
2 ONE-FACTOR COMPLETELY RANDOMIZED DESIGN (CRD)

An experiment is run to study the effects of one factor on a response. The levels of the factor can be

• quantitative (numerical) or qualitative (categorical)

• fixed with levels set by the experimenter or random with randomly chosen levels.

When random selection, random assignment, and a randomized run order of experimentation (when pos-
sible) can be applied then the experimental design is called a completely randomized design (CRD).

2.1 Notation

Assume that the factor of interest has a ≥ 2 levels with ni observations taken at level i of the factor. Let
N be the total number of design observations.

The General Sample Size Case

Treatments 1 2 3 · · · a

y11 y21 y31 · · · ya1
y12 y22 y32 · · · ya2
y13 y23 y33 · · · ya3
· · · · ·

y1n1 y2n2 y3n3 · · · yana

treatment totals y1· y2· y3· · · · ya·
treatment means y1· y2· y3· · · · ya·

Grand total y·· =

a∑
i=1

ni∑
j=1

yij

Grand mean y·· =

∑a
i=1

∑ni
j=1 yij∑a

i=1 ni
=

y··
N

Treatment total yi· =

ni∑
j=1

yij

Treatment mean yi· =

∑ni
j=1 yij

ni
=

yi·
ni

The Equal Sample Size Case (ni = n for i = 1, 2, . . . , a)

Treatments 1 2 3 · · · a

y11 y21 y31 · · · ya1
y12 y22 y32 · · · ya2
y13 y23 y33 · · · ya3
· · · · · · ·
y1n y2n y3n · · · yan

treatment totals y1· y2· y3· · · · ya·
treatment means y1· y2· y3· · · · ya·

Grand total y·· =

a∑
i=1

n∑
j=1

yij

Grand mean y·· =
y··
an

Treatment total yi· =

n∑
j=1

yij

Treatment mean yi· =
yi·
n

Notation related to TOTAL variability:

• SST = the total (corrected) sum of squares =
∑a

i=1

∑ni
j=1(yij − y··)2 = (N − 1)s2

where s2 is the sample variance of the N observations

• N − 1 = the degrees of freedom for total

Notation for variability WITHIN treatments: (“E” stands for “Error”)

• SSE = the error sum of squares =
∑a

i=1

∑ni
j=1(yij − yi·)2 =

∑a
i=1(ni − 1)s2i

where s2i is the sample variance of the ni observations for the ith treatment

• N − a = the error degrees of freedom

• MSE = the mean square error =
SSE
N − a
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Notation for variability BETWEEN treatments:

• SSTrt = the treatment sum of squares =
∑a

i=1

∑ni
j=1(yi· − y··)2 =

∑a
i=1 ni(yi· − y··)2

If all sample sizes are equal (nij = n), then SStrt = n
∑a

i=1(yi· − y··)2

• a− 1 = the treatment degrees of freedom

• MSTrt = the treatment mean square =
SSTrt

a− 1

Alternate Formulas

SST =
a∑

i=1

ni∑
j=1

y2ij −
y2··
N

SSTrt =
a∑

i=1

y2i·
ni
− y2··
N

SSE = SST − SSTrt

• y2··
N

is called the correction factor.

EXAMPLE: Suppose a one-factor CRD has a = 5 treatments (5 factor levels) and n = 6 replicates
per treatment (N = 5× 6 = 30). The following table summarizes the data:

Treatment
A B C D E
7 5 9 6 9
8 4 11 12 6
5 4 6 8 8
9 6 8 5 12
10 3 7 11 13
11 5 8 9 12

y1· = y2· = y3· = y4· = y5· = y·· =

5∑
i=1

6∑
j=1

y2ij = 72 + 82 + 52 + · · ·+ 122 + 122 + 132 =

SST =
5∑

i=1

6∑
j=1

y2ij −
y2··
N

= 2091− 2372

30
= 2091− 1872.3 =

SStrt =
5∑

i=1

y2i·
ni

− y2··
N

=

(
502

6
+

272

6
+

492

6
+

512

6
+

602

6

)
− 2372

30

=
11831

6
− 1872.3 = 1971.183− 1872.3 =

SSE = SST − SStrt = 218.7− 99.53 =

Degrees of freedom dfT = N − 1 = dftrt = a− 1 = dfE = N − a =
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2.2 Linear Model Forms for Fixed Effects

• Assume the a levels of the factor are fixed by the experimenter. This implies the levels are specifically
chosen by the experimenter.

• For any observation yij we can write: yij = yi· + (yij − yi·). Thus, an observation from treatment i
equals the observed treatment mean yi· plus a deviation from that observed mean (yij − yi·).

• This deviation is called the residual for response yij , and it is denoted: eij = yij − yi·.

The linear effects model is yij = where

• µ is the baseline mean and τi is the ith treatment effect (i = 1, . . . , a) relative to µ.

• εij ∼ IIDN(0, σ2). The random errors are independent, identically distributed following a normal
distribution with mean 0 and variance σ2.

The linear means model is yij = where µi = µ + τi is the mean associated
with the ith treatment and εij ∼ IIDN(0, σ2).

• The goal is to determine if there exist any differences in the set of a treatment means (or effects) in a
CRD. We want to check the null hypothesis that µ1, µ2, . . . , µa, are all equal against the alternative
that they are not all equal,

H0 :µ1 = µ2 = · · · = µa H1 :µi 6= µj for some i 6= j.

or, equivalently, that there are no significant treatment effects,

H0 : τ1 = τ2 = · · · = τa H1 : τi 6= τj for some i 6= j.

• To answer this question, we determine statistically whether any differences among the treatment
means could reasonably have occurred based on the variation that occurs BETWEEN treatment
(MSTrt) and WITHIN each of the treatments (MSE).

• Our best estimate of the within treatment variability is the weighted average of the within treatment
variances (s2i , i = 1, 2, . . . , a). The weights are the degrees of freedom (ni − 1) associated with each
treatment: ∑a

i=1(ni − 1)s2i∑a
i=1(ni − 1)

=

∑a
i=1

∑na
j=1(yij − yi·)2

N − a
=

• If εij ∼ N(0, σ2), then the MSE is an unbiased estimate of σ2. That is, E(MStrt) = σ2.

• If the null hypothesis (H0 : µ1 = µ2 = · · · = µa) is true then the MStrt is also an unbiased estimate
of σ2. That is, (E(MStrt) = σ2 assuming all the means are equal. This implies the ratio:

F0 =
MSTrt

MSE

should be close to 1 because the numerator and denominator are both unbiased estimates of σ2 when
H0 is true .

• If F0 is too large, we will reject H0 in favor of the alternative hypothesis H1.

• When H0 is true and the linear model assumptions are met, the test statistic F0 follows an F distri-
bution with (a− 1, N − a) degrees of freedom (F0 ∼ F (a− 1, N − a)).

• The formal statistical test is an Analysis of Variance (ANOVA) for a completely randomized
design with one factor.
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Analysis of Variance (ANOVA) Table

Source of Sum of Mean
Variation Squares d.f. Square F -Ratio p-value

Treatment SSTrt a− 1 MSTrt F0 = MSTrt/MSE P [F (a− 1, N − a) ≥ F0]

Error SSE N − a MSE ——

Total SST N − 1 —— ——

EXAMPLE REVISITED: Suppose a one-factor CRD has a = 5 treatments (5 factor levels) and n = 6
replicates per treatment (N = 5× 6 = 30). The following table summarizes the data:

Treatment
A B C D E
7 5 9 6 9 SST = 218.7
8 4 11 12 6
5 4 6 8 8 SStrt = 99.53
9 6 8 5 12
10 3 7 11 13 SSE = 119.16
11 5 8 9 12

Analysis of Variance (ANOVA) Table
Source of Sum of Mean
Variation Squares d.f. Square F -Ratio p-value

Treatment 99.53 4 24.883
Error 119.16 25 4.76 F0 ≈ 5.22 .0034
Total 218.7 29

Hypotheses for Testing Equality of Means

H0 :µ1 = µ2 = µ3 = µ4 = µ5 H1 :µi 6= µj for some i 6= j.

Hypothesis for Testing Equality of Effects

H0 : τ1 = τ2 = τ3 = τ4 = τ5 H1 : τi 6= τj for some i 6= j.

The Steps of the Hypothesis Test

• The test statistic is F0 = 5.22.

• The reference distribution is the F (4, 25) distribution.

• The α = .05 critical value from the F (4, 25) distribution is F.05(4, 25) = 2.76.

• The decision rule is to reject H0 if F0 ≥ F.05(4, 25) (or p-value ≤ .05) OR
fail to reject H0 if F0 < F.05(4, 25) (or p-value > .05)

• The conclusion is to reject H0 because F0 ≥ F.05(4, 25) , i.e. 5.22 > 2.76
(or because p-value .0034 ≤ .05).
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2.3 Expected Mean Squares

If we assume the constraint
∑a

i=1 niτi = 0, then the expected values of the mean squares are

• E(MSTrt) = E

[∑a
i=1 ni(yi· − y··)2

a− 1

]
= σ2 +

• E(MSE) = E

[∑a
i=1

∑ni
j=1(yij − yi·)2

N − a

]
= σ2

If H0 is true then τi = 0 for i = 1, 2, . . . , a. This implies

E(MSTrt) = σ2 +

∑a
i=1 ni · 0
a− 1

= σ2 + 0 = σ2.

If H0 is not true then τi 6= 0 for at least one i. This implies

E(MSTrt) = σ2 + (positive quantity) =⇒ E(MSTrt) > σ2.

As |τi| increases, the E(MSTrt) also increases. This implies the F−ratio of the expected mean squares

F =
E(MSTrt)

E(MSE)
=
σ2 +

∑a
i=1 niτ

2
i /(a− 1)

σ2

increases. This summarizes part of the statistical theory behind using F0 =
MSTrt

MSE
to estimate

F =
E(MSTrt)

E(MSE
and reject H0 for large values of F0.

2.4 Estimation of Model Parameters under Constraints

• For the effects model, µ and τ1, . . . , τa cannot be uniquely estimated without imposing a constraint
on the model effects.

• If we assume the linear constraint (i)
∑a

i=1 niτi = 0, (ii) τa = 0 (SAS default), or (iii) τ1 = 0
(R default), then µ, τ1, . . . , τa can be uniquely estimated from the grand y·· and the treatment means
y1·, . . . , ya·. The least-squares estimates:

assuming
∑a

i=1 niτi = 0: µ̂ = y·· and τ̂i = yi· − y·· for i = 1, 2, . . . , a

assuming τa = 0: µ̂ = ya and τ̂i = yi· − ya for i = 1, 2, . . . , a

assuming τ1 = 0: µ̂ = y1 and τ̂i = yi· − y1 for i = 1, 2, . . . , a

29
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2.5 Sleep Deprivation Example (ni are equal)

A study was conducted to determine the effects of sleep deprivation on hand-steadiness. The four levels
of sleep deprivation of interest are 12, 18, 24, and 30 hours. 32 subjects were randomly selected and
assigned to the four levels of sleep deprivation such that 8 subjects were randomly assigned to each level.
The response is the reaction time to the onset of a light cue. The results (in hundredths of a second) are
contained in the following table:

Treatment (in hours)

12 18 24 30

20 21 25 26
20 20 23 27
17 21 22 24
19 22 23 27
20 20 21 25
19 20 22 28
21 23 22 26
19 19 23 27

Note: subscripts 1, 2, 3, 4 correspond to the 12, 18, 24, and 30 hour sleep deprivation treatments.

• y·· = 22.25, y1· = 19.375 y2· = 20.75 y3· = 22.625 y4· = 26.25

• Assuming Constraint II: τa = 0 where a = 4.

µ̂ = y4· =

τ̂1 = y1· − y4· = 19.375− 26.25 =

τ̂2 = y2· − y4· = 20.75 − 26.25 =

τ̂3 = y3· − y4· = 22.625− 26.25 =

τ̂4 = y4· − y4· = 26.25 − 26.25 =

• Thus, our estimates µ̂1, µ̂2, µ̂3, and µ̂4 under Constraint II are:

µ̂1 = µ̂+ τ̂1 = 26.25− 6.875 =

µ̂2 = µ̂+ τ̂2 = 26.25− 5.50 =

µ̂3 = µ̂+ τ̂3 = 26.25− 3.625 =

µ̂4 = µ̂+ τ̂4 = 26.25− 0 =

• What if we assume Constraint I:
4∑

i=1

τ̂i = 0 (because all ni = 8)? The parameter estimates are:

µ̂ = y·· =

τ̂1 = y1· − y·· = 19.375− 22.25 =

τ̂2 = y2· − y·· = 20.75 − 22.25 =

τ̂3 = y3· − y·· = 22.625− 22.25 =

τ̂4 = y4· − y·· = 26.25 − 22.25 =
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• Thus, our estimates µ̂1, µ̂2, µ̂3, and µ̂4 under Constraint I are:

µ̂1 = µ̂+ τ̂1 = 22.25− 2.875 =

µ̂2 = µ̂+ τ̂2 = 22.25− 1.5 =

µ̂3 = µ̂+ τ̂3 = 22.25 + 0.375 =

µ̂4 = µ̂+ τ̂4 = 22.25 + 4.0 =

• Note that both constraints yield the same µ̂i estimates even though the µ̂ and τ̂i estimates differ
between constraints.

• A function that is uniquely estimated regardless of which constraint is used is said to be estimable.

• For a oneway ANOVA, µ + τi for i = 1, 2, . . . , a are estimable functions, while individually
µ, τ1, τ2 . . . , τa are not estimable.

We will now analyze the data using SAS. The analysis will include

• Side-by-side boxplots of the time response across sleep deprivation treatments.

SLEEP DEPRIVATION EXAMPLE
CONTRASTS AND MULTIPLE COMPARISONS

The GLM Procedure

18

20

22

24

26

28

tim
e

12 18 24 30

hours

<.0001Prob > F
46.56F

Distribution of time

18

20

22

24

26

28

tim
e

12 18 24 30

hours

<.0001Prob > F
46.56F

Distribution of time

• ANOVA table with parameter estimates assuming the constraint τ4 = 0. This is the default using
SAS.

• A table of treatment means and standard deviations.

• Parameter estimates assuming the constraint
∑4

i=1 τi = 0. This are calculated using ESTIMATE
statements in SAS.
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SLEEP DEPRIVATION EXAMPLE
CONTRASTS AND MULTIPLE COMPARISONS

The GLM Procedure

SLEEP DEPRIVATION EXAMPLE
CONTRASTS AND MULTIPLE COMPARISONS

The GLM Procedure

Class Level Information

Class Levels Values

hours 4 12 18 24 30

Number of Observations Read 32

Number of Observations Used 32SLEEP DEPRIVATION EXAMPLE
CONTRASTS AND MULTIPLE COMPARISONS

The GLM Procedure

Dependent Variable: time

SLEEP DEPRIVATION EXAMPLE
CONTRASTS AND MULTIPLE COMPARISONS

The GLM Procedure

Dependent Variable: time

Source DF
Sum of

Squares Mean Square F Value Pr > F

Model 3 213.2500000 71.0833333 46.56 <.0001

Error 28 42.7500000 1.5267857

Corrected Total 31 256.0000000

R-Square Coeff Var Root MSE time Mean

0.833008 5.553401 1.235632 22.25000

Source DF Type III SS Mean Square F Value Pr > F

hours 3 213.2500000 71.0833333 46.56 <.0001

Parameter Estimate
Standard

Error t Value Pr > |t| 95% Confidence Limits

Intercept 26.25000000 B 0.43686178 60.09 <.0001 25.35512921 27.14487079

hours     12 -6.87500000 B 0.61781585 -11.13 <.0001 -8.14053841 -5.60946159

hours     18 -5.50000000 B 0.61781585 -8.90 <.0001 -6.76553841 -4.23446159

hours     24 -3.62500000 B 0.61781585 -5.87 <.0001 -4.89053841 -2.35946159

hours     30 0.00000000 B . . . . .

Note: The X'X matrix has been found to be singular, and a generalized inverse was used to solve the normal equations.  Terms whose estimates
are followed by the letter 'B' are not uniquely estimable.
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SLEEP DEPRIVATION EXAMPLE
CONTRASTS AND MULTIPLE COMPARISONS

The GLM Procedure

SLEEP DEPRIVATION EXAMPLE
CONTRASTS AND MULTIPLE COMPARISONS

The GLM Procedure

18

20

22

24

26

28

tim
e

12 18 24 30

hours

Distribution of time

time

Level of
hours N Mean Std Dev

12 8 19.3750000 1.18773494

18 8 20.7500000 1.28173989

24 8 22.6250000 1.18773494

30 8 26.2500000 1.28173989

SLEEP DEPRIVATION EXAMPLE
CONTRASTS AND MULTIPLE COMPARISONS

The GLM Procedure

Dependent Variable: time

SLEEP DEPRIVATION EXAMPLE
CONTRASTS AND MULTIPLE COMPARISONS

The GLM Procedure

Dependent Variable: time

Contrast DF Contrast SS Mean Square F Value Pr > F

Linear Trend 1 202.5000000 202.5000000 132.63 <.0001

Quadratic Trend 1 10.1250000 10.1250000 6.63 0.0156

Cubic Trend 1 0.6250000 0.6250000 0.41 0.5275

Parameter Estimate
Standard

Error t Value Pr > |t|
95%

Confidence Limits

12 hour effect -2.8750000 0.37833340 -7.60 <.0001 -3.6499808 -2.1000192

18 hour effect -1.5000000 0.37833340 -3.96 0.0005 -2.2749808 -0.7250192

24 hour effect 0.3750000 0.37833340 0.99 0.3301 -0.3999808 1.1499808

30 hour effect 4.0000000 0.37833340 10.57 <.0001 3.2250192 4.7749808

12 hour mean 19.3750000 0.43686178 44.35 <.0001 18.4801292 20.2698708

18 hour mean 20.7500000 0.43686178 47.50 <.0001 19.8551292 21.6448708

24 hour mean 22.6250000 0.43686178 51.79 <.0001 21.7301292 23.5198708

30 hour mean 26.2500000 0.43686178 60.09 <.0001 25.3551292 27.1448708

12 vs 18 hrs 1.3750000 0.61781585 2.23 0.0343 0.1094616 2.6405384

12 vs 30 hrs 6.8750000 0.61781585 11.13 <.0001 5.6094616 8.1405384

18 vs 24 hrs 1.8750000 0.61781585 3.03 0.0052 0.6094616 3.1405384

Linear Trend 22.5000000 1.95370527 11.52 <.0001 18.4980162 26.5019838

Quadratic Trend 2.2500000 0.87372356 2.58 0.0156 0.4602584 4.0397416

Cubic Trend 1.2500000 1.95370527 0.64 0.5275 -2.7519838 5.2519838
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• Diagnostic plots of the residuals to assess if any model assumptions are seriously violated. These
include:

– A normal probability (NP) plot and a histogram of the residuals. These plot assesses the
assumption that the errors are normally distributed. The pattern in NP plot should be close to
linear when the residuals are approximately normally distributed while the histogram should be
bell-shaped (assuming there are a reasonable number of residuals. Any serious deviations from
linearity suggests the normality assumption has been violated.

– Residual versus predicted (fitted) value plot. This plot assesses the homogeneity of
variance (HOV) assumption that the errors have the same variance for each treatment. The
residuals should be centered about 0 and the spread of the residuals should be similar for each
treatment.

SLEEP DEPRIVATION EXAMPLE
CONTRASTS AND MULTIPLE COMPARISONS

The GLM Procedure

Dependent Variable: time

Fit Diagnostics for time

0.8151Adj R-Square
0.833R-Square

1.5268MSE
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2.5.1 SAS Code for Sleep Deprivation Example

DM ’LOG; CLEAR; OUT; CLEAR;’;

ODS GRAPHICS ON;

ODS PRINTER PDF file=’C:\COURSES\ST541\SLEEP.PDF’;

OPTIONS NODATE NONUMBER;

*********************************;

*** Sleep deprivation example ***;

*********************************;

DATA in;

DO hours = 12 to 30 by 6;

DO rep = 1 to 8;

INPUT time @@; OUTPUT;

END; END;

CARDS;

20 20 17 19 20 19 21 19 21 20 21 22 20 20 23 19

25 23 22 23 21 22 22 23 26 27 24 27 25 28 26 27

;

PROC GLM DATA=in PLOTS = (ALL);

CLASS hours;

MODEL time = hours / SS3 SOLUTION CLPARM ALPHA=.05;

MEANS hours ;

* OUTPUT OUT=diag P=pred R=resid;

ESTIMATE ’12 hour effect’ hours 3 -1 -1 -1 / DIVISOR=4;

ESTIMATE ’18 hour effect’ hours -1 3 -1 -1 / DIVISOR=4;

ESTIMATE ’24 hour effect’ hours -1 -1 3 -1 / DIVISOR=4;

ESTIMATE ’30 hour effect’ hours -1 -1 -1 3 / DIVISOR=4;

ESTIMATE ’12 hour mean’ INTERCEPT 1 hours 1 0 0 0;

ESTIMATE ’18 hour mean’ INTERCEPT 1 hours 0 1 0 0;

ESTIMATE ’24 hour mean’ INTERCEPT 1 hours 0 0 1 0;

ESTIMATE ’30 hour mean’ INTERCEPT 1 hours 0 0 0 1;

ESTIMATE ’12 vs 18 hrs’ hours -1 1 0 0;

ESTIMATE ’12 vs 30 hrs’ hours -1 0 0 1;

ESTIMATE ’18 vs 24 hrs’ hours 0 -1 1 0;

ESTIMATE ’Linear Trend’ hours -3 -1 1 3;

ESTIMATE ’Quadratic Trend’ hours 1 -1 -1 1;

ESTIMATE ’Cubic Trend’ hours -1 3 -3 1;

CONTRAST ’Linear Trend’ hours -3 -1 1 3;

CONTRAST ’Quadratic Trend’ hours 1 -1 -1 1;

CONTRAST ’Cubic Trend’ hours -1 3 -3 1;

TITLE ’SLEEP DEPRIVATION EXAMPLE’;

TITLE2 ’CONTRASTS AND MULTIPLE COMPARISONS’;

RUN;
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2.5.2 R Analysis for Sleep Deprivation Example

R Output for Sleep Deprivation Example

> #---------- Treatment means and std dev ----------------
>
> tapply(time,hours,mean)

12 18 24 30
19.375 20.750 22.625 26.250

> tapply(time,hours,sd)

12 18 24 30
1.187735 1.281740 1.187735 1.281740

> #----------- Generate ANOVA results ----------------
> summary (f1)

Df Sum Sq Mean Sq F value Pr(>F)
factor(hours) 3 213.25 71.08 46.56 5.22e-11 ***
Residuals 28 42.75 1.53
---
Signif. codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1

> summary(f2)
Coefficients:

Estimate Std. Error t value Pr(>|t|)
(Intercept) 19.3750 0.4369 44.350 < 2e-16 ***
factor(hours)18 1.3750 0.6178 2.226 0.0343 *
factor(hours)24 3.2500 0.6178 5.260 1.36e-05 ***
factor(hours)30 6.8750 0.6178 11.128 8.64e-12 ***
---
Signif. codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1

Residual standard error: 1.236 on 28 degrees of freedom
Multiple R-squared: 0.833, Adjusted R-squared: 0.8151
F-statistic: 46.56 on 3 and 28 DF, p-value: 5.222e-11

R Code for Sleep Deprivation Example

hours <- c(rep(12,8),rep(18,8),rep(24,8),rep(30,8))

time <- c(20,20,17,19,20,19,21,19,21,20,21,22,20,20,23,19,
25,23,22,23,21,22,22,23,26,27,24,27,25,28,26,27)

#---------- Treatment means and std dev ----------------
tapply(time,hours,mean)
tapply(time,hours,sd)

#----------- Generate ANOVA results ----------------
f1 <- aov(time~factor(hours))
summary (f1)
f2 <- lm(time~factor(hours))
summary(f2)

#----------- Generate diagnostic plots ----------------
windows()
par(mfrow=c(2,2))
plot(f1)
windows()
par(mfrow=c(2,2))
stripchart(time~hours,vertical=TRUE,main="Response Time vs Treatment")
plot(fitted(f1),resid(f1),main="Residuals vs Predicted Values")
qqnorm(resid(f1),main="Normal Probability Plot")
hist(resid(f1),nclass=8,main="Histogram of Residuals")
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R Diagnostic Plots
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2.6 CRD Matrix Form Example

Suppose there are a = 3 treatments and n = 3 observations per treatment. The data were:

Treatment
1 2 3

4 10 7
5 12 8
6 14 12

Summary Statistics

y1· = 15 y2· = 36 y3· = 27 y·· = 78
y1· = 5 y2· = 12 y3· = 9 y·· = 78/9 = 26/3

CONSTRAINT I:
∑a

i=1 τi = 0 (equal ni case)

• Model: yij = µ+ τi + εij for i = 1, 2, 3 and j = 1, 2, 3

• In matrix form y = X ′θ + ε where θ′ = [µ, τ1, τ2].

• Goal: Find θ̂′ = [µ̂, τ̂1, τ̂2], and assuming
∑a

i=1 τi = 0 we will get τ̂3 = −τ̂1 − τ̂2

µ τ1 τ2

X =



1 1 0
1 1 0
1 1 0

1 0 1
1 0 1
1 0 1

1 -1 -1
1 -1 -1
1 -1 -1


y =



4
5
6

10
12
14

7
8

12



X ′X =

 1 1 1 1 1 1 1 1 1
1 1 1 0 0 0 -1 -1 -1
0 0 0 1 1 1 -1 -1 -1





1 1 0
1 1 0
1 1 0
1 0 1
1 0 1
1 0 1
1 -1 -1
1 -1 -1
1 -1 -1


=

 9 0 0
0 6 3
0 3 6

 (X ′X)−1 =
1

9

 1 0 0
0 2 -1
0 -1 2



X ′y =

 1 1 1 1 1 1 1 1 1
1 1 1 0 0 0 -1 -1 -1
0 0 0 1 1 1 -1 -1 -1





4
5
6

10
12
14

7
8

12


=

 78
15-27

36 - 27

 =

 78
-12

9

 =

 y··
y1· − y3·
y2· − y3·
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θ̂ = (X ′X)−1X ′y =
1

9

 1 0 0
0 2 -1
0 -1 2

  78
-12

9

 =

 78/9
(-24-9)/9

(12+18)/9

 =

 26/3
-11/3
10/3

 =

 µ̂
τ̂1
τ̂2


Then τ̂3 = −τ̂1 − τ̂2 =

1

3
. Because µ̂i = µ̂+ τ̂i, we get µ̂1 = 5, µ̂2 = 12, and µ̂3 = 9,

CONSTRAINT II: τ3 = 0 (equal ni case) Goal: Find θ̂′ = [µ̂, τ̂1, τ̂2] with τ̂3 = 0 because of
the constraint.

µ τ1 τ2

X =



1 1 0
1 1 0
1 1 0

1 0 1
1 0 1
1 0 1

1 0 0
1 0 0
1 0 0


y =



4
5
6

10
12
14

7
8

12



X ′X =

 9 3 3
3 3 0
3 0 3

 (X ′X)−1 =
1

3

 1 -1 -1
-1 2 1
-1 1 2



X ′y =

 1 1 1 1 1 1 1 1 1
1 1 1 0 0 0 0 0 0
0 0 0 1 1 1 0 0 0

 y =

 y··
y1·
y2·



θ̂ = (X ′X)−1X ′y =

 (1/3)(y·· − y1· − y2·)
(1/3)(−y·· + 2y1· + y2·)
(1/3)(−y·· + y1· + 2y2·)

 Note : y·· = y1· + y2· + y3·

=

 (1/3)y3·
(1/3)(y1· − y3·)
(1/3)(y2· − y3·)

 =

 y3·
y1· − y3·
y2· − y3·

 =

 9
5− 9

12− 9

 =

 9
−4

3


Then µ̂ = 9, τ̂1 = −4, τ̂2 = 3, and τ̂3 = 0

• The estimates of the 3 means are
µ̂1 = µ̂+ τ̂1 = 9− 4 = 5
µ̂2 = µ̂+ τ̂2 = 9 + 3 = 12
µ̂3 = µ̂+ τ̂3 = 9

which are the same as those using Constraint I.
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Alternate Matrix Form Solutions

We can retain all a+ 1 parameter columns and still find the least squares solutions for µ, τ1, . . . , τa if we
append a row to matrix X and a value c to vector y based on the based on the linear constraint, and then
follow the same procedure as before.

CONSTRAINT I:
∑a

i=1 τi = 0 (equal ni case) In matrix form E(y1) = X ′1θ where:

µ τ1 τ2 τ3

X1 =



1 1 0 0
1 1 0 0
1 1 0 0

1 0 1 0
1 0 1 0
1 0 1 0

1 0 0 1
1 0 0 1
1 0 0 1

0 1 1 1


y1 =



4
5
6

10
12
14

7
8

12

0


θ =


µ
τ1
τ2
τ3



X ′1X1 =


1 1 1 1 1 1 1 1 1 0
1 1 1 0 0 0 0 0 0 1
0 0 0 1 1 1 0 0 0 1
0 0 0 0 0 0 1 1 1 1





1 1 0 0
1 1 0 0
1 1 0 0
1 0 1 0
1 0 1 0
1 0 1 0
1 0 0 1
1 0 0 1
1 0 0 1
0 1 1 1


=


9 3 3 3
3 4 1 1
3 1 4 1
3 1 1 4

 (X ′1X1)
−1 =

1

9


2 −1 −1 −1
−1 3 0 0
−1 0 3 0
−1 0 0 3



X ′1y1 =


1 1 1 1 1 1 1 1 1 0
1 1 1 0 0 0 0 0 0 1
0 0 0 1 1 1 0 0 0 1
0 0 0 0 0 0 1 1 1 1





4
5
6

10
12
14
7
8

12
0


=


78
15
36
27

 =


y··
y1·
y2·
y3·



θ̂ = (X ′1X1)
−1X ′1y1 =

1

9


2 −1 −1 −1
−1 3 0 0
−1 0 3 0
−1 0 0 3




78
15
36
27

 =


26/3
−11/3

10/3
1/3

 =


µ̂
τ̂1
τ̂2
τ̂3
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CONSTRAINT II: τ3 = 0 (equal ni case)

µ τ2 τ2 τ3

X2 =



1 1 0 0
1 1 0 0
1 1 0 0

1 0 1 0
1 0 1 0
1 0 1 0

1 0 0 1
1 0 0 1
1 0 0 1

0 0 0 1


y2 =



4
5
6

10
12
14

7
8

12

0


θ =


µ
τ1
τ2
τ3



X ′2X2 =


1 1 1 1 1 1 1 1 1 0
1 1 1 0 0 0 0 0 0 0
0 0 0 1 1 1 0 0 0 0
0 0 0 0 0 0 1 1 1 1





1 1 0 0
1 1 0 0
1 1 0 0
1 0 1 0
1 0 1 0
1 0 1 0
1 0 0 1
1 0 0 1
1 0 0 1
0 0 0 1


=


9 3 3 3
3 3 0 0
3 0 3 0
3 0 0 4

 (X ′2X2)
−1 =

1

3


4 −4 −4 −3
−4 5 4 3
−4 4 5 3
−3 3 3 3



X ′2y2 =


1 1 1 1 1 1 1 1 1 0
1 1 1 0 0 0 0 0 0 0
0 0 0 1 1 1 0 0 0 0
0 0 0 0 0 0 1 1 1 1





4
5
6

10
12
14
7
8

12
0


=


78
15
36
27

 =


y··
y1·
y2·
y3·



θ̂ = (X ′2X2)
−1X ′2y2 =

1

3


4 −4 −4 −3
−4 5 4 3
−4 4 5 3
−3 3 3 3




78
15
36
27

 =


9
−4
13
0

 =


µ̂
τ̂2
τ̂2
τ̂3
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