5 Nested Designs and Nested Factorial Designs

5.1 Two-Stage Nested Designs

- The following example is from *Fundamental Concepts in the Design of Experiments* (C. Hicks). In a training course, the members of the class were engineers and were assigned a final problem. Each engineer went into the manufacturing plant and designed an experiment. One engineer studied the strain (stress) of glass cathode supports on the production machines:
 - There were 5 production machines (fixed effect).
 - Each machine has 4 components called 'heads' which produces the glass. The heads represent a random sample from a population of heads (random effect).
 - She took 4 samples from each. Data collection of the $5 \times 4 \times 4 = 80$ measurements was completely randomized. The data is presented in the table below:

									I	Mach	ine									
Head		1	4			В				\mathbf{C}			D			${ m E}$				
1	6	13	1	7	10	2	4	0	0	10	8	7	11	5	1	0	1	6	3	3
2	2	3	10	4	9	1	1	3	0	11	5	2	0	10	8	8	4	7	0	7
3	0	9	0	7	7	1	7	4	5	6	0	5	6	8	9	6	7	0	2	4
4	8	8	6	9	12	10	9	1	5	7	7	4	4	3	4	5	9	3	2	0

She analyzed the data as a two-factor factorial design. Is this correct?

- To be a two-factor factorial design, the <u>same 4 heads</u> must be used in each of the 5 machines. This was not the case. The 4 heads in Machine A <u>are different</u> from the 4 heads in Machine B, and so on. 20 different heads were used in this experiment (not 4).
- Therefore, we do not have a factorial experiment. When the levels of a factor are unique to the levels of one or more other factors, we have a nested factor. In this experiment, we say the "heads are nested within machines".
- A proper format for presenting the data is in the following table:

	Machine																			
	AB							\mathbf{C}			D					E				
Head	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18	19	20
	6	13	1	7	10	2	4	0	0	10	8	7	11	5	1	0	1	6	3	3
	2	3	10	4	9	1	1	3	0	11	5	2	0	10	8	8	4	7	0	7
	0	9	0	7	7	1	7	4	5	6	0	5	6	8	9	6	7	0	2	4
	8	8	6	9	12	10	9	1	5	$\overline{7}$	$\overline{7}$	4	4	3	4	5	9	3	2	0
Head \sum	16	33	17	27	38	14	21	8	10	34	20	18	21	26	22	19	21	16	7	14
Machine \sum		9	3			81	L			8	2			8	8			5	8	

- The design for the previous experiment is an example of a **two-stage nested design**. The factor in the first stage is Machine. The nested factor in the second stage is head within machine (denoted Head(Machine)).
- Notation for a <u>balanced</u> two-stage nested design with factors A and B(A).
 - a = number of levels of factor A
 - b = number of levels of factor B within the i^{th} level of factor A
 - n = number of replicates for the j^{th} level of B within the i^{th} level of A

- A two-stage nested design can also be <u>unbalanced</u> with
 - Unequal b_i (i = 1, 2, ..., a) where b_i is the number of number of levels of factor B within the i^{th} level of factor A, or
 - Unequal n_{ij} where n_{ij} is the number of replicates within the j^{th} level of factor B and the i^{th} level of factor A
- Statistical software (such as *SAS*) can easily handle the unbalanced case. We will initially focus on the balanced case.

5.1.1 The Two-Stage Nested Effects Model

• The two-stage nested effects model is:

$$y_{ijk} = \tag{36}$$

where μ is the overall mean, α_i is the *i*th factor A effect,

 $\beta_{j(i)}$ is the j^{th} effect of factor B nested within the i^{th} level of factor A,

 ϵ_{ijk} is the random error of the k^{th} observation from the j^{th} level of B within the i^{th} level of A.

We assume $\epsilon_{ijk} \sim IID N(0, \sigma^2)$.

• If we impose the constraints

$$\sum_{i=1}^{a} \alpha_i = 0 \qquad \sum_{j=1}^{b} \beta_{j(i)} = 0 \quad \text{for } i = 1, 2, \dots, a$$
(37)

then the least squares estimates of the model parameters are

$$\widehat{\mu} = \widehat{\alpha}_i = \widehat{\beta}_{j(i)} =$$

• If we substitute these estimates into (36) we get

where e_{ijk} is the k^{th} residual from the $(i, j)^{th}$ nested treatment. Thus e_{ijk} =

Notation for an ANOVA

- $SS_A = nb \sum_{i=1}^{a} (\overline{y}_{i..} \overline{y}_{...})^2$ = the sum of squares for A (df = a 1)
- $MS_A = SS_A/(a-1)$ = the mean square for A
- $SS_{B(A)} = n \sum_{i=1}^{a} \sum_{j=1}^{b} (\overline{y}_{ij} \overline{y}_{i..})^2$ = the sum of squares for *B* nested within *A* (df = a(b-1))
- $MS_{B(A)} = SS_B/[a(b-1)]$ = the mean square for B nested within A

- $SS_E = \sum_{i=1}^{a} \sum_{j=1}^{b} \sum_{k=1}^{n} \left(y_{ijk} \overline{y}_{ij} \right)^2$ = the error sum of squares (df = ab(n-1))
- $MS_E = SS_E/ab(n-1)$ = the mean square error
- $SS_T = \sum_{i=1}^{a} \sum_{j=1}^{b} \sum_{k=1}^{n} (y_{ijk} \overline{y}_{...})^2$ = the total sum of squares (df = abn 1)
- Like previous designs, the total sum of squares for the two factor CRD is partitioned into components corresponding to the terms in the model:

$$\sum_{i=1}^{a} \sum_{j=1}^{b} \sum_{k=1}^{n} (y_{ijk} - \overline{y}_{...})^2 = nb \sum_{i=1}^{a} (\overline{y}_{i..} - \overline{y}_{...})^2 + n \sum_{i=1}^{a} \sum_{j=1}^{b} (\overline{y}_{ij.} - \overline{y}_{i..})^2 + \sum_{i=1}^{a} \sum_{j=1}^{b} \sum_{k=1}^{n} (y_{ijk} - \overline{y}_{ij.})^2$$
OR
$$SS_T = SS_A + SS_{B(A)} + SS_E$$

• The alternate SS formulas for the <u>balanced</u> two stage nested design are:

$$SS_{T} = \sum_{i=1}^{a} \sum_{j=1}^{b} \sum_{k=1}^{n} y_{ijk}^{2} - \frac{y_{...}^{2}}{abn} \qquad SS_{A} = \sum_{i=1}^{a} \frac{y_{i...}^{2}}{bn} - \frac{y_{...}^{2}}{abn} \qquad SS_{B(A)} = \sum_{i=1}^{a} \sum_{j=1}^{b} \left(\frac{y_{ij.}^{2}}{n} - \frac{y_{i...}^{2}}{bn} \right) \\ SS_{E} = SS_{T} - SS_{A} - SS_{B(A)}$$

Source of	Sum of		Mean	F
Variation	Squares	d.f.	Square	Ratio
A	SS_A	a-1	$MS_A = SS_A/(a-1)$	$F_A = (\text{see \ddagger below})$
B(A)	$SS_{B(A)}$	a(b-1)	$MS_B = SS_{B(A)} / [a(b-1)]$	$F_B = MS_{B(A)}/MS_E$
Error	SS_E	ab(n-1)	$MS_E = SS_E / [ab(n-1)]$	
Total	SS_{total}	abn-1		

ANOVA Table for Two-Stage Nested Design

- ‡ If B(A) is a <u>fixed</u> factor then $F_A = MS_A/MS_E$ If B(A) is a <u>random</u> factor then $F_A = MS_A/MS_{B(A)}$
- To estimate variance components, we use the same approach that was used for the one- and two-factor random effects models:

If A and B(A) are random, replace $E(MS_A)$, $E(MS_{B(A)})$, and $E(MS_E)$ in the expected means square equations with the calculated values of MS_A , $MS_{B(A)}$, and MS_E .

• Solving the system of equations produces estimates of the variance components:

$$\hat{\sigma}^2 = MS_E$$
 $\hat{\sigma}^2_{\beta} = \frac{MS_{B(A)} - MS_E}{n}$ $\hat{\sigma}^2_{\alpha} = \frac{MS_A - MS_{B(A)}}{bn}$

• Consider the example with factor A = Machines and nested factor B(A) = Heads(Machines). The following table summarizes totals for for the levels of A and B(A):

								Ma	chine	е										
A B C D E																				
Head y_{ij} .	16	33	17	27	38	14	21	8	10	34	20	18	21	26	22	19	21	16	7	14
Machine $y_{i\cdots}$		9	3			8	1			8	2			8	8			58	8	

• Then the sums of squares are:

$$SS_{T} = (6^{2} + 2^{2} + \dots + 4^{2} + 0^{2}) - \frac{402^{2}}{80} =$$

$$SS_{A} = \frac{93^{2} + 81^{2} + 82^{2} + 88^{2} + 58^{2}}{16} - \frac{402^{2}}{80} =$$

$$SS_{B(A)} = \left(\frac{16^{2} + 33^{2} + 17^{2} + 27^{2}}{4} - \frac{93^{2}}{16}\right) + \left(\frac{38^{2} + 14^{2} + 21^{2} + 8^{2}}{4} - \frac{81^{2}}{16}\right)$$

$$+ \left(\frac{10^{2} + 34^{2} + 20^{2} + 18^{2}}{4} - \frac{82^{2}}{16}\right) + \left(\frac{21^{2} + 26^{2} + 22^{2} + 19^{2}}{16} - \frac{88^{2}}{16}\right)$$

$$+ \left(\frac{21^{2} + 16^{2} + 7^{2} + 14^{2}}{4} - \frac{58^{2}}{16}\right)$$

$$= 50.1875 + 126.1875 + 74.75 + 6.50 + 25.25 =$$

$$SS_E = 969.95 - 45.075 - 282.875 =$$

Source of Variation	Sum of Squares	d.f.	Mean Square	F Ratio	<i>p</i> -value
Machines Heads(Machine) Error	$45.075 \\ 282.875 \\ 642$	$\begin{array}{c} 4\\ 15\\ 60 \end{array}$	11.269 18.858 10.70	$F_A = 0.60$ $F_B = 1.76$.6700 .0625
Total	$969.95\ 79$				

ANOVA Table for Two-Stage Nested Design Example

- Both F-tests are not significant at the $\alpha = .05$ significance level. The F-test for the Head(Machine) is significant, however, at the $\alpha = .10$ level.
- From the residual diagnostic plots, we see there are no serious problems with the homogeneity of variance (HOV) and the normality assumptions.
- To perform Levene's HOV Test, use the same approach presented with a two-factor factorial design: Create a single factor with one level for each combination of factors.
 - For this example, there are 20 Heads within Machine combinations. Levene's Test would compare the 20 sample variances.
 - The SAS code contains an example of using Levene's Test.

TWO-STAGE NESTED DESIGN (HICKS P.173-178)

The GLM Procedure

Class Level Information									
Class	Levels	Values							
machine	5	A B C D E							
head	20	1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20							

Variable: strain

Source	DF	Sum of Squares	Mean Square	F Value	Pr > F
Model	19	327.9500000	17.2605263	1.61	0.0823
Error	60	642.0000000	10.7000000		
Corrected Total	79	969.9500000			

R-Square	Coeff Var	Root MSE	strain Mean
0.338110	65.09623	3.271085	5.025000

Source	DF	Type III SS	Mean Square	F Value	Pr > F
machine	4	45.0750000	11.2687500	1.05	0.3876
head(machine)	15	282.8750000	18.8583333	1.76	0.0625

Source	Type III Expected Mean Square					
machine	Var(Error) + 4 Var(head(machine)) + Q(machine)					
head(machine)	Var(Error) + 4 Var(head(machine))					

The GLM Procedure Tests of Hypotheses for Mixed Model Analysis of Variance

Variable: strain

Source	DF	Type III SS	Mean Square	F Value	Pr > F					
machine	4	45.075000	11.268750	0.60	0.6700					
Error	15	282.875000	18.858333							
Error: M	Error: MS(head(machine))									

Source	DF	Type III SS	Mean Square	F Value	Pr > F
head(machine)	15	282.875000	18.858333	1.76	0.0625
Error: MS(Error)	60	642.000000	10.700000		

		strain			
Level of machine	Ν	Mean	Std Dev		
Α	16	5.81250000	3.81608438		
В	16	5.06250000	4.02440472		
С	16	5.12500000	3.34414912		
D	16	5.50000000	3.40587727		
Е	16	3.62500000	2.84897642		

			strain		
Level of head	Level of machine	N	Mean	Std Dev	
1	Α	4	4.00000000	3.65148372	
2	Α	4	8.25000000	4.11298756	
3	Α	4	4.25000000	4.64578662	
4	Α	4	6.75000000	2.06155281	
5	В	4	9.50000000	2.08166600	
6	В	4	3.50000000	4.35889894	
7	В	4	5.25000000	3.50000000	
8	В	4	2.00000000	1.82574186	
9	С	4	2.50000000	2.88675135	
10	С	4	8.50000000	2.38047614	
11	С	4	5.00000000	3.55902608	
12	С	4	4.50000000	2.08166600	
13	D	4	5.25000000	4.57347424	
14	D	4	6.50000000	3.10912635	
15	D	4	5.50000000	3.69684550	

			strain		
Level of head	Level of machine	N	Mean	Std Dev	
16	D	4	4.75000000	3.40342964	
17	Е	4	5.25000000	3.50000000	
18	Е	4	4.00000000	3.16227766	
19	Е	4	1.75000000	1.25830574	
20	Е	4	3.50000000	2.88675135	

LEVENE TEST (COMPARING VARIANCES WITHIN MACHINE HEAD)

The GLM Procedure

Class Level Information					
Class	Levels	Values			
head	20	1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20			

Tests for Normality						
Test	Statistic p Value					
Shapiro-Wilk	W	0.979233	Pr < W	0.2187		
Kolmogorov-Smirnov	D	0.072249	Pr > D	>0.1500		
Cramer-von Mises	W-Sq	0.069051	Pr > W-Sq	>0.2500		
Anderson-Darling	A-Sq	0.443911	Pr > A-Sq	>0.2500		

Variable: strain

Source	DF	Sum of Squares	Mean Square	F Value	Pr > F
Model	19	327.9500000	17.2605263	1.61	0.0823
Error	60	642.0000000	10.7000000		
Corrected Total	79	969.9500000			

R-Square	Coeff Var	Root MSE	strain Mean	
0.338110	65.09623	3.271085	5.025000	

Source	DF	Type III SS	Mean Square	F Value	Pr > F
head	19	327.9500000	17.2605263	1.61	0.0823

Levene's Test for Homogeneity of strain Variance ANOVA of Absolute Deviations from Group Means							
Source	DF	Sum of Squares	Mean Square	F Value	Pr > F		
head	19	42.0594	2.2137	0.91	0.5758		
Error	60	146.3	2.4385				

```
DM 'LOG; CLEAR; OUT; CLEAR;';
ODS GRAPHICS ON;
ODS PRINTER PDF file='C:\COURSES\ST541\NESTED2.PDF';
OPTIONS NODATE NONUMBER;
*** A TWO-STAGE NESTED DESIGN ***;
DATA IN;
 RETAIN head 0;
 DO machine='A', 'B', 'C', 'D', 'E';
    DO mhead=1 TO 4;
         head=head+1;
         DO rep=1 TO 4;
            INPUT strain @@; OUTPUT;
 END; END; END;
 CARDS:
6 2 0 8 13 3 9 8 1 10 0 6 7 4 7 9
10 9 7 12 2 1 1 10 4 1 7 9 0 3 4 1
0 0 5 5 10 11 6 7 8 5 0 7 7 2 5 4
11 0 6 4 5 10 8 3 1 8 9 4 0 8 6 5
 1 4 7 9 6 7 0 3 3 0 2 2 3 7 4 0
PROC GLM DATA=in PLOTS=(ALL);
    CLASS machine head;
    MODEL strain = machine head(machine) / SS3;
    RANDOM head(machine) / TEST;
    MEANS machine head(machine);
    ID mhead;
     OUTPUT OUT=diag R=resid;
TITLE 'TWO-STAGE NESTED DESIGN (HICKS P.173-178)';
PROC UNIVARIATE DATA=diag NORMAL;
    VAR resid;
PROC GLM DATA=in;
    CLASS head;
    MODEL strain = head / SS3;
    MEANS head / HOVTEST=LEVENE(TYPE=ABS);
TITLE 'LEVENE TEST (COMPARING VARIANCES WITHIN MACHINE HEAD)';
RUN;
```

5.2 Expected Means Squares (EMS) for Two-Stage Nested Designs (Supplemental)

- We will use the same EMS rules presented in Chapter 5. Recall that a subscript is **dead** if it is present and is in parentheses. In each column we put 1 for all dead subcripts in that row.
- With nested effects $\beta_{j(i)}$, we will have a "dead" subscript *i*. Also, recall that the error ϵ_{ijk} is written $\epsilon_{k(ij)}$ to include dead subscripts *i* and *j*.

<u>Case I:</u>: A two-stage nested design with Factor A is **fixed** with a levels and factor B is **random** with b levels. n replicates were taken for each of the ab combinations of the levels of A and B.

Step 1: Set up the EMS table

STEP 2: Filling in the rows of the EMS Table:

1. Write 1 in each column containing <u>dead</u> subscripts.

		\mathbf{F}	R	R	
		a	b	n	EMS
Effect	Component	i	j	k	
α_i	$\sum \alpha_i^2/(a-1)$				
$\beta_{j(i)}$	σ_{eta}^2	1			
$\epsilon_{k(ij)}$	σ^2	1	1		

2. If any row subscript corresponds to a random factor (R), then write 1 in all columns with a matching subscript. Otherwise, write 0 in all columns with a matching subscript.

		\mathbf{F}	R	R	
		a	b	n	EMS
Effect	Component	i	j	k	
$lpha_i$	$\sum \alpha_i^2/(a-1)$	0			
$\beta_{j(i)}$	σ_{β}^2	1	1		
$\epsilon_{k(ij)}$	σ^2	1	1	1	

3. For the remaining missing values, enter the number of factor levels for that column.

		\mathbf{F}	R	R	
		a	b	n	EMS
Effect	Component	i	j	k	
α_i	$\sum \alpha_i^2/(a-1)$	0	b	n	
$\beta_{j(i)}$	σ_{eta}^2	1	1	n	
$\epsilon_{k(ij)}$	σ^2	1	1	1	

STEP 3: Obtaining the EMS

		\mathbf{F}	\mathbf{R}	R	
		a	b	n	EMS
Effect	Component	i	j	k	
$lpha_i$	$\sum \alpha_i^2/(a-1)$	0	b	n	$\sigma^2 + n\sigma_{\beta}^2 + \frac{bn\sum \alpha_i^2}{a-1}$
$\beta_{j(i)}$	σ_{eta}^2	1	1	n	$\sigma^2 + n\sigma_\beta^2$
$\epsilon_{k(ij)}$	σ^2	1	1	1	σ^2

The correct F-statistics are $F_A = MS_A/MS_{B(A)}$ $F_{B(A)} = MS_{B(A)}/MS_E$

<u>Case II:</u>: A two-stage nested design with factor A is fixed with a levels and factor B is fixed with b levels. n replicates were taken for each of the ab combinations of the levels of A and B.

Step 1: Set up the EMS table

		\mathbf{F}	\mathbf{F}	R	
		a	b	n	EMS
Effect	Component	i	j	k	
α_i	$\sum \alpha_i^2/(a-1)$				
$\beta_{j(i)}$	$\sum \sum \beta_{j(i)}^2 / a(b-1)$				
$\epsilon_{k(ij)}$	σ^2				

STEP 2: Filling in the rows of the EMS Table:

1. Write 1 in each column containing dead subscripts.

		\mathbf{F}	\mathbf{F}	R	
		a	b	n	EMS
Effect	Component	i	j	k	
α_i	$\sum \alpha_i^2/(a-1)$				
$\beta_{j(i)}$	$\sum \sum \beta_{j(i)}^2 / a(b-1)$	1			
$\epsilon_{k(ij)}$	σ^2	1	1		

2. If any row subscript corresponds to a random factor (R), then write 1 in all columns with a matching subscript. Otherwise, write 0 in all columns with a matching subscript.

		\mathbf{F}	\mathbf{F}	\mathbf{R}	
		a	b	n	EMS
Effect	Component	i	j	k	
$lpha_i$	$\sum \alpha_i^2/(a-1)$	0			
$\beta_{j(i)}$	$\sum \sum \beta_{j(i)}^2 / a(b-1)$	1	0		
$\epsilon_{k(ij)}$	σ^2	1	1	1	

3. For the remaining missing values, enter the number of factor levels for that column.

		\mathbf{F}	\mathbf{F}	\mathbf{R}	
		a	b	n	EMS
Effect	Component	i	j	k	
α_i	$\sum \alpha_i^2/(a-1)$	0	b	n	
$\beta_{j(i)}$	$\sum \sum \beta_{j(i)}^2 / a(b-1)$	1	0	n	
$\epsilon_{k(ij)}$	σ^2	1	1	1	

STEP 3: Obtaining the EMS

		\mathbf{F}	\mathbf{F}	R	
		a	b	n	\mathbf{EMS}
Effect	Component	i	j	k	
α_i	$\sum \alpha_i^2/(a-1)$	0	b	n	$\sigma^2 + \frac{bn\sum \alpha_i^2}{a-1}$
$\beta_{j(i)}$	$\sum \sum \beta_{j(i)}^2 / a(b-1)$	1	0	n	$\sigma_{1}^{2} + n \sum_{i}^{\infty} \sum_{j(i)}^{2} \beta_{j(i)}^{2} / a(b-1)$
$\epsilon_{k(ij)}$	σ^2	1	1	1	σ^2

The correct F-statistics are $F_A = MS_A/MS_E$ $F_{B(A)} = MS_{B(A)}/MS_E$

<u>Case III</u>: A two-stage nested design with Factor A is **random** with a levels and factor B is **random** with b levels. n replicates were taken for each of the ab combinations of the levels of A and B.

Step 1: Set up the EMS table

	_	${ m R} a$	${f R}\ b$	R n	EMS
Effect	Component	i	j	k	
$lpha_i$	σ_{lpha}^2				
$\beta_{j(i)}$	σ_{β}^2				
$\epsilon_{k(ij)}$	σ^2				

STEP 2: Filling in the rows of the EMS Table:

1. Write 1 in each column containing <u>dead</u> subscripts.

		${f r} a$	${f R}\ b$	$\begin{bmatrix} \mathbf{R} \\ n \end{bmatrix}$	EMS
Effect	Component	i	j	k	
α_i	σ_{lpha}^2				
$\beta_{j(i)}$	σ_{eta}^2	1			
$\epsilon_{k(ij)}$	σ^2	1	1		

2. If any row subscript corresponds to a random factor (R), then write 1 in all columns with a matching subscript. Otherwise, write 0 in all columns with a matching subscript.

		R	R	R	
		a	b	n	EMS
Effect	Component	i	j	k	
α_i	σ_{lpha}^2	1			
$\beta_{j(i)}$	σ_{eta}^2	1	1		
$\epsilon_{k(ij)}$	σ^2	1	1	1	

3. For the remaining missing values, enter the number of factor levels for that column.

		\mathbf{R}	\mathbf{R}	R	
		a	b	n	EMS
Effect	Component	i	j	k	
$lpha_i$	σ_{lpha}^2	1	b	n	
$\beta_{j(i)}$	σ_{β}^2	1	1	n	
$\epsilon_{k(ij)}$	σ^2	1	1	1	

STEP 3: Obtaining the EMS

		R	\mathbf{R}	R	
		a	b	n	EMS
Effect	Component	i	j	k	
α_i	σ_{lpha}^2	1	b	n	$\sigma^2 + n\sigma_\beta^2 + bn\sigma_A^2$
$\beta_{j(i)}$	σ_{eta}^2	1	1	n	$\sigma^2 + n\sigma_\beta^2$
$\epsilon_{k(ij)}$	σ^2	1	1	1	σ^2

The correct F-statistics are $F_A = MS_A/MS_{B(A)}$ $F_{B(A)} = MS_{B(A)}/MS_E$

The General Balanced *m*-Stage Nested Design

Three-Stage Nested Design Model Equation

$$y_{ijkl} = \mu + \tau_i + \beta_{j(i)} + \gamma_{k(ij)} + \epsilon_{l(ijk)}$$

Four-Stage Nested Design Model Equation

Typically, all nested factors are random if the factor its levels are nested in are random. For example,

- If A is random, then typically B(A) is random.
- If B(A) is random, then typically C(AB) is random.