
3 RANDOMIZED COMPLETE BLOCK DESIGN (RCBD)

• The experimenter is concerned with studying the effects of a single factor on a response of interest.
However, variability from another factor that is not of interest is expected.

• The goal is to control the effects of a variable not of interest by bringing experimental units that are
similar into a group called a “block”. The treatments are then randomly applied to the experimental
units within each block. The experimental units are assumed to be homogeneous within each block.

• By using blocks to control a source of variability, the mean square error (MSE) will be reduced. A
smaller MSE makes it easier to detect significant results for the factor of interest.

• Assume there are a treatments and b blocks. If we have one observation per treatment within each
block, and if treatments are randomized to the experimental units within each block, then we have a
randomized complete block design (RCBD). Because randomization only occurs within blocks,
this is an example of restricted randomization.

3.1 RCBD Notation

• Assume µ is the baseline mean, τi is the ith treatment effect, βj is the jth block effect, and
εij is the random error of the observation. The statistical model for a RCBD is

yij = µ+ τi + βj + εij and εij ∼ IIDN(0, σ2). (6)

• µ, τi (i = 1, 2, . . . , a), and βj (j = 1, 2, . . . , b) are not uniquely estimable. Constraints must be

imposed. To be able to calculate estimates µ̂, τ̂i, and β̂j , we need to impose two constraints.

• Initially, we will assume the textbook constraints:

a∑
i=1

τi = 0 and

b∑
j=1

βj = 0.

• These are not the default SAS constraints (τa = 0, βb = 0) or R constraints (τ1 = 0, β1 = 0).

• Applying these constraints, will yield least-squares estimates

µ̂ = τ̂i = and β̂j =

where ȳi· is the mean for treatment i, and ȳ·j is the mean for block j.

• Substitution of the estimates into the model yields:

yij = µ̂ + τ̂i + β̂j + eij

= ȳ·· + (ȳi· − ȳ··) + (ȳ·j − ȳ··) + eij

where eij = ε̂ij is the residual of an observation yij from a RCBD. The value of eij is

eij = yij − (ȳi· − ȳ··)− (ȳ·j − ȳ··)− ȳ·· =

• The total sum of squares (SStotal) for the RCBD is partitioned into 3 components:

a∑
i=1

b∑
j=1

(yij − ȳ··)2 =

a∑
i=1

b∑
j=1

(ȳi· − ȳ··)2 +

b∑
j=1

a∑
i=1

(ȳ·j − ȳ··)2 +

a∑
i=1

b∑
j=1

(yij − ȳi· − ȳ·j + ȳ··)
2

= b

a∑
i=1

(ȳi· − ȳ··)2 + a

b∑
j=1

(ȳ·b − ȳ··)2 +

a∑
i=1

b∑
j=1

(yij − ȳi· − ȳ·j + ȳ··)
2

= b

a∑
i=1

+ a

b∑
j=1

+

a∑
i=1

b∑
j=1

OR SSTotal = SSTrt + SSBlock + SSE
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• Alternate formulas to calculate SSTotal, SSTrt and SSBlock.

SSTotal =
a∑
i=1

b∑
j=1

y2ij −
y2··
ab

SSTrt =
a∑
i=1

y2i·
b
− y2··
ab

SSBlock =
b∑

j=1

y2·j
a
− y2··
ab

SSE = SSTotal − SSTrt − SSBlock where
y2··
ab

is the correction factor.

3.2 Cotton Fiber Breaking Strength Experiment

An agricultural experiment considered the effects of K2O (potash) on the breaking strength of cotton
fibers. Five K2O levels were used (36, 54, 72, 108, 144 lbs/acre). A sample of cotton was taken from each
plot, and a strength measurement was taken. The experiment was arranged in 3 blocks of 5 plots each.

K2O lbs/acre (treatment)
Block 36 54 72 108 144 Totals

1 7.62 8.14 7.76 7.17 7.46 y·1=38.15
2 8.00 8.15 7.73 7.57 7.68 y·2=39.13
3 7.93 7.87 7.74 7.80 7.21 y·3=38.55

y1· y2· y3· y4· y5·
Totals 23.55 24.16 23.23 22.54 22.35 y··=115.83

Treatment Means ȳ1· = 7.850 ȳ2· = 8.053 ȳ3· = 7.743 ȳ4· = 7.513 ȳ5· = 7.450
Block Means ȳ·1 = 7.630 ȳ·2 = 7.826 ȳ·3 = 7.710
Grand Mean ȳ = 7.723

Uncorrected Sum of Squares =
∑a

i=1

∑b
j=1 y

2
ij =

Correction factor = y2··/ab = 115.832/15 =

a∑
i=1

y2i·
b

=
23.552 + 24.162 + 23.232 + 22.542 + 22.352

3
=

2685.5151

3
=

b∑
j=1

y2·j
a

=
38.152 + 39.132 + 38.552

5
=

4472.6815

5
=

SSTotal = 895.6183− 894.4393 =

SSTrt = 895.1717− 894.4393 =

SSBlock = 894.5364− 894.4393 =

SSE = 1.1790− 0.7324− 0.0971 =

Analysis of Variance (ANOVA) Table

Source of Sum of Mean F
Variation Squares d.f. Square Ratio p-value

K2O lbs/acre .18311 .0404

Blocks .04856 —–

Error .043685 ——

Total 14 —— ——
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Test the hypotheses H0 : τ1 = τ2 = τ3 = τ4 = τ5 = 0 versus H1 : τi 6= 0 for some i.

• The test statistic is F0 = 4.1916.

• The reference distribution is F (a− 1, (a− 1)(b− 1)) = F (4, 8).

• The critical value is F.05(4, 8) = .

• The decision rule is to reject H0 if the test statistic F0 is greater than F.05(4, 8).

Is F0 > F.05(4, 8)? Is ?

• The conclusion is to H0 and conclude that

SAS Output for the RCBD Example

ANOVA RESULTS FOR STRENGTH BY TREATMENT

The GLM Procedure

Dependent Variable: strength

ANOVA RESULTS FOR STRENGTH BY TREATMENT

The GLM Procedure

Dependent Variable: strength

Source DF
Sum of

Squares Mean Square F Value Pr > F

Model 6 0.82956000 0.13826000 3.16 0.0677

Error 8 0.34948000 0.04368500

Corrected Total 14 1.17904000

R-Square Coeff Var Root MSE strength Mean

0.703589 2.706677 0.209010 7.722000

Source DF Type III SS Mean Square F Value Pr > F

k2O 4 0.73244000 0.18311000 4.19 0.0404

block 2 0.09712000 0.04856000 1.11 0.3750

Parameter Estimate
Standard

Error t Value Pr > |t|

Intercept 7.438000000 B 0.14278072 52.09 <.0001

k2O       36 0.400000000 B 0.17065560 2.34 0.0471

k2O       54 0.603333333 B 0.17065560 3.54 0.0077

k2O       72 0.293333333 B 0.17065560 1.72 0.1240

k2O       108 0.063333333 B 0.17065560 0.37 0.7202

k2O       144 0.000000000 B . . .

block     1 -0.080000000 B 0.13218926 -0.61 0.5618

block     2 0.116000000 B 0.13218926 0.88 0.4058

block     3 0.000000000 B . . .

Note: The X'X matrix has been found to be singular, and a generalized inverse was used to solve the normal equations.  Terms whose estimates
are followed by the letter 'B' are not uniquely estimable.
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ANOVA RESULTS FOR STRENGTH BY TREATMENT

The GLM Procedure

Dependent Variable: strength

Fit Diagnostics for strength

0.4813Adj R-Square
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0.0437MSE
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ANOVA RESULTS FOR STRENGTH BY TREATMENT

The GLM Procedure

36 54 72 108 144
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Interaction Plot for strength

ANOVA RESULTS FOR STRENGTH BY TREATMENT

The GLM Procedure

ANOVA RESULTS FOR STRENGTH BY TREATMENT

The GLM Procedure
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Distribution of strength

strength

Level of
block N Mean Std Dev

1 5 7.63000000 0.35972211

2 5 7.82600000 0.24047869

3 5 7.71000000 0.28853076

ANOVA RESULTS FOR STRENGTH BY TREATMENT

The GLM Procedure

Dependent Variable: strength

ANOVA RESULTS FOR STRENGTH BY TREATMENT

The GLM Procedure

Dependent Variable: strength

Parameter Estimate
Standard

Error t Value Pr > |t|

K2O=36 0.12800000 0.10793208 1.19 0.2697

K2O=54 0.33133333 0.10793208 3.07 0.0154

K2O=72 0.02133333 0.10793208 0.20 0.8482

K2O=108 -0.20866667 0.10793208 -1.93 0.0893

K2O=144 -0.27200000 0.10793208 -2.52 0.0358
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ANOVA RESULTS FOR STRENGTH BY TREATMENT

The GLM Procedure

Tukey's Studentized Range (HSD) Test for strength

ANOVA RESULTS FOR STRENGTH BY TREATMENT

The GLM Procedure

Tukey's Studentized Range (HSD) Test for strength

Note: This test controls the Type I experimentwise error rate, but it generally has a higher Type II error rate than REGWQ.

Alpha 0.05

Error Degrees of Freedom 8

Error Mean Square 0.043685

Critical Value of Studentized Range 4.88569

Minimum Significant Difference 0.5896

Means with the same letter are not
significantly different.

Tukey Grouping Mean N k2O

A 8.0533 3 54

A

B A 7.8500 3 36

B A

B A 7.7433 3 72

B A

B A 7.5133 3 108

B

B 7.4500 3 144

ANOVA RESULTS FOR STRENGTH BY TREATMENT

The GLM Procedure

Tukey's Studentized Range (HSD) Test for strength

ANOVA RESULTS FOR STRENGTH BY TREATMENT

The GLM Procedure

Tukey's Studentized Range (HSD) Test for strength

Note: This test controls the Type I experimentwise error rate.

Alpha 0.05

Error Degrees of Freedom 8

Error Mean Square 0.043685

Critical Value of Studentized Range 4.88569

Minimum Significant Difference 0.5896

Comparisons significant at the 0.05 level are
indicated by ***.

k2O
Comparison

Difference
Between

Means

Simultaneous
95%

Confidence
Limits

54  - 36 0.2033 -0.3862 0.7929

54  - 72 0.3100 -0.2796 0.8996

54  - 108 0.5400 -0.0496 1.1296

54  - 144 0.6033 0.0138 1.1929 ***

36  - 54 -0.2033 -0.7929 0.3862

36  - 72 0.1067 -0.4829 0.6962

36  - 108 0.3367 -0.2529 0.9262

36  - 144 0.4000 -0.1896 0.9896

72  - 54 -0.3100 -0.8996 0.2796

72  - 36 -0.1067 -0.6962 0.4829

72  - 108 0.2300 -0.3596 0.8196

72  - 144 0.2933 -0.2962 0.8829

108 - 54 -0.5400 -1.1296 0.0496

108 - 36 -0.3367 -0.9262 0.2529

108 - 72 -0.2300 -0.8196 0.3596

108 - 144 0.0633 -0.5262 0.6529

144 - 54 -0.6033 -1.1929 -0.0138 ***

144 - 36 -0.4000 -0.9896 0.1896

144 - 72 -0.2933 -0.8829 0.2962

144 - 108 -0.0633 -0.6529 0.5262

3.3 SAS Code for Cotton Fiber Breaking Strength RCBD

DM ’LOG; CLEAR; OUT; CLEAR;’;
OPTIONS NODATE NONUMBER LS=76;
ODS GRAPHICS ON;
ODS PRINTER PDF file=’C:\COURSES\ST541\RCBD.PDF’;

******************************************;
*** A RANDOMIZED COMPLETE BLOCK DESIGN ***;
******************************************;

DATA in; INPUT k2O block strength @@; CARDS;
36 1 7.62 36 2 8.00 36 3 7.93
54 1 8.14 54 2 8.15 54 3 7.87
72 1 7.76 72 2 7.73 72 3 7.74
108 1 7.17 108 2 7.57 108 3 7.80
144 1 7.46 144 2 7.68 144 3 7.21

PROC GLM DATA=in PLOTS = (ALL);
CLASS k2O block;
MODEL strength = k2O block / SS3 SOLUTION;
MEANS block;
MEANS k2O / TUKEY CLDIFF LINES;
ESTIMATE ’K2O=36’ K2O 4 -1 -1 -1 -1 / DIVISOR=5;
ESTIMATE ’K2O=54’ K2O -1 4 -1 -1 -1 / DIVISOR=5;
ESTIMATE ’K2O=72’ K2O -1 -1 4 -1 -1 / DIVISOR=5;
ESTIMATE ’K2O=108’ K2O -1 -1 -1 4 -1 / DIVISOR=5;
ESTIMATE ’K2O=144’ K2O -1 -1 -1 -1 4 / DIVISOR=5;

TITLE ’ANOVA RESULTS FOR STRENGTH BY TREATMENT’;
RUN;
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3.4 Restrictions on Randomization

• Two common reasons for blocking:

1. The experimenter has multiple sets of experimental units that are homogeneous within sets

but are heterogeneous across sets. This typically occurs when there is not a sufficient number

of homogeneous experimental units available to run a CRD leading the experimenter to form

groups of units that are as homogeneous as possible.

2. The experimenter has time constraints that do not allow a CRD to be run within a continuous

period of time that would ensure uniformity of experimental conditions. Under these circum-

stances, blocks take the form of a time unit (such as a day).

• For a RCBD, there is one restriction on randomization. Randomization is restricted to randomly

assigning the a treatments to the a experimental units within each block.

• In their Design of Experiments text, Anderson and McLean (A&M) introduce a random component

called a restriction error into the traditional RCBD model to present a more realistic picture of

the experimental situation. This approach will be useful later when we have multiple restrictions on

randomizations (e.g., split-plot designs).

• Essentially, we’re saying there must be a different error structure between a completely randomized

design and a design that has a restriction on randomization. And, because there is a different error

structure, there must be differences in the model and the analysis.

• Thus, A&M suggest that the traditional model

yij = µ + τi + βj + εij (7)

should include a term indicating where the restriction on randomization occurred. That is:

yijk = µ + τi + βj + δj + εij (8)

where µ, τi, and βj are the same in (8) as in (7), yij is the response from the ith treatment in block

j for the kth randomization, and δj is the restriction error associated with the jth block.

• We also assume δj ∼ N(0, σ2δ ), and each δj is completely confounded with the jth block effect.

Comparison of CRD and RCBD ANOVA Tables

CRD with 2 model effects

Source term d.f. EMS

Blocks βj b− 1 σ2 + aφ(β)

Treatments τi a− 1 σ2 + b
(∑a

i=1 τ
2
i

)
/(a− 1)

Error εij (a− 1)(b− 1) σ2

RCBD from A&M

Source term d.f. EMS

Blocks βj b− 1 σ2 + aσ2δ + aφ(β)

Restriction Error δj(k) 0 σ2 + aσ2δ
Treatments τi a− 1 σ2 + b

(∑a
i=1 τ

2
i

)
/(a− 1)

Error εijk (a− 1)(b− 1) σ2

where φ(β) is a function of β1, . . . , βb if blocks are fixed or φ(β) = σ2β if blocks are random.
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• In both the fixed and random block cases, the ANOVA F -tests associated with treatment effects are

identical. You use F0 = MStrt/MSE to test

H0 : τ1 = · · · = τa = 0 against H1 : not all of the τis are equal (9)

• The EMS for the RCBD indicates that the correct denominator EMS for testing for a significant

block effect (either fixed or random) is the EMS for the restriction error. The problem is that this is

not estimable from the data.

• Under these circumstances, the test of the hypothesis involving the combination of the block effects

and the restriction error in (10) would be appropriate to test for a ‘general’ blocking effect.

• The statistic F = MSblocks/MSE is actually a test of

H0 : σ2δ + φ(β) = 0 against H1 : σ2δ + φ(β) 6= 0 (10)

Note that even if β1 = β2 = · · · = βb = 0 (fixed) or σ2β = 0 (random) is true, we still have the

restriction error in the EMS which prevents it from matching the error EMS = σ2.

• Because of the restriction on randomization, A&M claim that there is no F test for blocks. That

is, there is no test for H0 : σ2β = 0 if blocks are random and no test for H0 : β1 = β2 = · · · = βb if

blocks are fixed.

• Fortunately this is not a problem because most of the time the experimenter is only interested in

whether or not blocking had been effective in reducing the MSE for improved testing of the effects

of the treatment of interest.

3.5 Example of an Analysis With and Without Blocks

Three different disinfecting solutions are being compared to study their effectiveness in stopping the growth

of bacteria in milk containers. The analysis is done in a laboratory, and only three trials can be run on

any day. Because days could represent a potential source of variability, the experimenter decides to use

a randomized block design with days as blocks. Observations are taken for four days. The inside of the

milk containers are covered with a certain amount of bacteria. The response is the percentage of bacteria

remaining after rinsing the container with a disinfecting solution.

Day

Solution 1 2 3 4

1 13 22 18 39

2 16 24 17 44

3 5 4 1 22

• The data were analyzed assuming two different models. The first model does not include blocks.

The second model includes blocks. The SAS analysis for both models is on the next page. Here are

important results:
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Without blocks With blocks

R2

MSE

p-value

• Note that we would fail to reject H0 if blocks were not in the model because there is large variability

across blocks (MSday = 368.97).

• If the SSday = 1106.92 and dfday = 3 is pooled with the the SSE = 41.83 and dfE = 6 in the model

with days (blocks), then it forms the SSE = 1158.75 and dfE = 9 for the model without days (blocks).

SAS Code for RCBD Analyses With and Without Blocks

DM ’LOG;CLEAR;OUT;CLEAR’;

ODS GRAPHICS ON;

* ODS PRINTER PDF file=’C:\COURSES\ST541\RCBD2.PDF’;

OPTIONS NODATE NONUMBER LS=76 PS=54;

*********************************************;

*** RCBD ANALYSES WITH AND WITHOUT BLOCKS ***;

*********************************************;

DATA IN;

DO solution = 1 TO 3;

DO day = 1 TO 4;

INPUT growth @@; OUTPUT;

END; END;

LINES;

13 22 18 39 16 24 17 44 5 4 1 22

;

*******************************************************;

*** RUN AN ANOVA WITH SOLUTION ONLY, NO DAY BLOCKS ***;

*******************************************************;

PROC GLM DATA=IN;

CLASS solution;

MODEL growth = solution / ss3;

TITLE ’RCBD WITHOUT DAYS (BLOCKS) IN THE MODEL’;

*****************************************;

*** RUN AN ANOVA WITH DAYS AS BLOCKS ***;

*****************************************;

PROC GLM DATA=IN;

CLASS day solution;

MODEL growth = solution day / ss3;

TITLE ’RCBD WITH DAYS (BLOCKS) IN THE MODEL’;

RUN;
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EXAMPLE 9:  RCBD WITH DAYS AS BLOCKS

The GLM Procedure

Dependent Variable: growth

1 2 3 4
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Interaction Plot for growth

RCBD Without Days as Blocks

EXAMPLE 9:  RCBD IGNORING DAYS AS BLOCKS

The GLM Procedure

Dependent Variable: growth

EXAMPLE 9:  RCBD IGNORING DAYS AS BLOCKS

The GLM Procedure

Dependent Variable: growth

Source DF
Sum of

Squares Mean Square F Value Pr > F

Model 2 703.500000 351.750000 2.73 0.1182

Error 9 1158.750000 128.750000

Corrected Total 11 1862.250000

R-Square Coeff Var Root MSE growth Mean

0.377769 60.51630 11.34681 18.75000

Source DF Type III SS Mean Square F Value Pr > F

solution 2 703.5000000 351.7500000 2.73 0.1182

0

10

20

30

40

gr
ow

th

1 2 3

solution

0.1182Prob > F
2.73F

Distribution of growth

0

10

20

30

40

gr
ow

th

1 2 3

solution

0.1182Prob > F
2.73F

Distribution of growth
RCBD Without Days as Blocks

EXAMPLE 9:  RCBD WITH DAYS AS BLOCKS

The GLM Procedure

Dependent Variable: growth

EXAMPLE 9:  RCBD WITH DAYS AS BLOCKS

The GLM Procedure

Dependent Variable: growth

Source DF
Sum of

Squares Mean Square F Value Pr > F

Model 5 1810.416667 362.083333 41.91 0.0001

Error 6 51.833333 8.638889

Corrected Total 11 1862.250000

R-Square Coeff Var Root MSE growth Mean

0.972166 15.67573 2.939199 18.75000

Source DF Type III SS Mean Square F Value Pr > F

solution 2 703.500000 351.750000 40.72 0.0003

day 3 1106.916667 368.972222 42.71 0.0002
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Interaction Plot for growth
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3.6 Type I vs Type III Analyses

• Without the /ss3 option in the MODEL statement, SAS will contain two ANOVA tables: ANOVA

for Type I sum of squares and ANOVA for Type III sum of squares.

• If there are no missing observations, the Type I and Type III analyses are identical.

• If there are missing observations, the Type I and Type III analyses are different. To see how they

differ we will first look at the Type I analysis.

3.6.1 Type I Analysis

• The Type I analysis is based on sequentially fitting the data to the model one factor at a time. It is

often referred to as the sequential sum of squares method.

• For the RCBD there are two possibilities that I will refer to as

– Version 1 (V1) when fitting treatments before blocks.

– Version 2 (V2) when fitting blocks before treatments.

• Let RSSi be the error sum of squares (SSE) after fitting the model in the ith step.

• The steps for determining the ANOVA SS for V1 are:

1. Fit yij = µ+ εij and obtain RSS1 = SStotal.

2. Fit yij = µ+ τi + εij and obtain RSS2 = SSE for the model with treatments only.

3. Fit yij = µ+ τi + βj + εij and obtain RSS3 = SSE for the model with treatments and blocks.

• The steps for determining the ANOVA SS for V2 are:

1. Fit yij = µ+ εij and obtain RSS1 = SStotal.

2′. Fit yij = µ+ βj + εij and obtain RSS∗2 = SSE for the model with blocks only.

3. Fit yij = µ+ τi + βj + εij and obtain RSS3 = SSE for the model with blocks and treatments..

• The ANOVA sum of squares for V1 and V2 are summarized in the following table:

Step V1 Source Fit df Type I SS for V1

1 Total µ N − 1 RSS1

2 Treatment τi a− 1 R(τ |µ) = RSS1 −RSS2
3 Blocks βj b− 1 R(β|τ, µ) = RSS2 −RSS3
3 Error εij N − a− b+ 1 RSS3

Step V2 Source Fit df Type I SS for V2

1 Total µ N − 1 RSS1

2′ Blocks βj b− 1 R(β|µ) = RSS1 −RSS∗2
3 Treatment τi a− 1 R(τ |β, µ) = RSS∗2 −RSS∗3
3 Error εij N − a− b+ 1 RSS3
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• In V1, the quantity R(τ |µ) is called the reduction in SS due to τ adjusted for µ and R(β|τ, µ)

is called the reduction in SS for β adjusted for τ and µ.

• In V2, the quantity R(β|µ) is called the reduction in SS due to β adjusted for µ and R(τ |β, µ)

is called the reduction in SS for τ adjusted for β and µ.

3.6.2 Type III Analysis

• The Type III analysis is referred to as the marginal means or the Yates weighted squares of

means analysis.

• For a RCBD, the Type III SStrt and SSblocks are computed using the following procedure:

1. Fit the model with treatments only: yij = µ+ τi + εij . Then RSS2 = SSE for this model.

2. Fit the model with blocks only: yij = µ+ βj + εij . Then RSS∗2 = SSE for this model.

3. Fit the model yij = µ + τi + βj + εij . Then RSS3 = SSE and RSS1 = SStotal for the model

with both treatments and blocks.

Step Source Fit df Type III SS

1 Total µ N − 1 RSS1

2 Treatment τi a− 1 R(τ |β, µ) = RSS∗2 −RSS3
3 Blocks βj b− 1 R(β|τ, µ) = RSS2 −RSS3
1 Error εij N − a− b+ 1 RSS3

• If any yij values are missing, then SStrt + SSblocks + SSE 6= SStotal for a Type III analysis.

3.6.3 RCBD Analysis with a Missing Observation

See the example in Section 3.5 for the description of the experiment. Suppose y23 was missing from the

RCBD. The RCBD data table is:

Day

Solution 1 2 3 4

1 13 22 18 39

2 16 24 . 44

3 5 4 1 22

• Let us examine the Type I and Type III sums of squares. The next page contains the SAS output.

• The top of the next page contains the Type I (V1) sum of squares and the bottom of the page contains

the Type I (V2) sum of squares. Note the difference in sums of squares, mean squares, F-statistics,

and p-values for the Type I analyses.

• The reason for the difference between the V1 and V2 Type I sum of squares is that a Type I analysis

is sequential so the order in which terms enter the model is important.

• The Type III analysis is the same for both analyses Type III sums of squares are not calculated

sequentially. That is, the order in which terms enter the model is not important.

• The following page contains the two analyses with only one effect in each model. I included these

analyses so you can see how RSS2 and RSS∗2 are calculated.
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ANOVA RESULTS: (MODEL WITH SOLUTION THEN DAY)

ANOVA RESULTS (SOLUTION THEN DAY)

The GLM Procedure

Dependent Variable: growth

ANOVA RESULTS (SOLUTION THEN DAY)

The GLM Procedure

Dependent Variable: growth

Source DF
Sum of

Squares Mean Square F Value Pr > F

Model 5 1811.575758 362.315152 38.27 0.0005

Error 5 47.333333 9.466667

Corrected Total 10 1858.909091

R-Square Coeff Var Root MSE growth Mean

0.974537 16.27151 3.076795 18.90909

Source DF Type I SS Mean Square F Value Pr > F

solution 2 790.909091 395.454545 41.77 0.0008

day 3 1020.666667 340.222222 35.94 0.0008

Source DF Type III SS Mean Square F Value Pr > F

solution 2 670.500000 335.250000 35.41 0.0011

day 3 1020.666667 340.222222 35.94 0.0008

ANOVA RESULTS: (MODEL WITH DAY THEN SOLUTION)

ANOVA RESULTS (DAY THEN SOLUTION)

The GLM Procedure

Dependent Variable: growth

ANOVA RESULTS (DAY THEN SOLUTION)

The GLM Procedure

Dependent Variable: growth

Source DF
Sum of

Squares Mean Square F Value Pr > F

Model 5 1811.575758 362.315152 38.27 0.0005

Error 5 47.333333 9.466667

Corrected Total 10 1858.909091

R-Square Coeff Var Root MSE growth Mean

0.974537 16.27151 3.076795 18.90909

Source DF Type I SS Mean Square F Value Pr > F

day 3 1141.075758 380.358586 40.18 0.0006

solution 2 670.500000 335.250000 35.41 0.0011

Source DF Type III SS Mean Square F Value Pr > F

day 3 1020.666667 340.222222 35.94 0.0008

solution 2 670.500000 335.250000 35.41 0.0011

So where did RSS2 and RSS∗2 come from?
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RSS2 is the SSE for the model with only treatments and no blocks.

ANOVA RESULTS FOR THE MODEL WITH SOLUTION (TREATMENTS) ONLY

ANOVA RESULTS (SOLUTION ONLY)

The GLM Procedure

Dependent Variable: growth

ANOVA RESULTS (SOLUTION ONLY)

The GLM Procedure

Dependent Variable: growth

Source DF
Sum of

Squares Mean Square F Value Pr > F

Model 2 790.909091 395.454545 2.96 0.1090

Error 8 1068.000000 133.500000

Corrected Total 10 1858.909091

R-Square Coeff Var Root MSE growth Mean

0.425469 61.10405 11.55422 18.90909

Source DF Type I SS Mean Square F Value Pr > F

solution 2 790.9090909 395.4545455 2.96 0.1090

Source DF Type III SS Mean Square F Value Pr > F

solution 2 790.9090909 395.4545455 2.96 0.1090
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Distribution of growth
RSS∗2 is the SSE for the model with only blocks and no treatments.

ANOVA RESULTS FOR THE MODEL WITH DAYS (BLOCKS) ONLY

ANOVA RESULTS (DAY ONLY)

The GLM Procedure

Dependent Variable: growth

ANOVA RESULTS (DAY ONLY)

The GLM Procedure

Dependent Variable: growth

Source DF
Sum of

Squares Mean Square F Value Pr > F

Model 3 1141.075758 380.358586 3.71 0.0696

Error 7 717.833333 102.547619

Corrected Total 10 1858.909091

R-Square Coeff Var Root MSE growth Mean

0.613842 53.55403 10.12658 18.90909

Source DF Type I SS Mean Square F Value Pr > F

day 3 1141.075758 380.358586 3.71 0.0696

Source DF Type III SS Mean Square F Value Pr > F

day 3 1141.075758 380.358586 3.71 0.0696
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Distribution of growthAll of these calculations are done automatically in the RCBD analyses for the two models

on the previous page.
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Type I SS (V1) Summary
RSS1 = 1858.91 R(µ) = RSS1 = 1858.91
RSS2 = 1068.00 R(τ |µ) = RSS1 −RSS2 = 790.91
RSS3 = 47.33 R(β|τ, µ) = RSS2 −RSS3 = 1020.67

Type I SS (V2) Summary
RSS1 = 1858.91 R(µ) = RSS1 = 1858.91
RSS∗2 = 717.83 R(β|µ) = RSS1 −RSS∗2 = 1141.08
RSS3 = 47.33 R(τ |β, µ) = RSS∗2 −RSS3 = 670.50

Type III SS Summary
RSS1 = 1858.91 R(µ) = RSS1 = 1858.91
RSS3 = 47.33
RSS∗2 = 717.83 R(β|τ, µ) = RSS∗2 −RSS1 = 1020.67
RSS2 = 1068.00 R(τ |β, µ) = RSS2 −RSS1 = 670.50

DM ’LOG; CLEAR; OUT; CLEAR;’;
ODS GRAPHICS ON;
ODS PRINTER PDF file=’C:\COURSES\ST541\RCBDMISS.PDF’;
OPTIONS NODATE NONUMBER;

***************************************;
*** RCBD WITH A MISSING OBSERVATION ***;
***************************************;
DATA IN;
DO solution = 1 TO 3;
DO day = 1 TO 4;

INPUT growth @@; OUTPUT;
END; END;
CARDS;
13 22 18 39 16 24 . 44 5 4 1 22
;
***************************************************;
*** RUN AN ANOVA WITH SOLUTION APPEARING FIRST ***;
***************************************************;
PROC GLM DATA=IN;

CLASS solution day;
MODEL growth = solution day;

TITLE ’ANOVA RESULTS (SOLUTION THEN DAY)’;

**********************************************;
*** RUN AN ANOVA WITH DAY APPEARING FIRST ***;
**********************************************;
PROC GLM DATA=IN;

CLASS day solution;
MODEL growth = day solution;

TITLE ’ANOVA RESULTS (DAY THEN SOLUTION)’;

****************************************;
*** RUN AN ANOVA WITH SOLUTION ONLY ***;
****************************************;
PROC GLM DATA=IN;

CLASS solution;
MODEL growth = solution;

TITLE ’ANOVA RESULTS (SOLUTION ONLY)’;

***********************************;
*** RUN AN ANOVA WITH DAY ONLY ***;
***********************************;
PROC GLM DATA=IN;

CLASS day;
MODEL growth = day;

TITLE ’ANOVA RESULTS (DAY ONLY)’;

RUN;
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R code for RCBD with missing value

# ANOVA for RCBD with missing observation

strength <- c(13,22,18,39,16,24,NA,44,5,4,1,22)

solution <- c(1,1,1,1,2,2,2,2,3,3,3,3)

day <- c(1,2,3,4,1,2,3,4,1,2,3,4)

f1 <- aov(strength~factor(day)+factor(solution))

summary (f1)

f2 <- lm(strength~factor(day)+factor(solution))

summary(f2)

R output for RCBD with missing value

> summary (f1)

Df Sum Sq Mean Sq F value Pr(>F)

factor(day) 3 1141.1 380.4 40.18 0.000636 ***

factor(solution) 2 670.5 335.2 35.41 0.001116 **

Residuals 5 47.3 9.5

---

Signif. codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1

1 observation deleted due to missingness

> summary(f2)

Coefficients:

Estimate Std. Error t value Pr(>|t|)

(Intercept) 15.333 2.206 6.952 0.000946 ***

factor(day)2 5.333 2.512 2.123 0.087176 .

factor(day)3 1.667 2.901 0.575 0.590479

factor(day)4 23.667 2.512 9.421 0.000227 ***

factor(solution)2 3.000 2.432 1.233 0.272264

factor(solution)3 -15.000 2.176 -6.895 0.000983 ***

---

Signif. codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1

Residual standard error: 3.077 on 5 degrees of freedom

(1 observation deleted due to missingness)

Multiple R-squared: 0.9745, Adjusted R-squared: 0.9491

F-statistic: 38.27 on 5 and 5 DF, p-value: 0.0005468
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3.6.4 Type I vs Type III Hypotheses

• Because of differences between Type I and Type III SS, there will be differences in the hypotheses

associated with the F -tests (assuming the restriction on randomization is ignored).

• Let µij = µ+ τi + βj be the ith treatment, jth block mean.

Hypotheses for Type III and Type I (V2) Sum of Squares

H0 : µ1· = µ2· = · · · = µa·

H1 : µi· 6= µi∗· for some i 6= i∗ and µi· =

 b∑
j=1

µij

 /b.

Hypotheses for Type I (V1) Sum of Squares

H0 :
1

n1·

b∑
j=1

n1jµ1j =
1

n2·

b∑
j=1

n2jµ2j = · · · = 1

na·

b∑
j=1

najµaj

H1 :
1

ni·

b∑
j=1

nijµij 6=
1

ni∗·

b∑
j=1

ni∗jµi∗j for some i 6= i∗.

where ni· = the number of nonmissing yij values for the ith treatment, and nij = 1 if yij is not missing

and nij = 0 if yij is missing.

• The Type III hypotheses are comparing the treamtment means average across the blocks (and are

the ones I want to test.) Therefore I recommend using the p-values from a Type III analysis.

• If there are no missing yij values, the Type I and Type III hypotheses are the same.

3.7 RCBD Normal Equations

• For model yij = µ+ τi + βj + εij , the error is εij = yij − µ− τi − βj

• Substituting in estimates produces the residual ε̂ij = eij = yij − µ̂− τ̂i − β̂j .

• Goal: Find µ̂, τ̂i, and β̂j that minimize L:

L =

a∑
i=1

b∑
j=1

ε̂ 2ij =

a∑
i=1

b∑
j=1

(yij − µ̂− τ̂i − β̂j)2

• Solution: Solve the normal equations

∂L

∂µ̂
= −2

a∑
i=1

b∑
j=1

(yij − µ̂− τ̂i − β̂j) = 0

∂L

∂τ̂i
= −2

b∑
j=1

(yij − µ̂− τ̂i − β̂j) = 0 for i = 1, 2, . . . , a

∂L

∂β̂j
= −2

a∑
i=1

(yij − µ̂− τ̂i − β̂j) = 0 for j = 1, 2, . . . , b
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• After distributing the sum and then simplifying, we get:

(i) y·· = abµ̂ + b
a∑
i=1

τ̂i + a
b∑

j=1

β̂j

(ii) yi· = bµ̂ + b τ̂i +
b∑

j=1

β̂j for i = 1, 2, . . . , a

(iii) y·j = aµ̂ +
a∑
i=1

τ̂i + aβ̂j for j = 1, 2, . . . , b

• For (i), (ii), and (iii), there is a total of 1 + a+ b equations. If you sum the a equations in (ii), you

get (i). If you sum the b equations in (iii), you also get (i). Thus, the rank is a+ b− 1 which implies

that µ and each τi and βj are not uniquely estimable. To get estimates of µ and each τi and βj , we

must impose 2 constraints. We will use
a∑
i=1

τi = 0 and
b∑

j=1

βj = 0.

• Substitution of these constraints into (i), (ii), and (iii) yields

(1) abµ̂ = y·· (2) bµ̂+ bτ̂i = yi· (3) aµ̂+ aβ̂j = y·j

• Then, from (1), we have

µ̂ =
y··
ab

=

• Substitution of µ̂ = y·· in (2) yields:

by·· + bτ̂i = yi· −→ y·· + τ̂i = yi· −→ τ̂i =

• Substitution of µ̂ = y·· in (3) yields:

ay·· + aβ̂j = y·j −→ y·· + β̂j = y·j −→ β̂j =

3.8 Matrix Forms for the RCBD

Example: The goal is to determine whether or not four different tips produce different readings on a

hardness testing machine. The machine operates by pressing the tip into a metal test coupon, and from

the depth of the resulting depression, the hardness of the coupon can be determined. The experimenter

decides to obtain four observations for each tip. Four randomly selected coupons (blocks) were used and

each tip (treatment) was tested on each coupon. The data represent deviations from a desired depth in

0.1 mm units:

Type of Tip

Type of Coupon 1 2 3 4

1 −2 −1 −3 2

2 −1 −2 −1 1

3 1 3 0 5

4 5 4 2 7
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• Model: yij = µ+ τi + βj + εij for i = 1, 2, 3, 4 and j = 1, 2, 3, 4

εij ∼ N(0, σ2) βj ∼ N(0, σ2β)

• Assume (i)
∑4

i=1 τi = 0 and (ii)
∑4

j=1 βj = 0. If we estimate [ µ, τ1, τ2, τ3, β1, β2, β3 ] , we can

then estimate τ4 = −τ1 − τ2 − τ3 from (i) and β4 = −β1 − β2 − β3 from (ii).

µ τ1 τ2 τ3 β1 β2 β3

X =



1 1 0 0 1 0 0
1 1 0 0 0 1 0
1 1 0 0 0 0 1
1 1 0 0 -1 -1 -1
1 0 1 0 1 0 0
1 0 1 0 0 1 0
1 0 1 0 0 0 1
1 0 1 0 -1 -1 -1
1 0 0 1 1 0 0
1 0 0 1 0 1 0
1 0 0 1 0 0 1
1 0 0 1 -1 -1 -1
1 -1 -1 -1 1 0 0
1 -1 -1 -1 0 1 0
1 -1 -1 -1 0 0 1
1 -1 -1 -1 -1 -1 -1



y =



-2
-1
1
5

-1
-2
3
4

-3
-1
0
2
2
1
5
7



X ′X =



16 0 0 0 0 0 0
0 8 4 4 0 0 0
0 4 8 4 0 0 0
0 4 4 8 0 0 0
0 0 0 0 8 4 4
0 0 0 0 4 8 4
0 0 0 0 4 4 8


(X ′X)−1 =

1

16



1 0 0 0 0 0 0
0 3 -1 -1 0 0 0
0 -1 3 -1 0 0 0
0 -1 -1 3 0 0 0
0 0 0 0 3 -1 -1
0 0 0 0 -1 3 -1
0 0 0 0 -1 -1 3



X ′y =



20
-12
-11
-17
-22
-21
-9


(X ′X)−1X ′y =

1

16



20
-36 + 11 + 17

12 - 33 + 17
12 + 11 -51

-66 + 21 + 9
22 - 63 + 9
22 + 21 -27



=
1

16



20
-8
-4

-28
-36
-32
16


=



5/4
-2/4
-1/4
-7/4
-9/4
-8/4
4/4


=



y··
y1· − y··
y2· − y··
y3· − y··
y·1 − y··
y·2 − y··
y·3 − y··


=



µ̂
τ̂1
τ̂2
τ̂3
β̂1
β̂2
β̂3


Thus, τ̂4 = −τ̂1 − τ̂2 − τ̂3 = 10/4 and β̂4 = −β̂1 − β̂2 − β̂3 = 13/4
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Alternate Approach: Keeping a+ b+ 1 Columns

µ τ1 τ2 τ3 τ4 β1 β2 β3 β4

X =



1 1 0 0 0 1 0 0 0
1 1 0 0 0 0 1 0 0
1 1 0 0 0 0 0 1 0
1 1 0 0 0 0 0 0 1
1 0 1 0 0 1 0 0 0
1 0 1 0 0 0 1 0 0
1 0 1 0 0 0 0 1 0
1 0 1 0 0 0 0 0 1
1 0 0 1 0 1 0 0 0
1 0 0 1 0 0 1 0 0
1 0 0 1 0 0 0 1 0
1 0 0 1 0 0 0 0 1
1 0 0 0 1 1 0 0 0
1 0 0 0 1 0 1 0 0
1 0 0 0 1 0 0 1 0
1 0 0 0 1 0 0 0 1
0 1 1 1 1 0 0 0 0
0 0 0 0 0 1 1 1 1



y =



−2
−1

1
5
−1
−2

3
4
−3
−1

0
2
2
1
5
7
0
0



X ′X =



16 4 4 4 4 4 4 4 4
4 5 1 1 1 1 1 1 1
4 1 5 1 1 1 1 1 1
4 1 1 5 1 1 1 1 1
4 1 1 1 5 1 1 1 1
4 1 1 1 1 5 1 1 1
4 1 1 1 1 1 5 1 1
4 1 1 1 1 1 1 5 1
4 1 1 1 1 1 1 1 5


(X ′X)−1 =

1

16



3 −1 −1 −1 −1 −1 −1 −1 −1
−1 4 0 0 0 0 0 0 0
−1 0 4 0 0 0 0 0 0
−1 0 0 4 0 0 0 0 0
−1 0 0 0 4 0 0 0 0
−1 0 0 0 0 4 0 0 0
−1 0 0 0 0 0 4 0 0
−1 0 0 0 0 0 0 4 0
−1 0 0 0 0 0 0 0 4



X ′y =



20
3
4
−2
15
−4
−3

9
18


(X ′X)−1X ′y =



5/4
−2/4
−1/4
−7/4
10/4
−9/4
−8/4

4/4
13/4


=



µ̂
τ̂1
τ̂2
τ̂3
τ̂4
β̂1
β̂2
β̂3
β̂4


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