4 FACTORIAL DESIGNS

4.1 Two Factor Factorial Designs

e A two-factor factorial design is an experimental design in which data is collected for all possible
combinations of the levels of the two factors of interest.

e If equal sample sizes are taken for each of the possible factor combinations then the design is a
balanced two-factor factorial design.

e A balanced a x b factorial design is a factorial design for which there are a levels of factor A, b levels
of factor B, and n independent replications taken at each of the a x b treatment combinations. The
design size is N = abn.

e The effect of a factor is defined to be the average change in the response associated with a change in
the level of the factor. This is usually called a main effect.

e If the average change in response across the levels of one factor are not the same at all levels of the
other factor, then we say there is an interaction between the factors.

TYPE TOTALS MEANS (if ny; = n)
Cell(4, 7) Yij = Dop1 Yijk Yij. = Yij-/Mij = Yij. /N
ith level of A Yi.. = 22‘21 S0 Yigk Ui = Yi-/ 2221 nij =y;./bn
j" level of B Vi = > S0 Yk U =Yg/ Dy Nij =y.,./an
Overall Yoo =D iy 2221 S Yiik Yo =Y/ D>ty 2221 nig = y../abn

where n;; is the number of observations in cell (3, j).

EXAMPLE (A 2 x 2 balanced design): A virologist is interested in studying the effects of a = 2 different
culture media (M) and b = 2 different times (7') on the growth of a particular virus. She performs a
balanced design with n = 6 replicates for each of the 4 M * T treatment combinations. The N = 24
measurements were taken in a completely randomized order. The results:

THE DATA
M TOTALS
Medium 1 Medium 2 T=1 T=2
12 [ 212320 | 252429 T =12 [ y11. = 140 | y12. = 156 | y1.. = 296
T hours | 222826 | 262527 T =18 | yo1. = 223 | yoo. = 192 | yo.. = 415
18 37 38 35 31 29 30 y1. =363 yo =348 y.. =TI11
hours | 39 38 36 34 33 35
i = Level of T j = Level of M MEANS
k = Observation number M=1 — M =2 —
h T=12| y;;. =233 Yrg. =26 | Yp.. =24.6

Yiji. = k' observation from the 4!
level of T and j*" level of M

T =18 | §y1. = 37.16 | Yoy =32 | Jy.. = 34.583
7. =3025 T, =29.00 7. =29.625

e The effect of changing T' from 12 to 18 hours on the response depends on the level of M.

— For medium 1, the T effect = 37.16 —23.3 =
— For medium 2, the T effect = 32 — 26 =

e The effect on the response of changing M from medium 1 to 2 depends on the level of T.

— For T = 12 hours, the M effect = 26 —23.3 =
— For T = 18 hours, the M effect = 32 —37.16 =
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If either of these pairs of estimated effects are significantly different then we say there exists a
significant interaction between factors M and T'. For the 2 x 2 design example:

— If 13.83 is significantly different than 6 for the M effects, then we have a significant M * T
interaction.

Or,

— If 2.6 is significantly different than —5.16 for the T' effects, then we have a significant M * T
interaction.

There are two ways of defining an interaction between two factors A and B:

— If the average change in response between the levels of factor A is not the same at all levels of
factor B, then an interaction exists between factors A and B.

— The lack of additivity of factors A and B, or the nonparallelism of the mean profiles of A and
B, is called the interaction of A and B.

When we assume there is no interaction between A and B, we say the effects are additive.

An interaction plot or treatment means plot is a graphical tool for checking for potential
interactions between two factors. To make an interaction plot,

1. Calculate the cell means for all a - b combinations of the levels of A and B.
2. Plot the cell means against the levels of factor A.

3. Connect and label means the same levels of factor B.
The roles of A and B can be reversed to make a second interaction plot.
Interpretation of the interaction plot:

— Parallel lines usually indicate no significant interaction.
— Severe lack of parallelism usually indicates a significant interaction.

— Moderate lack of parallelism suggests a possible significant interaction may exist.

Statistical significance of an interaction effect depends on the magnitude of the M Sg:

For smal values of the M Sg, even small interaction effects (less nonparallelism) may be significant.

When an A x B interaction is large, the corresponding main effects A and B may have little practical
meaning. Knowledge of the A x B interaction is often more useful than knowledge of the main effect.

We usually say that a significant interaction can mask the interpretation of significant main effects.
That is, the experimenter must examine the levels of one factor, say A, at fixed levels of the other
factor to draw conclusions about the main effect of A.

It is possible to have a significant interaction between two factors, while the main effects for both
factors are not significant. This would happen when the interaction plot shows interactions in different
directions that balance out over one or both factors (such as an X pattern). This type of interaction,
however, is uncommon.
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4.2

The Interaction Model

The interaction model for a two-factor completely randomized design is:

Yijk =
1 is the baseline mean, «; is the it" factor A effect,
where B is the j! factor B effect, (aB);j is the (i,)" A B interaction effect,

€;jk is the random error of the kth observation from the (3,7 )th cell.
We assume €, ~ 11D N(0, 02). For now, we will also assume all effects are fixed.

If ()5 is removed from (22)), we would have the additive model:
Yijk = p + o + B +ege

If we impose the constraints

a b

a b
dai=> B;=0 > (aB); =0 for allj and > (aB)y =0 for alli,
i=1 j=1

i—1 j=1

then the least squares estimates of the model parameters are

~

Oéﬁz‘j =
If we substitute these estimates into we get
Yijk = 1+ ai + B; + afy; + ek

= Y. + @ —7.) + @, =) + @ij. — Vi — V5. +7..) + eijk

where e;j, is the Eth residual from the treatment (1, j)th cell, and e;j, =

For the 2 x 2 design,

7. = 29.625 Y. = 24.6 Y. = 34.586 7., = 30.25 7.0 = 29.00

Assuming the constraints in ([24]),

a1 = 24.6—29.625 =

% 34.583 — 29.625 =

B 30.256 — 29.625 =

By = 29.006 —29.625 =
aBfin = 23.3—24.6 —30.25+29.625 =
aflys = 26 —24.6 —29.00 + 29.625 =
afa = 37.16 — 34.583 — 30.25 4+ 29.625 =
afyy = 32— 34.583 — 29.00 + 29.625 =
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4.3 Matrix Forms for the Twoway ANOVA

Example: Consider a completely randomized 2 x 3 factorial design with n = 2 replications for each of the
six combinations of the two factors (A and B). The following table summarizes the results:

Factor A Factor B Levels
Levels 1 2 3
1 1,2 4,6 5,6
2 3.5 5,7 4,6

Model: yiji = p+ o + B + (af)ij + €jr, fori=1,2 7=1,2,3 k=1,2 and €, ~ N(0,02)
Assume (i) Z?:l a; =0 (ii) Z?Zl Bj=0
(i) Y7y (eB)ij =0 fori=1,2  (iv) Y7 (aB)y =0 forj=1,2,3

e Thus, for the main effect constraints, we have «y = —a7 and p3 = —0F1 — (o.

e The interaction effect constraints can be written in terms of just af1; and afBis:

afia = afa = afiz = afaz =

e Thus, the reduced form of model matrix X requires only 6 columns: u, ay, 51, B2, @B11 and afis.

oo fi B2 afu abi

! 1 10 1 07 F 1T
1 1 10 1 0 2
1 1 0 1 0 1 4
1 1 0 1 0 1 6
1 1 -1 -1 -1 -1 5
1 1] -1 -1 -1 -1 6
X=1 1| 2 1 0] -1 0 y=1 3
1] -1 1 0] -1 0 5
1| -1 0 1 0 -1 5
1| -1 0 1 0 -1 7
1] -1 -1 -1 1 1 4
1] 1 -1 -1 1 1] | 6 |
12 0000 07 C 54 ]
01200 0 0 6
e | 0 08400 , | -10
XX =110 04800 Xy =1
0 0008 4 6
0 000 48| | 3
10 0 0 0 07 T o457 [ P
01 0 0 0 0 -0.5 %1
B 1100 2 -1 0 o0 B 175 !
/ 1 L / v/, P
XX =5100-1 2 0 0 (X X)" Xy = 1 B
00 0 0 2 —1 0.75 By
(00 0 0 -1 2| Lol o]

Thus, ag = —al =0.5 33 = _B\l — B\Q =0.75 OjBQl - _C/VBH =0.75
aflge = —afi1s =0 afig = —afy; —afp =075 afag = afyy +abiy = —0.75
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Alternate Approach: Keeping 1+ a+ b+ (a *b) Columns
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4.4 Notation for an ANOVA

e SSy=mnb Z@Z —7..)% = the sum of squares for factor A (df = a — 1)
MSy = S54/(a— 1) = the mean square for factor A
o SSp = naz = the sum of squares for factor B (df = b — 1)

MSp = SSp/(b— 1) = the mean square for factor B

a

a b b
® SSap = HZZ[@@] ~Y.) = Wi —¥.) — (W — ZZ Yij. = Vi = U +7..)°
=1 7=1

i=1 j=1
= the A x B interaction sum of squares (df = (a — 1)(b — 1))
MSsp = SSap/(a—1)(b— 1)= the mean square for the A x B interaction
e SSp=>1, 22:1 Spen (i — yij.)Q = the error sum of squares (df = ab(n — 1))
MSE = SSg/ab(n — 1)= the mean square error
o SSr = Z Z Z(ywk —7..)% = the total sum of squares (df = abn — 1)
i=1 j=1 k=1

e the total sum of squares is partitioned into components corresponding to the terms in the model:

a b n a b
YO Wik —5.)* = nbY (G —7.)* + na) (U,
i=1 j=1 k=1 i=1 =1
a b TNy
+ 0N Gy =T =Ty T+ DD (Wi — i)’

i=1 j=1 i=1 j=1

OR

e The alternate S'S formulas for the balanced two factorial design are:

a b n ) y2 a y y2 ygj y2
SSr = e 2 SS s = Zee | J = 2y T
T ;;;ywk abn AT ~ bn  abn 555 ]Z_; a abn
a b y2 2
SSAB:ZZ%—SSA—SSB—C% SSkp =SSy — 854 —SSp — SSup
i=1 j=1
e The alternate SS formulas for the unbalanced two factorial design are:

Nij a y2 yQ y2‘ yQ
SST—ZZZM SSa=) "B SSp=2 L%
i=1 j=1 k=1 = j=1 "7

y2
SSAB_ZZZ:ZJ — S84 —SSB—F SSp =SSt — 5S4 — SSp — SSan
=1 j=1 R

b b
where N =30 D00y nij, mi =300 N, M = D0 Naj
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Balanced Two-Factor Factorial ANOVA Table

Source of Sum of Mean F
Variation Squares d.f. Square Ratio
A SSa a—1 MSy =554/(a—1) Foa=MSs/MSg
B SSp b—1 MSp=S5Sg/(b—1) Fp=MSp/MSEg
Ax B SSap  (a—1)(b—1) MSap=95Sap/(a—1)(b—1) Fawp = MSap/MSE
Error SSg ab(n — 1) MSg = SSg/(ab(n — 1)) —
Total S'Siotal abn — 1 —

For the unbalanced case, replace ab(n — 1) with N —ab for the d.f. for SSg and replace abn — 1 with N —1
for the d.f. for SSiptq where N =7 Z?:l nij-

4.5 Comments on Interpreting the ANOVA
o Test Hp: (af)i1 = (af)iz="-=(af)e vs. Hi: at least one (ap)i; # (af)yy first.

— If this test indicates that there is not a significant interaction, then continue testing the hy-
potheses for the two main effects:

Hy:ai1=as=---=a, vs. Hy : at least one «; # ay

Hy: B[1=0=---=0 vs H;: at least ome (3; #

— If this test indicates that there is a significant interaction, then the interpretation of significant
main effects hypotheses can be masked. To draw conclusions about a main effect, we will fix
the levels of one factor and vary the levels of the other. Using this approach (combined with
interaction plots) we may be able to provide an interpretation of main effects.

e If we assume the constraints in , then the hypotheses can be rewritten as:

Ho: (af)11 =(af)iz2="-=(af)ap =0 vs. Hi: at least ome(af);; #0
Ho: a1=ag=--=a,=0 vs. Hj:at least one a; #0
Hyo: Bi=P2=---=F=0 vs. Hp:at least one 3; #0

4.6 ANOVA for a 2 x 2 Factorial Design Example

e We will now use SAS to analyze the 2 x 2 factorial design data discussed earlier.

M
Medium 1 Medium 2
12 21 23 20 25 24 29
T hours 22 28 26 26 25 27
18 37 38 35 31 29 30
hours 39 38 36 34 33 35
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ANOVA and Estimation of Effects for a 2x2 Design

The GLM Procedure
Dependent Variable: growth
Sum of
Source DF Squares | Mean Square | F Value [ Pr >F
Model 31691.4583333 230.4861111 45.12 | <.0001
Error 20 | 102.1666667 5.1083333
Corrected Total | 23 | 793.6250000
R-Square | Coeff Var | Root MSE | growth Mean
0.871266 7.629240 2.260162 29.62500
Source DF | Type III SS | Mean Square | F Value | Pr > F
time 11590.0416667 590.0416667 115.51 | <.0001
medium 1 9.3750000 9.3750000 1.84 | 0.1906
time*medium 1| 92.0416667 92.0416667 18.02 | 0.0004
Standard
Parameter Estimate Error |t Value | Pr > [t|
Intercept 32.00000000 | B|0.92270737 34.68 | <.0001
time 12 -6.00000000 | B | 1.30490528 -4.60 | 0.0002
time 18 0.00000000 | B
medium 1 5.16666667 | B | 1.30490528 3.96 [ 0.0008
medium 2 0.00000000 | B
time*medium 12 1 | -7.83333333 | B | 1.84541474 -4.24 | 0.0004
time*medium 12 2 | 0.00000000 | B
time*medium 18 1 | 0.00000000 | B
time*medium 18 2 | 0.00000000 | B

Note: The X'X matrix has been found to be singular, and a generalized inverse was used to solve the normal equations. Terms whose estimates

are followed by the letter 'B' are not uniquely estimable.

Standard
Parameter Estimate Error | t Value | Pr > |t|
mu 29.6250000 | 0.46135368 64.21 | <.0001
time=12 -4.9583333 | 0.46135368 -10.75 | <.0001
time=18 4.9583333 [ 0.46135368 10.75 | <.0001
medium=1 0.6250000 [ 0.46135368 1.35| 0.1906
medium=2 -0.6250000 | 0.46135368 -1.35 | 0.1906
time=12 medium=1 | -1.9583333 | 0.46135368 -4.24 | 0.0004
time=12 medium=2 | 1.9583333 | 0.46135368 4.24 | 0.0004
time=18 medium=1 | 1.9583333 | 0.46135368 4.24 | 0.0004
time=18 medium=2 | -1.9583333 | 0.46135368 -4.24 | 0.0004
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Fit Diagnostics for growth

47 2 2
S o o st o o s )
% o0 o G 040 o o| § o7
ad ° ) & N o & 8
5 : . . 14, ° o -1 g
R ° 5 o 5 ¢)
1 1 1 1 1 1 1 1 1
25 30 35 25 30 35 020 025 0.30
Predicted Value Predicted Value Leverage
4 ° 40 7 o 0.25 -
o2 i o 9 0.20 —
EE 35 3 -
k| § 5 @ 0.15 -
S - g 30 0 3 g
& & ° S 0.10
27 257 o 0.05 - I ‘ T
y 20 - S 0.00 if @T 920 To?? TT@
1 1 1 1 1 1 1 1 1 1 ' 1 1 1 1 1 1
2 - 0 1 2 20 25 30 35 40 0 5 10 15 20 25
Quantile Predicted Value Observation
i 1
‘i 30 T ] gﬁ 30 <
growth growth
Level of Level of
time N Mean Std Dev medium [ N Mean Std Dev
12 12 | 24.6666667 | 2.77434131 1 12 | 30.2500000 [ 7.58137670
18 12 | 34.5833333 | 3.28794861 2 12 129.0000000 | 3.71728151
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Interaction Plot for growth

40
35
k=]
; 30 |
&b
25 -
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time
[medium —e—1 —+—2
Distribution of growth
40
[
. T -
S
g _‘, 1
<o
25
&
. 1
T T T T
121 122 181 182
time*medium
growth
Level of | Level of
time medium | N Mean Std Dev
12 1 6| 23.3333333 | 3.07679487
12 2 6126.0000000 | 1.78885438
18 1 6 37.1666667 | 1.47196014
18 2 61 32.0000000 [ 2.36643191
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Tests for Normality

Test Statistic p Value
Shapiro-Wilk w 0.966156 | Pr <W 0.5737
Kolmogorov-Smirnov | D 0.140751 | Pr>D >0.1500

Cramer-von Mises W-Sq | 0.049547 | Pr > W-Sq | >0.2500

Anderson-Darling A-Sq |0.303234 | Pr> A-Sq | >0.2500

4.6.1 SAS Code for 2 x 2 Factorial Design
DM °’LOG; CLEAR; 0OUT; CLEAR;’;

0DS GRAPHICS ON;
0DS PRINTER PDF file=’C:\COURSES\ST541\TWOWAY1.PDF’;
OPTIONS NODATE NONUMBER;

sk sk sk sk sk sk sk ok ok ok ok sk o o o ok sk ok sk sk sk sk sk sk sk sk sk ok sk sk o ok sk sk sk sk sk sk sk sk sk sk sk sk sk sk ok ok 3
*%* EXAMPLE: 2-FACTOR FACTORIAL (2x2) DESIGN ***;
sk sk o o o sk sk ok ok o ok ok ok o sk sk ok ok o sk sk ok sk o ok sk ok ok o ok ok sk ok sk o ok sk ok sk o ok koK ok ok ok 3
DATA in;
DO time = 12 to 18 by 6;
DO medium = 1 to 2;
DO rep = 1 to 6;
INPUT growth ©Q; OUTPUT;
END; END; END;
CARDS;
21 23 20 22 28 26 25 24 29 26 25 27
37 38 35 39 38 36 31 29 30 34 33 35

PROC GLM DATA=in PLOTS=(ALL);
CLASS time medium;
MODEL growth = time|medium / SS3 SOLUTION;
MEANS time|medium;

*x*k Estimate mu ***;
ESTIMATE ’mu’ intercept 1;

*x* Estimate the main effects for factor time’;
ESTIMATE ’time=12’ time 1 -1 / divisor = 2 ;
ESTIMATE ’time=18’ time -1 1 / divisor 2 ;

**x Estimate the main effects for factor medium’;
ESTIMATE ’medium=1’ medium 1 -1 / divisor
ESTIMATE ’medium=2’ medium -1 1 / divisor

2 ;
2 ;

**x Estimate the interaction effects’;
*xx Take the product of the tau_i and beta_j coefficients;
*¥x* from the main effects ESTIMATE statement. Divisor = axb;

**x* To estimate taubeta 1i,j

sk (1 -1) x (1 -1) = (1 -1 -1 1) for i,j = 12,1;
xkk (1 -1) x (-1 1) = (-1 11 -1) for i,j = 12,2;
xkx (-1 1) x (1 -1) = (-1 11 -1) for i,j = 18,1;
*kx (-1 1) x (-1 1) = (1 -1 -1 1) for i,j = 18,2;

ESTIMATE ’time=12 medium=1’ time*medium 1 -1 -1 1 / divisor
ESTIMATE ’time=12 medium=2’ time*medium -1 1 1 -1 / divisor
ESTIMATE ’time=18 medium=1’ time*medium -1 1 1 -1 / divisor
ESTIMATE ’time=18 medium=2’ time*medium 1 -1 -1 1 / divisor

oo
INGFNGFNINS

e we we we

OUTPUT 0UT=diag P=pred R=resid;
TITLE ’ANOVA and Estimation of Effects for a 2x2 Design’;
PROC UNIVARIATE DATA=diag NORMAL;

VAR resid;
RUN;
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4.7 Tests of Normality (Supplemental)

e For an ANOVA, we assume the errors are normally distributed with mean 0 and constant variance

o2. That is, we assume the random error € ~ N (0, 0?).

e The Kolmogorov-Smirnov Goodness-of-Fit Test, the Cramer-Von Mises Goodness-of-Fit Test, and

the Anderson-Darling Goodness-of-Fit Test can be applied to any distribution F'(x).

e Although the following notes use the general form F(z), we will be assuming F'(x) represents a

normal distribution with mean 0 and constant variance.

e We are also assuming that the random sample referred to in each test is the set of residuals from the

ANOVA.

e Thus, in each each test we are checking the normality assumption in the ANOVA. In this case, we

want to see a large p-value because we do not want to reject the null hypothesis that the errors are

normally distributed.

4.7.1 Kolmogorov-Smirnov Goodness-of-Fit Test
Assumptions: Given a random sample of n independent observations

e The measurement scale is at least ordinal.

e The observations are sampled from a continuous distribution F'(z).

Hypotheses: For a hypothesized distribution F*(x)
(i) Two-sided: Hy: F(x) = F*(z) forall z vs. Hy: F(z)# F*(x) for some x
(ii) One-sided: Hy: F(x) > F*(z) for all x vs. Hy: F(x) < F*(z) for some x
(iii) Ome-sided: Hy: F(x) < F*(z) for all x vs. Hy: F(x) > F*(z) for some x

Method: For a given «

Number of observations < x

e Define the empirical distribution function S, () =
n

(i) Two-sided test statistic: T' = sup |F*(z) — Sy, ()]
T

e When plotted, T is the greatest vertical difference between the empirical and the hypothesized dis-

tribution.

(i) Ome-sided test statistic: TF = sup(F*(x) — S, ())

(iii) One-sided test statistic: T~ = sup(Sy () — F*(x))

T

Decision Rule

e Critical values for T, T and T~ are found in nonparametrics textbooks. For larger samples sizes,

an asymptotic critical value can be used.

e We will just rely on p-values to make a decision.
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4.7.2 Cramer-Von Mises Goodness-of-Fit Test
Assumptions: Same as the Kolmogorov-Smirnov test
Hypotheses: For a hypothesized distribution F*(x)
Hy: F(x) = F*(z) forallz vs. H;: F(x)# F*(z) for some x

Method: For a given «

Number of observations <z
e Define the empirical distribution function S, () = —

n

e The Cramer-von Mises test statistic W2 is defined to be

w? = n/oo [F*(x) — Sp(x)]2dF* (x).

—00

2n

1 - 2% —1)7
. 2 _ *
e This form can reduces to W= = o + z; <F (z@) — >
1=
where (1), Z(), ..., %) represents the ordered sample in ascending order.

Decision Rule

e Tables of critical values exist for the exact distribution of W?2 when Hy is true. Computers generate

critical values for the asymptotic (n — oo) distribution of W?2.

e If W2 becomes too large (or p-value < ), then we will Reject Hy.

4.7.3 Anderson-Darling Goodness-of-Fit Test
Assumptions: Same as the Kolmogorov-Smirnov and Cramer-von Mises tests
Hypotheses: Same as the Cramer-von Mises test.

Method: For a given «

Number of observations < x

e Define the empirical distribution function S, (z) =

n
e The Anderson-Darling test statistic A? is defined to be
o 1
A2 = / [F*(2) — Si(2)|2da.
—oo FH()(1 — F*(2))
1
e This form can reduces to A? = - {(2i = 1) (InF*(z(;)) + In(1 — F*(2(n41-4))) } — n where
T(1),T(2),- - -, T(n) represents the ordered sample in ascending order.

Decision Rule

e Computers generate critical values for the asymptotic (n — oo) distribution of A2.

e If A% becomes too large (or p-value < ), then we will Reject Hy.
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