+1 under the action of T(�p�;p)�1 | seeFigure 4.2.4Although, appropriately de�ned, smooth transversality also holds.18



(iii) Observe that T(�p�;p)�1(�̂) sits in H� (below �̂) because the de�nition of �̂is T(�p�;p)-equivariant and T(�p�;0;p)�1(L) � L�. Let U be then the bounded regiontrapped between �̂ and T(�p�;p)�1(�̂). We claim that U has unit area. Indeed,since pq� � p�q = 1, the area swept in the parallel translation of the segment[(0; q); (q�; 0)] by the vector (�p�; p) is one; and it coincides with the area of Ubecause (by vanishing of divergence) the 
ux of the constant vector �eld (�p�; p)is the same through �̂ and [(0; q); (q�; 0)] (or any of their translates). Hence, U is asingle lattice square. Therefore, all lattice points of �̂ except for one | the upperright corner of U in Figure 4.2 | belong to T(�p�;p)�1(�̂). That the omitted latticepoint is 
̂0, follows from T(�p�;p)
̂0 2 L+, which assures that T(�p�;p)
̂0 62 �̂.(iv) Let � : R2=T(q�;�q) ! R be the quotient of the orthogonal projection R2 !R along L. It is easy to see that 
̂i's are exactly the points v 2 Z2=T(q�;�q)\ cl(L�)with dist(v;L) < p2; equivalently, f
̂igq+q��1i=0 = fv 2 Z2=T(q�;�q) : �(v) 2(�p2; 0]g. Also, T(�p�;p) pushes L to the right: there is a > 0 such that�(T(�p�;p)(p)) = �(p)+a for all p 2 R2=T(q�;�q). In view of (iii), there is a well de�ned� : f1; : : : ; q+ q�� 1g ! f0; : : : ; q+ q�� 1g such that �(i) = j i� T(�p�;p)(
̂i) = 
̂j.We have to show that f0; : : : ; q + q� � 1g = fi0; �(i0); : : : ; �q+q��1(i0)g for somei0 with �q+q��1(i0) = 0. Observe that because a > 0, � has no cycles and, forany 0 � i � q + q� � 1, there is a minimal k = k(i) � 0 such that �k(i) = 0.Clearly, k(i) � q + q� � 1 as i; �(i); : : : ; �k(i)(i) must all be distinct (for lack ofcycles). Moreover, if k(i) = k(j) then i = j because � is one-to-one. Thusk : f0; : : : ; q+ q�� 1g ! f0; : : : ; q+ q�� 1g is one-to-one and therefore onto. Thei0 := k�1(q+ q� � 1) has the desired property. 2Conclusion of the proof of Theorem 4.7. (i) and (ii) of Fact 4.1 secure thefollowing commuting diagram �̂ �̂Ŝ̂����! Ŝ�̂Tt(�̂)�̂ ??y �̂1??yTt(�̂) ���! Tt(Ŝ)Tt�1??y Tt�1??y�̂ �̂Ŝ̂����! Ŝ : (4.8)
where �̂�̂, �̂Ŝ̂�, and the unlabeled arrow are the natural holonomies between cross-sections. By (iii) and (iv) of Fact 4.1, we have that �̂Tt(�̂)�̂ is the identity on theset f�̂0; : : : ; Tt�q�q�+2(�̂0)g. If we recall (4.7) to the e�ect that Tt�1 � �̂1 = f̂ , we
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deduce from (4.8) that the following diagram commutesf�̂0; Tt�1(�̂0); : : : ; Tt�q�q�+2(�̂0)g ���! ŜTt�1??y f̂??yfTt�1(�̂0); : : : ; Tt�q�q�+1(�̂0)g ���! Ŝ (4.9)It is now easy to see that 
̂ := �̂�̂(�̂0) is the sought after translation loop with therequired ordering of its iterates. Indeed, the homeomorphisms h asserted in thetheorem can be constructed as follows. Let hf : �̂ ! T2 be the composition of�̂Ŝ̂� with the identi�cation between Ŝ and T2 (conjugating f̂ with f). Let also h� :�̂! T2 be the analogous homeomorphisms when f is replaced by the translationT� : (x; y) 7! (x + �; y) (mod Z2) (which obviously satis�es all the hypotheses ofthe theorem). That h = h� � h�1f is as required follows readily by putting together(4.8) and (4.9) with their counterparts for T�. This completes the proof of Theorem4.7. 25 RenormalizationThis section is a digression and the readers interested only in the proof of Theo-rem 1.1 should move on to Section 6 after reading De�nition 5.2 below.De�nition 5.2 Given A = �p p�q q�� 2 SL2(Z) with q; q� > 0, a map f 2 Di�0(T2)is A-renormalizable i� there is a simple (0; 1)-loop 
 such that (f i(
))q+q��1j=0 aredisjoint and ordered as (j�(mod 1))q+q��1j=0 (in the sense of Theorem 4.7), where �is any number between p=q and p�=q�.In what follows, we attempt to shed some light on the de�nition by linking renor-malization with 
ow equivalence. As we have already mentioned, a more completediscussion is relegated to [23].Proposition 5.1 Suppose that f 2 Di�0(T2) is A-renormalizable, J is the an-nulus bounded by 
 and f q(
) and J= � is the torus obtained by identifying theboundary curves of J via f q. Then the suspension 
ow of f has a well de�ned cross-section � in the cohomology class (�q; 0; p) (represented by linf(p; 0; q); (0; 1; 0)g(mod Z2)); and the map RJ(f) : J= � ! J= � induced by the �rst return to Junder f is conjugated to the Poincar�e return map �� : �! � for the 
ow.The analogous proposition holds for the annulus J� bounded by 
 and f q�(
).Corollary 5.2 f 2 Di�0(T2) is A-renormalizable if and only if �( ~f) �(p�=q�; p=q)� R for some lift ~f of f . 20



Proof of Corollary 5.2. If f is A-renormalizable, then by the proposition wehave well de�ned cross-sections in the cohomology classes of linf(p; 0; q); (0; 1; 0)g(mod Z2) and linf(p�; 0; q�); (0; 1; 0)g (mod Z2), which implies the condition on therotation set by (2.4). The opposite implication is the content of Theorem 4.7. 2Sketch of Proof of Proposition 5.1. Let us �rst assume that 
 is obtained fromthe intersection of a clean pair of cross-sections � and ��. It su�ces to show thatthe �rst return map under f , fJ[J� : J [ J� ! J [ J�, is conjugated to the 
ow's�rst return map to � [ ��, ��[�� : � [ �� ! � [ ��. Indeed, �� : � ! � issimply the �rst return map to � under ��[��. We shall use the notations of theproof of Theorem 4.7 as found in the previous section. In particular, we have theholonomy �̂Ŝ̂� : �̂ ! Ŝ that served to de�ne 
 := �T3 � �̂Ŝ̂�(�̂0), and we have thestepped torus �̂ = Sq+q�i=1 �̂i where each �̂i � R3=� is a lift of one of the twothe (straightened) clean cross-sections � and �� in T3. Speci�cally, �̂1 and �̂q+q�are lifts of � and ��, respectively | see Figure 4.2. Together with Tt�q(�̂1) andTt�q�(�̂q+q��1), they form the boundary of the region U � T � R3=�, where Uis the lattice square with its max vertex at 
̂0 (as de�ned in the proof of (iii)of Fact 4.1). A slice through U � T is depicted in Figure 5.1. The 
ow enters
UTt�q(�̂0)

Tt�q�(�̂0)
�̂q+q�

Tt�q�(�̂q+q�)
�̂1Tt�q(�̂1) �̂0

Figure 5.1: The Return Map.U � T � R3=� via Tt�q(�̂1) [ Tt�q�(�̂q+q�) only to leave via �̂1 [ �̂q+q� ; let : Tt�q(�̂1) [ Tt�q�(�̂q+q�)! �̂1 [ �̂q+q� be the associated holonomy.Now, from diagram (4.8), f is conjugated to the map on �̂ given byf 0 := Tt�1 � �̂Tt�̂�̂ = �̂�̂Tt�1�̂ � Tt�1and, therefore, the restriction �̂Ŝ̂�j�̂1[�̂q+q� : �̂1 [ �̂q+q� ! J [ J� conjugates fJ[J�to f 0̂�1[�̂q+q� (the return map to �̂1 [ �̂q+q� under f 0).
21



At the same time f 0 = Tt�1 on most of �̂ (see (iii) of Fact 4.1), and from theaction of Tt�1 on �̂ (see (iv) of Fact 4.1 ), one easily computesf 0̂�1[�̂q+q� (p) = (�̂�̂Tt�1�̂ � Tt�q(p) =  � Tt�q(p) if p 2 �̂1;�̂�̂Tt�1�̂ � Tt�q�(p) =  � Tt�q�(p) if p 2 �̂q+q� .Descending to T3, we see from the above formula that f 0̂�1[�̂q+q� factors to thereturn map ��[��. This shows that ��[�� is conjugated to fJ[J� | as we neededto prove.To �nish the proof, we have to argue that if f 2 Di�0(T2) is A-renormalizable,then the translation loop 
 arises from the intersection of a clean pair of cross-sections � and �� to the suspension 
ow (in the appropriate cohomology classes).Consider now the two torus �̂ = Sq+q�i=1 �̂i. Because the ordering of(f j(
))q+q��1j=0 in T2 is the same as that of �Tt�j(�̂0)�q+q��1j=0 in �̂, one easilyconstructs a homeomorphism h : T2 ! �̂ that maps f j(
) to Tt�j(�̂0) for0 � j � q + q� � 1 and such that f 0 := h � f � h�1 satis�es f 0jTt�j(�̂1) = Tt�1for j = 0; : : : ; q� 2 and f 0jTt�j(�̂q+q� ) = Tt�1 for j = 0; : : : ; q� � 2. On Tt�q+1(�̂1)and Tt�q�+1(�̂q+q�), we can write f 0jTt�q+1(�̂1)[Tt�q�+1(�̂q+q�) = g � Tt�1 for someg : Tt�q(�̂1)[Tt�q�(�̂q+q�)! �̂1[�̂q+q� : Now, a routine construction yields a 
owsupported in U �T that enters via Tt�q(�̂1)[Tt�q�(�̂q+q�), leaves via �̂1 [ �̂q+q� ,and realizes g as its holonomy. This 
ow factors down to a certain 
ow � on T3(since U�T is a fundamental domain). By construction, � = linf(1; 0; 0); (0; 1; 0)g(mod Z3) and � = linf(0; 0; 1); (0; 1; 0)g (mod Z3) are cross-sections to �; and �is (conjugated to) the suspension 
ow of f 0 or, equivalently, the suspension 
ow off . 2It is also natural to consider RJ[J�(f) : (J [ J�)= � ! (J [ J�)= � inducedby the return map to J [ J� with � being again the natural identi�cation of theboundaries (which makes (J [ J�)= � a torus).Corollary 5.3 The conjugacy classes of RJ(f) : J= � ! J= �, RJ�(f) : J�= � !J�= �, and RJ[J�(f) : (J [ J�)= � ! (J [ J�)= � are independent of the choice of
. Moreover, they are 
ow equivalent to f .Sketch of Proof of Corollary 5.3. Proposition 5.1 contains the assertion aboutRJ(f). As to RJ[J�(f), the two cross sections � and �� constructed in the proofof the proposition can be cut along � \��, perturbed, and glued back together toform a cross-section in the cohomology class of linf(p�p�; 0; q�q�); (0; 1; 0)g (modZ3). RJ[J�(f) is naturally conjugated to the corresponding return map (much likeRJ(f)). 2Any map of the form � � RJ(f) � ��1 : T2 ! T2 (where � : RJ(f) ! T2is a homeomorphisms) is called a p=q-renormalization of f . Likewise, any map of22



the form � � RJ[J�(f) � ��1 : T2 ! T2 (with � : RJ[J�(f) ! T2) is called aA-renormalization of f .Before leaving this section, we note that doubling the annulus to a torus andapplying Theorem 4.7 yields the following result.Corollary 5.4 Suppose that f : T� [0; 1] ! T� [0; 1] is an orientation preservingdi�eomorphisms isotopic to the identity and ~f : R�[0; 1] ! R�[0; 1] is its lift. If ~fhas a well de�ned and irrational rotation number � (i.e. limn!1 1nprR( ~fn(p)�p) =� for all p 2 R � [0; 1]), then f is in�nitely renormalizable in the sense that, forevery pair of Farey neighbors p=q and p�=q�, there exists a simple curve 
 joiningthe two boundary components of T� [0; 1] such that (f i(
))q+q��1j=0 are disjoint andordered as (j�(mod 1))q+q��1j=0 .There is a conjecture (dating back to G. Birkho�) that if f is an area preserving andsu�ciently smooth annulus map satisfying the hypotheses of the corollary, then fis actually conjugated to the rigid rotation for Diophantine � [14]. Corollary 5.4may be the natural foundation for the global renormalization approach to thisquestion (c.f. Question 3.2 in [14]).6 Rotation EstimatesThis section contains the analytical part of the proof of Theorem 1.1. By virtue ofthe the translation loop theorem (Theorem 4.7) we may assume that f 2 Di�0(T2)is A-renormalizable for A = �p p�q q�� 2 SL2(Z) where p=q and p�=q� constitute apair of Farey neighbors approximating �. Theorem 1.1 follows by letting p=q andp�=q� converge to � and applying the following more precise result.Theorem 6.8 (technical version of Theorem 1.1) There exists C : [1;1) �N ! (0;+1) such that limm!1C(K;m) = 0 for every K > 1 and, if f 2Di�0(T2) is K-quasiconformal and A-renormalizable with a lift ~f , thendiam(�( ~f)) � C(K;maxfq; q�g):The rest of this section is devoted to the proof of Theorem 6.8. In addition tof 2 Di�0(T2), we �x its lift ~f 2 Di�0(R2) and the translation loop 
 � T2 as inDe�nition 5.2. For speci�city, we shall assume thatq� > q:Writing 
j := f j(
), we take Jj to be the closed annulus in T2 bounded by 
j and
j+q; and J�j to be the closed annulus in T2 bounded by 
j and 
j+q� (c.f. Figure1.1). For j 2 Z, set Uj := Jj [ J�j; j 2 Z:Also, choose a lift ~U0 of U0 and set ~Uj := ~f j( ~U0).The ordering of (j�)q+q��1j=0 on T secures the following hypotheses for k 2 Z.23



� Covering Property: fUk+jgq��1j=0 covers T2: Sq��1j=0 Uk+j = T2;� Overlap Property: fUk+jgq��1j=0 overlaps no more than twice: Uk+j := Jk+j[J�k+j and each family fJk+jgq��1j=0 and fJ�k+jgq��1j=0 is essentially disjoint (i.e.the interiors are pairwise disjoint.)The sole role of Covering Property is to assure the following:Fact 6.2 �( ~f) = �( ~f; U0) (where �( ~f; U0) is de�ned as in (1.1) with the extrarequirement that p 2 U0.)Proof. Only �( ~f) � �( ~f; U0) requires an argument. Consider v 2 �( ~f), that isv = limj!1 ~fnj(~pj)=nj for some ~pj 2 R2 and nj ! 1. By Covering Property,there are kj, 0 � kj � q�� 1, such that pj 2 Ukj ; equivalently, p0j := f�kj(pj) 2 U0.Having �xed lifts ~p0j of p0j, we estimatek ~fnj(~p0j)� ~fnj (~pj)k � C := maxy2R2; 0�k�q��1 k ~fk(y)� yk:It follows that v = limj!1 ~fnj(~pj)=nj = limj!1 ~fnj(~p0j)=nj 2 �(f; U0). 2Overlap Property is to be viewed in the context of the following variation onthe subadditive property of the conformal modulus demonstrated in Section 7.(Below, we assume the standard identi�cation of R2 with the complex numbers Cand consider T2 = R2=Z2 as the conformal torus T2 = C =(Z + iZ).)Lemma 6.1 (subadditivity) Suppose that fVjgNj=1 is a �nite family of embeddedannuli in T2 each of homology type (0; 1), and suppose that fVjgNj=1 has the m-overlap property de�ned as follows: there arem essentially disjoint families fV lj gNj=1,l = 1; : : : ; m, of (0; 1)-annuli in T2 such that fV lj gml=1 are also essentially disjointand cover Vj for each j = 1; : : : ; N . ThenNXj=1 modT2(Vj) � m3where modT2(Vj) � 1 stands for the modulus of the annulus Vj in T2.If we denote aj := modT2(Uj);then the lemma applied to fUk+jgq��1j=0 yieldsFact 6.3 For k 2 Z, ak � 1 and Pk+q��1j=k aj � 8.To proceed, we �x a (reference) pointq 2 f q(
) � @U024



and its lift ~q 2 C . We also set, for j � 0,qj := f j(q) and ~qj := ~f j(~q):Our ultimate goal is to estimate the di�erence Im( ~fn(~q))�Im( ~fn(~p)) for any ~p with�(~p) 2 U0. The idea is to �rst perform the analogous comparison in the intrinsicuniformizing conformal coordinates on Uj's (c.f. Claim 6.1 ahead). To this end, wedenote by Ba the cylinder of (modulus a) obtained as the quotient of the strip~Ba := fz 2 C : 0 � Re(z) � agby the Z-action generated by z 7! z + i. For each j � 0, let  j : Baj ! Uj be ahomeomorphism conformal on the interior of Baj ; and select lifts ~ j : ~Baj ! ~Uj,�j � ~ j =  j � �j, where �j : ~Baj ! Baj is the canonical projection. The dynamicsinduces ~fj : ~Baj ! ~Baj+1 de�ned by the diagram~Baj ~fj���! ~Baj+1~ j??y ~ j+1??y~Uj ~f���! ~Uj+1 :The restrictions of ~fj's to the imaginary line line are~gj : R ! R; gj(y) := ~fj(iy)=i; j � 0:Since  j are determined only up to rotation, we can impose a normalization~ j(~qj) = 0so that ~fj(0) = 0; ~gj(0) = 0; j � 0:We introduce now, for K � 1, a family F C K of maps � satisfying the followingconditions:(i) � : Ba ! Bb is a K-quasiconformal homeomorphism with a; b < 1;(ii) �(z + i) = �(z) + i for all z;(iii) �(0) = 0:The corresponding family of restrictions to the imaginary axis isFRK := f� : R ! R : 9� 2 F CK �(y) := �(iy)=i for all y 2 Rg:We record the key property of ~fj's. 25



Fact 6.4 Let K := K(f) be the quasiconformal distortion of f . The maps ~fj and~f�1j belong to F C K; and thus ~gj and ~g�1j belong to FRK.This is a consequence of the following variation on the classical result of Mori.Lemma 6.2 (Mori) F C K (and thus FRK) is an equicontinuous5 family (i.e. givenK > 0 and � > 0, there is � > 0 such that jz � wj � � implies j�(z) � �(w)j � �for any � 2 F C K).De�ne GK : R ! R as the upper envelope of F CK :GK(y) := supf�(y) : � 2 FRKg:The equicontinuity and monotonicity of functions in FRK and the fact that � 2FRK implies ��1 2 FRK guarantee that GK is a continuous increasing function.Also, GK(y + k) = GK(k) + y so that GK is a lift of an orientation preservingcircle homeomorphism. Moreover, GK(y) � y for y 2 R with GK(k) = 0 exactlyfor k 2 Z. In particular, the rotation number �(GK) = 0.Fact 6.5 For j 2 Z, x 2 [0; aj], and y 2 R,Im( ~fj(x+ iy)) � GK(y) + 2Kaj+1: (6.1)Proof. Again, this depends on the following general bound demonstrated in thefollowing section.Lemma 6.3 (Shear Estimate) If 0 < a; b < 1 and � : Ba ! Bb is K-quasiconformal thenjIm(�(x+ iy))� Im(�(0 + iy))j � 2Kb; 0 � x � a; y 2 R:Indeed, from the lemma and the de�nition of GK we haveIm( ~fj(x; y)) � Im( ~fj(0; y)) + 2Kaj+1 = ~gj(y) + 2Kaj+1 � GK(y) + 2Kaj+1:2 Now, (beside the already �xed q) we �x a point p 2 U0 and its lift ~p 2 C . Forj � 0, we set ~pj := ~f j(~p); zj :=  �1j (~pj); yj := Im(zj):We shall use that �(GK) = 0 and aj's are small to secure the following key claim.Claim 6.1 There is C = C(K; q�) > 0 with limq�!1C(K; q�) = 0 such thatlim supj!1 jyjj=j � C(K; q�):5actually, uniformly H�older 26



Before proving the claim, let us see that Theorem 6.8 already follows via thefollowing general lemma (again relegated to Section 7).Lemma 6.4 (Isthmus Estimate) If  : Ba ! C is a conformal univalent mapsuch that  (z + i) =  (z) + i, then, for any z; w 2 Ba, we havejIm( (z))� Im( (w))j � jIm(z)� Im(w)j+ 2pa �Area + 4where Area is the Euclidean area of the annulus  (Ba)=Z ( i.e. of  ([0; a]� [0; 1])).Indeed, because the conformal mapping ~ n : ~Ban ! ~Un sends 0 and zn to ~qn and~pn, correspondingly (and the area is bounded by that of T2), the lemma combineswith Claim 6.1 to securelim supn!1 jIm(~pn)� Im(~qn)jn � lim supn!1 jIm(zn)jn � C(K; q�)Theorem 6.8 follows immediately by arbitrariness of p 2 U0 and Fact 6.2. 2Proof of Claim 6.1. We show only that lim supj!1 yj=j � C(K; q�) becausethe other inequality, lim supj!1�yj=j � C(K; q�), follows by reversing the y-axis.Clearly yj+1 = Im( ~fj(xj + iyj)), so Fact 6.5 yieldsyj+1 � GK(yj) + 2Kaj+1; j � 0: (6.2)Thus, if we de�ne (tj)1j=0 recursively bytj+1 := GK(tj) + 2Kaj+1; t0 = y0; (6.3)then the monotonicity of GK implies thatyj � tj; j � 0: (6.4)It su�ces then to estimate tj's.Since aj � 1 and the Poincar�e rotation number is a monotonic function of thecircle homeomorphism (see e.g. [2]), we have a trivial bound lim supj!1 tj=j ��(GK) + 2K. To improve the estimate, we shall use Fact 6.3. Fix an arbitrary� > 0. From Fact 6.3, for any k 2 N , we estimate �a la Chebyschev's inequality:#fj : ak+j � 8=�q�; 0 � j < q�g � 8=�q� � q��1Xj=0; ak+j�8=�q� ak+j � 8;#fj : ak+j < 8=�q�; 0 � j < q�g � (1� �)q�: (6.5)For any n 2 N , by dividing f1; : : : ; ng into blocks of length q�, we conclude#fj : aj � 8=�q�; 0 � j < ng � �(n=q� + 1)q�: (6.6)27



Let M � N be the set of indices for which ak is small,M := fk : ak � 8=�q�g:For k 2M , set Ik := �k; k + 1; : : : ; k + � ln q�2 lnK�� ;where b�c stands for the integer part. Because the modulus is a quasi-invariant andfj is K-quasiconformal, we have aj+1 � Kaj:By applying this b ln q�2 lnK c times, we get for k 2M thataj � 8�pq� for all j 2 Ik:The de�nition (6.3) of tj's implies then thattj+1 � GK(tj) + �; � := 2K �K � 8�pq� = 16K2�pq� ; j 2 Ik: (6.7)Now, write [k2M Ik = S0 [ S1 [ S2 [ : : :where Ss, s � 0, are contiguous segments (i.e. Ss = fAs; As + 1; : : : ; Bs � 1; Bsgfor some As; Bs 2 N). For j 2 Ss, we have (6.7) so the standard estimate ofdisplacement via the rotation number �(GK + �) yieldstmaxSs � tminSs � �(GK + �) � (maxSs �minSs) + 1:On the other hand, for j 62 Ss, taking into account that aj � 1, we have a trivialbound tj+1 � tj � maxy2R (GK(y)� y) + 2K:To combine the two estimates, for an arbitrary n 2 N , we note that the car-dinality of Ss's is at least bln q�=(2 lnK)c + 1, which guarantees that there isl � n= (bln q�=(2 lnK)c+ 1) such that maxSl � n. Assuming for speci�city that
28



n 2M (so that n 2 Sl), we estimatetn+1 � t0 =minS0�1Xj=0 tj+1 � tj + maxS0Xj=minS0 tj+1 � tj + minS1�1Xj=maxS0+1 tj+1 � tj + maxS1Xj=minS1 tj+1 � tj+: : :+ nXj=minSl tj+1 � tj� #fj : 0 � j � n; j 62 S0 [ S1 [ S2 [ : : :g �maxy2R (GK(y)� y + 2K)+ (#S0 +#S1 + : : :+#Sl�1 + n�minSl) � �(GK + �) + l� � �n(n=q�+1)q�maxy (GK(y)�y+2K)+n ��(GK+ �)+n ��� ln q�2 lnK� + 1��1where we used (6.6) to estimate the cardinality in the �rst term. A very similarestimate holds when n 62M , and one concludes thatlim supn!1 ynn � lim supn!1 tnn � �(maxy (GK(y)�y)+2K)+�(GK+�)+�� ln q�2 lnK�+ 1��1 :Taking � := 1= lnq�, we claim that the right hand side of the last inequalityconstitutes the sought after bound C(K; q�). This follows readily because �(GK) =0 and � 7! �(GK + �) is continuous (since the rotation number is a continuousfunction of a circle map).27 Extremal Length EstimatesWe supply now the proofs of the general lemmas invoked in the previous sectionfor the proof of Theorem 6.8. The common feature of all the arguments is theirdependence on the extremal length [1]. Recall that if � is a family of recti�ablecurves in C then the extremal length of � is�(�) := supfL�(�)2=A(�) : � :M ! [0;1) measurable with A(�) 6= 0;1gwhereL�(�) := inf �L
(�) = Z
 � jdzj : 
 2 �� and A(�) := Z Z �2 dxdy:(Here, jdzj = pdx2 + dy2.) In the more general case when � is contained ina Riemannian surface, one has to replace jdzj and dxdy by the length and areaelements of the Riemannian metric. The extremal length is a conformal invariant29



and often can be readily computed. For instance, if � is a family of all recti�ableloops of homotopy type (1; 0) in the 
at torus T2 = R2=Z2 � C =(Z + iZ), then�(�) = 1 from the Gr�otzsch inequality (see [1]).Proof of Lemma 6.1. Our proof is an extension of the standard argumentfor superadditivity of extremal length as found in [1]. (Application of Jensen'sinequality and a bit di�erent choice of � below are the only novel elements.)Let fVjgNj=1 be annuli of homology type (0; 1) in T2 with them-overlap property,meaning that there are m essentially disjoint families of (0; 1)-annuli, fV lj gNj=1,l = 1; : : : ; m, such that Vj = Sml=1 V lj is an essentially disjoint sum for each j =1; : : : ; N . The goal is to see thatPNj=1mod(Vj) � m3: If �j is to denote the familyof all recti�able arcs in Vj connecting the two boundary components of Vj, thenthe modulus aj of Vj is given by aj = �(�j):Consider arbitrary measurable �j : Vj ! [0;1) with A(�j) 6= 0;1 andL�j (�j) > 0 for j = 1; : : : ; N . We shall think of �j as extended to all of T2 byzero. Since multiplication of �j by a constant does not a�ect L�j (�j)2=A(�j), wemay assume that A(�j) = L�j (�j). Let � be a family of all recti�able loops ofhomotopy type (1; 0) on T2. Note that, given 
 2 � and 1 � j � N , we have
j � 
 \ Vj that belongs to �j because 
 has to cut across Vj for topologicalreasons. Set � := NXj=1 �j ; �(l) := NXj=1 �j�V lj ; for 1 � l � m;where �A stands for the characteristic function of the set A. Clearly,� = mXl=1 �(l) a.e. and � � max1�j�N �j:For any 
 2 �, the essential disjointness hypotheses implym � L
(�) � mXl=1 NXj=1 L
\V lj (�) = NXj=1 L
\Vj (�) � NXj=1 L
j (�)� NXj=1 L
j (�j) � NXj=1 L�j (�j):Therefore, the arbitrariness of 
 2 � yieldsm � L�(�) � NXj=1 L�j (�j): (7.1)30



Also, from the essential disjointness of fV lj gNj=1, for each l = 1; : : : ; m, (�(l))2 =PNj=1 �2j�2V lj a.e., and we can use the convexity of x 7! x2 to estimate as followsNXj=1 A(�j) = NXj=1 Z Z �2j�Vj = NXj=1 mXl=1 Z Z �2j�V lj= Z Z mXl=1 ��(l)�2 � 1=m � Z Z  mXl=1 �(l)!2 = A(�)=m: (7.2)The combined inequalities (7.1) and (7.2) yield�(�) � L�(�)2=A(�) � �PNj=1 L�j (�j)=m�2m �PNj=1A(�j) = 1=m3 NXj=1 L�j (�j)!where the last equality uses the normalization L�j (�j) = A(�j). The arbitrarinessof �j's yields �(�) � 1=m3 NXj=1 �(�j)! :Because �(�) = 1, we are done. 2Proof of Lemma 6.3. Let 0 < a; b < 1 and � : Ba ! Bb be a K-quasiconformalhomeomorphism. Fix z = x + iy 2 Ba and set y0 := Im(�(0 + iy)) and y1 :=Im(�(x+ iy)). To show the lemma we have to argue that jy1 � y0j � 2Kb.Consider the family � of all recti�able curves traversing Ba and hitting thehorizontal segment I := fz 2 Ba : Im(z) = yg; namely,� := f
 : [0; 1]! Ba : Re(
(0)) = 0; Re(
(1)) = a; Im(
(t)) = y for some t 2 [0; 1]g:Every horizontal segment in the family�1 = f� : [0; 1]! Bb : �(t) = tb + ic; c 2 [y0; y1]gclearly hits �(I), which means that �1 � �(�). By the quasi-invariance of ex-tremal length, monotonicity of extremal length, and the Gr�otzsch formula for therectangle's modulus (in that order), we have�(�)=K � �(�(�)) � �(�1) = b=jy1 � y0j:To estimate �(�), we take � : Ba ! [0;1) to be the characteristic function of therectangle Q := fz 2 Ba : Im(z) 2 [y � a; y + a]g. Clearly, A(�) = 2a2. Moreover,for any 
 2 �, the geometry (see Figure 7.1) forces the length of 
 \ Q to be atleast a, i.e. L
(�) � L
\Q(1) � a. Hence,�(�) � a2=(2a2) = 1=2:31
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Figure 7.1: Shear Estimate. (Some example curves from � are pictured on the left.)Putting together the two displayed inequalities yields the desired bound:1=2 � �(�) � K � �(�(�)) � K � �(�1) = Kb=jy1 � y0j:2 Proof of Lemma 6.2. This is a variant of Mori's theorem (see Theorem 4.1 inChapter II of [24]). Denote Qa := fz 2 Ba : 0 � Im(z) � 1g. The restrictionsof maps in F C K to the fundamental domain Qa belong to the family f� : Qa !Bb K-q.c. homeo. onto image; a; b < 1g; which is equicontinuous with respect tothe spherical metric on the force of Mori's theorem because the range of each such� clearly omits two points of de�nite spherical distance (take e.g. 3 and 3+ i). Theequicontinuity of F C K with respect to the Euclidean metric on C will follow if we�nd R > 0 such that �(Qa) � fjzj � Rg for all � 2 F CK .For � 2 F CK , �(0) = 0 and �(i) = i so that 0 � Im(�(iy)) � 1 for all 0 � y � 1.Lemma 6.3 implies then that �2Kb � Im(�(x+iy)) � 1+2Kb for any x+iy 2 Qa.Therefore, R =p(1 + 2K)2 + 12 is as required. 2Proof of Lemma 6.4. Recall that  : Ba ! C is conformal, univalent, andequivariant:  (z + i) =  (z) + i for z 2 Ba. Let �0 be the family of horizontalsegments cutting across the fundamental domain Q = fz 2 Ba : 0 � Im(z) � 1g,�0 = f� : [0; 1]! Ba : �(t) = ta+ ic; c 2 [0; 1]g; �(�0) = a:For � :=  (�0), we have �(�) = �(�0) = a because  is conformal. By taking themetric on the annulus  (Ba)=Z induced by the standard metric on C , the de�nition32



of �(�) yields inf
2�L(
)2=A( (Q)) � �(�) = a:We can �nd then 
 2 � of length L(
) �pa �A( (Q)).Fix now w; z 2 Ba. For any k 2 Z, the quadrilateral bounded by 
 + ki and
 + (k + 1)i in  (Ba) is a fundamental domain; therefore, it contains �(z) forsome k (which we �x). The vertical line through  (z) hits 
 + ki at some pointp 2 
+ki with jp� (z)j � 1. Analogously, l 2 Z and q 2 
+ l can be found withjq �  (w)j � 1. By the triangle inequality,jIm( (z)� Im( (w))j � j (z)�  (w)j � jp� qj+ 2:Furthermore, the length estimate on 
 and the triangle inequality again givejp� qj � jk � lj � 1 + 2 � diam(
) � jk � lj+ 2pa �A( (Q)):Similarly, since  �1(
) is a horizontal segment, we havejIm(z)� Im(w)j � jIm( �1(p))� Im( �1(q))j � 2 = jk � lj � 2:By putting the three inequalities together, we get the assertion of the lemma:jIm( (z)� Im( (w))j � jIm(z)� Im(w)j+ 2pa � A( (Q)) + 4:28 Appendix: Embeddings into T3.The existence of a clean pair of cross-sections in Section 3 depended on two in-tuitively obvious facts: a sphere embedded in T3 bounds a topological 3-disk; atwo-torus T2 embedded in T3 bounds a topological solid torus. These, however,are not easy to prove and require (c.f. Alexander's horned sphere) hypothesis onregularity of the embeddings. For instance, it su�ces to require that the embed-dings are polyhedral or extend to bi-collar neighborhoods, which is the case for thepiecewise smooth embeddings we encountered. Below we indicate how to deducethe results we used in Section 3 from readily available classical theorems.Theorem 8.9 (Sch�on
ies Theorem in T3) If g : S2 ! T3 is a piecewisesmooth embedding, thenM := g(S2) bounds a topological 3-disk in T3 and g extendsto an embedding G : B 3 ! T3.The reduction to the classical Sch�on
ies Theorem [30] about embeddings into R3will be a�orded by the following simple lemma from general topology, the proof ofwhich we leave as an exercise. 33



Lemma 8.5 Suppose � is an open and locally injective mapping (between metricspaces). If A is compact with @A connected, @�(A) 6= ;, and �j@A is injective, then�jA is injective.Sketch of Proof of Theorem 8.9: Lift g to ~g : S2 ! R3 . Smoothness assures that~g(S2) has a tubular neighborhood in R3 , so that ~g can be extended to an embeddingS2 � [�1; 1] ! T3 | we skip the details of this routine construction. By theclassical Sch�on
ies Theorem (as found in [4]), ~g(S2) bounds a 3-disk in R3 and ~gextends to an embedding ~G : B 3 ! R3 . The map G := � � ~G (where � is theuniversal covering) is clearly an extension of g. That G is an embedding followsfrom the lemme applied to �j ~G(B3 ). 2The following result is reminiscent of Alexander's theorem on the embeddingsof T2 into S3.Theorem 8.10 (Alexander's Theorem in T3) If g : T2 ! T3 is a piecewisesmooth embedding and the induced map on the �rst homology is of rank one, thenM := g(S2) bounds a solid 3-torus B in T3 and g extends to an embedding G :B 2 � T ! T3.Sketch of Proof of Theorem 8.10: No generality is lost in assuming that H1(T2)is mapped to linf(1; 0; 0)g in H1(T3). (Recall, we use the standard identi�cationof H1(T3) with R3 .) As before, smoothness yields a nice tubular neighborhood ofg(T2) in T3; which (by PL approximation) assures that g(T2) is polyhedral andtwo sided in T3 (see [30] for de�nitions). Since the kernel of the action induced byg on the fundamental group is non-trivial, the Loop Theorem (see page 193 in [30])supplies a (polyhedral) two disk � in T3 with @� not contractible in g(T2) andsuch that � \ g(T2) = @�. Let � : B 2 ! T3 be the embedding onto �(B 2) = �.Now, cut T2 along the loop 
 := g�1(@�) and cap each end of the resulting cylinderwith a 2-disk as depicted below. Having identi�ed the resulting two-sphere withR3
T3


Figure 8.1:S2, g and two disjoint copies of � combine to form an immersion g1 : S2 ! T3. The34



lift ~g1 : S2 ! R3 of g1 is an embedding and extends to an embedding ~G1 : B 3 ! R3by Sch�on
ies Theorem (the polyhedral version found in [30]). Now, the naturalidenti�cation of the two disks on S2 yields a solid torus B; and the map ~G1 descendsto G : B ! T3 that extends g. It is not di�cult to see that G is an embedding. 2Finally, let us show the following lemma employed in Section 4 to straightenthe cross-sections.Lemma 8.6 (Straightening) Given two smoothly embedded two-tori in T3 thatintersect transversally along a simple loop, there is a homotopic to the identitydi�eomorphism of T3 that maps each of the two tori to a 
at torus (i.e. a torusobtained as a quotient of a sub-plane in R3).Sketch of Proof of Lemma 8.6: We �x two copies of a 2-torus, T2 and T2�, andthink of them as the 
at sub-tori in T3 of cohomology type (0; 0; 1) and (1; 0; 0),respectively.Let � : T2 ! T3 and �� : T2� ! T3 be the two smooth embeddings in thelemma, and set � = �(T2) and �� = �(T2�). Since the intersection product of �and �� is a class of a simple loop (c.f. Section 3), � and �� must be in di�erentcohomology classes. For simplicity, let us assume that � is cohomologous to T2and �� is cohomologous to T2�, as this can always be achieved by post-composingthe embeddings with an appropriate automorphism of T3. Therefore, � := � \��is a (0; 1; 0) loop in T3. It can be arranged6 that � := ��1(�) and �� := ���1(�)are (0; 1) loops. Now, take two copies of T2 each sliced along �, and two copies ofT2� each sliced along ��; and put together the four resulting annuli to form a torusM as hinted by the �gure below.

�;��T3 T3T2�T2 T2� T2�T R3=(2Z� Z� 2Z)

Figure 8.2:6by precomposing the embeddings with an automorphism of T235
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