
8.5 Rotatability

• Recall: Var[ŷ(x)] = σ2x(m)′(X′X)−1x(m) is the prediction variance and
NVar[ŷ(x)]/σ2 = Nx(m)′(X′X)−1x(m) is the scaled prediction variance.

• A design is rotatable if the prediction variance Var[ŷ(x)] (or, equivalently, the scaled pre-
diction variance NVar[ŷ(x)]/σ2) is a function only of the distance ρ from the point x =
(x1, x2, . . . , xk) to the center of the design (where ρ2 =

∑
x2i ).

• Thus, with a rotatable design, the prediction variance Var[ŷ(x)] is the same at all points x
that are equidistant from the design center.

• In the earlier two-factor CCD example of deriving the prediction variance, we showed that
the prediction variance was a function only of ρ. Therefore, that CCD is rotatable.

• Consequently, the prediction variance Var[ŷ(x)] is constant on spheres centered at the design
center. This constant variance property is appealing when the experimenter does not initially
know where in the design space the most accurate and precise predictions are needed.

• Note that rotatability does not ensure stable or near-stable predictions throughout the design
region. It only ensures the constant variance property on spheres.

• However, rotatability or near-rotatability is often easy to achieve without sacrificing other
important design properties (such as allowing a test for lack of fit).

Design Moments

• Many properties of experimental designs are quantified by design moments. Given a model
matrix

X =


1 x11 x21 · · · xk1
1 x12 x22 · · · xk2
...

...
...

...
...

1 x1N x2N · · · xkN


The relevant design moments are:

[i] = i = 1, . . . , k

[ii] = i = 1, . . . , k

[ij] = i, j = 1, . . . , k i 6= j

Therefore, for a first-order model design

X′X

N
=


1 [1] [2] [3] · · · [k]

[11] [12] [13] · · · [1k]
[22] [23] · · · [2k]

. . . · · · ...
[kk]
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• For an orthogonal first-order design

X′X

N
=


1 0 0 · · · 0

[11] 0 · · · 0
[22] · · · 0

. . .
...

[kk]


Examples include the 2k, 2k−p, and Plackett-Burman designs.

• An odd moment is any moment for which at least one design variable has an odd power. For
example, [i], [ij], [ijj], [iii] are odd moments. All other moments are called even moments.

• For a second-order model, the model matrix will include columns for the intercept, first-order
term, squared terms, and cross-product terms. Therefore, in addition to the first-order model
moments, the relevant design moments for the second-order model are:

[iii] = i = 1, . . . , k [iiii] = i = 1, . . . , k

[ijk] = i, j, k = 1, . . . , k i, j, k not equal

[ijj] = i, j = 1, . . . , k i 6= j

[iijj] = i, j = 1, . . . , k i 6= j

[iiij] = i, j = 1, . . . , k i 6= j

• For example, when k = 3

X =


1 x11 x21 x31 x211 x221 x231 x11x21 x11x31 x21x31
1 x12 x22 x32 x212 x222 x232 x12x22 x12x32 x22x32
...

...
...

...
...

...
...

...
...

...
1 x1N x2N x3N x21N x22N x23N x1Nx2N x1Nx3N x2Nx3N


and

X′X

N
=



1 [1] [2] [3] [11] [22] [33] [12] [13] [23]
[11] [12] [13] [111] [122] [133] [112] [113] [123]

[22] [23] [112] [222] [233] [122] [123] [223]
[33] [113] [223] [333] [123] [133] [233]

[1111] [1122] [1133] [1112] [1113] [1123]
[2222] [2233] [1222] [1223] [2223]

[3333] [1233] [1333] [2333]
[1122] [1123] [1223]

[1133] [1233]
[2233]
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Moment Matrix Conditions for Rotatability

• A first-order design is rotatable if and only if all odd moments are zero and all even second
order moments are equal. That is, [i] = 0, [ij] = 0, and [ii] = λ2. The quantity λ2 is
determined by the scaling of the design variables.

• For example, a 2k−p design of at least resolution III which uses a ±1 coding is rotatable with
[i] = 0, [ij] = 0, and [ii] = λ2 = 1.0.

The necessary form of X′X/N of a rotatable k-variable second-order design:

X′X

N
=



1 01×k 01×k∗ λ2J
′
k

0k×1 λ2Ik 0k×k∗ 0k×k

0k∗×1 0k∗×k λ4Ik∗ 0k∗×k

λ2Jk 0k×k 0k×k∗ λ4(2Ik + J′kJk)


• Thus, a second-order design is rotatable if and only if

1. All odd moments are zero. 3. [iiii] =
2. [ii] = 4. [iijj] =

where the quantities λ2 and λ4 are determined by the scaling of the design variables.

• Note: Conditions (3) and (4) can be combined into a single condition [iiii]/[iijj] = 3 for i 6= j.
This is what is stated in the Myers, Montgomery, and Anderson-Cook text.

8.5.1 Rotatability and the CCD

• For any central composite design (CCD), all odd moments are zero due to the orthogonality
among the xi, xixj, and x2i columns. Nonorthoganality occurs (i) between the column of ones
and the x2i columns and (ii) between the x2i and x2j columns (i 6= j).

• Therefore, to make a rotatable CCD, we must find the appropriate choice of α so that X′X/N
satisfies the rotatability criterion [iiii]/[iijj] = 3 where [iiii] and [iijj] are the moments
corresponding to the products among the x2i columns.

• For any CCD, [iiii] = F +2α4 and [iijj] = F where F is the number of factorial points. Thus,
for rotatability,

[iiii]

[iijj]
=
F + 2α4

F
= 3

Solving for α yields α = 4
√
F . For a CCD to be rotatable, α = 4

√
F .

• If α =
√
k is used, then at least one center point is required for the CCD. Otherwise, (X′X)−1

does not exist, and hence, Var[ŷ(x)], does not exist.

• If the design region is spherical, the best CCD with k = 3 based on Var[ŷ(x)] throughout the
spherical region uses α =

√
3 (with 3-5 center points). This design is near-rotatable.
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8.5.2 Cuboidal vs Spherical Design Regions

• It is common for the experimenter to specify a minimum and maximum setting on each of the
k design variables. In such cases, the experimental region is a k-dimensional hypercube.

• The CCD with α = 1 corresponds to this situation and is called a face-centered cube
design. It is called a face-centered cube design because the axial points occur at the center
of the faces of the k-dimensional cube (rather than extend the axial points beyond the faces
of the cube (α > 1), as in a spherical region).

• The face-centered cube CCD possesses several desirable features:

– The factorial and axial points are on the boundary of the design region (on the cube).

– The design is symmetric in the experimental region and as a result ‘covers’ or ‘fills in’
the design region is a symmetric fashion.

• The face-centered cube CCD is not rotatable. However, rotatability or near-rotatability is not
an important design property in a cuboidal design region. Rotatability is a property to be
considered for spherical design regions.

• The face-centered cube CCD does not require center points because (X′X)−1 exists. Var[ŷ(x)]
is relatively insensitive to the number of center points. Center points are included for testing
for lack of fit.

• Whether or not a design should contain axial points with α > 1 should depend on whether or
not the axial values are scientifically permissible or feasible.

8.6 Equiradial Designs

• An equiradial set of points consists of a set of points such that all points are equidistant
from the origin.

• An equiradial design is a design which consists of two or more equiradial sets of points.

• Consider a single equiradial set of points of distance ρ from the origin. That is,
k∑

i=1

x2i = ρ2.

Then the column of ones and the columns corresponding to the x21, . . . , x
2
k in the design matrix

are linearly dependent which results in a singular X′X matrix. Specifically, for each row of X,

the sum of the x2i columns = ρ2. Thus, the intercept column of ones = (1/ρ2)
k∑

i=1

x2i making

X less than full column rank (and X′X singular).

• Therefore, a single equiradial set cannot provide a design for fitting a second-order model.

• Inclusion of one or more center points to any single equiradial set of points results in a
nonsingular X′X. Therefore, a second-order model can be fit by a single equiradial set plus
center points.

• Examples of second-order equiradial designs that are rotatable include those designs whose
equiradial sets of points are characterized as being equally spaced points on a circle (k = 2),
a sphere (k = 3), or a hypersphere (k ≥ 4). These points will form the vertices of a regular
polygon, polyhedron, or polytope.

• Rotatable CCDs are equiradial designs.
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