
4 Resampling Methods: The Bootstrap

• Situation: Let x1, x2, . . . , xn be a SRS of size n taken from a distribution that is
unknown. Let θ be a parameter of interest associated with this distribution and let
θ̂ = S(x1, x2, . . . , xn) be a statistic used to estimate θ.

– For example, the sample mean θ̂ = S(x1, x2, . . . , xn) = x is a statistic used to estimate
the true mean.

• Goals: (i) provide a standard error seB(θ̂) estimate for θ̂, (ii) estimate the bias of θ̂, and
(iii) generate a confidence interval for the parameter θ.

• Bootstrap methods are computer-intensive methods of providing these estimates and
depend on bootstrap samples.

• An (independent) bootstrap sample is a SRS of size n taken with replacement from the
data x1, x2, . . . , xn.

• We denote a bootstrap sample as x∗1, x
∗
2, . . . , x

∗
n which consists of members of the original

data set x1, x2, . . . , xn with some members appearing zero times, some appearing only
once, some appearing twice, and so on.

• A bootstrap sample replication of θ̂, denoted θ̂∗, is the value of θ̂ evaluated using the
bootstrap sample x∗1, x

∗
2, . . . , x

∗
n.

• The bootstrap algorithm requires that a large number (B) of bootstrap samples be taken.

The bootstrap sample replication θ̂∗ is then calculated for each of the B bootstrap samples.
We will denote the bth bootstrap replication as θ̂∗(b) for b = 1, 2, . . . , B.

• The notes in this section are based on Efron and Tibshirani (1993) and Manly (2007).

4.1 The Bootstrap Estimate of the Standard Error

• The bootstrap estimate of the standard error of θ̂ is

seB(θ̂) =

√√√√∑B
b=1

[
θ̂∗(b)− θ̂∗(·)

]2
B − 1

(7)

where θ̂∗(·) =

∑B
b=1 θ̂

∗(b)

B
is the sample mean of the B bootstrap replications.

• Note that seB(θ̂) is just the sample standard deviation of the B bootstrap replications.

• The limit of seB(θ̂) as B −→∞ is the ideal bootstrap estimate of the standard error.

• Under most circumstances, as the sample size n increases, the sampling distribution of
θ̂ becomes more normally distributed. Under this assumption, an approximate t-based
bootstrap confidence interval can be generated using seB(θ̂) and a t-distribution:

θ̂ ± t∗ seB(θ̂)

where t∗ has n− 1 degrees of freedom.
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4.2 The Bootstrap Estimate of Bias

• The bias of θ̂ = S(X1, X2, . . . , Xn) as an estimator of θ is defined to be

bias(θ̂) = EF (θ̂) − θ

with the expectation taken with respect to distribution F .

• The bootstrap estimate of the bias of θ̂ as an estimate of θ is calculated by replacing
the distribution F with the empirical cumulative distribution function F̂ . This yields

b̂iasB(θ̂) = θ̂∗(·) − θ̂ where θ̂∗(·) =
1

B

B∑
b=1

θ̂∗(b).

• Then, the bias-corrected estimate of θ is

θ̃B = θ̂ − b̂iasB(θ̂) = 2θ̂ − θ̂∗(·).

• One problem with estimating the bias is that the variance of b̂iasB(θ̂) is often large. Efron
and Tibshirani (1993) recommend using:

1. θ̂ if b̂iasB(θ̂) is small relative to the seB(θ̂).

2. θ̃ if b̂iasB(θ̂) is large relative to the seB(θ̂).

They suggest and justify that if b̂iasB(θ̂) < .25seB(θ̂) then the bias can be ignored (unless
the goal is precise confidence interval estimation using this standard error).

• Manly (2007) suggests that when using bias correction, it is better to center the confi-
dence interval limits using θ̃. This would yield the approximate bias-corrected t-based
confidence interval:

θ̃ ± t∗ seB(θ̂)
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4.3 Introductory Bootstrap Example

• Consider a SRS with n = 10 having y-values 0 1 2 3 4 8 8 9 10 11

• The following output is based on B = 40 bootstrap replications of the sample mean x, the
sample standard deviation s, the sample variance s2, and the sample median.

• The terms in the output are equivalent to the following:

theta(hat) = θ̂ = the sample estimate of a parameter
mean = the sample mean x
s = the sample standard deviation s
variance = the sample variance s2

median = the sample median m

• These statistics are used as estimates of the population parameters µ, σ, σ2, and M .

theta(hat) values for mean, standard deviation, variance, median

mean s variance median
5.6000 4.0332 16.2667 6.0000

The number of bootstrap samples B = 40

The bootstrap samples
8 3 2 0 2 11 11 10 8 2
2 9 9 1 9 1 10 4 11 4
8 9 3 8 2 8 3 9 2 2
10 2 11 9 4 8 2 8 3 9
2 8 3 9 8 2 1 8 9 9
10 10 2 11 4 8 8 3 2 3
10 8 0 8 9 10 9 1 1 10
3 10 8 3 2 3 11 9 3 10
10 1 10 8 1 9 10 0 3 8
3 3 3 4 3 0 1 11 11 4
2 3 8 2 10 1 4 8 8 2
2 10 1 3 2 0 10 3 8 4
8 2 11 11 1 9 11 3 8 4
9 11 10 2 8 1 9 10 9 9
8 4 8 4 0 1 3 1 9 11
4 9 8 0 10 10 4 1 8 8
9 11 8 10 3 0 8 10 2 4
8 11 0 3 2 10 1 4 8 8
8 8 3 4 8 0 3 10 11 2
2 1 8 0 2 3 11 11 9 8
2 11 4 2 8 8 8 0 1 10
4 2 0 4 11 0 0 9 1 10
10 2 4 1 4 3 3 10 3 2
1 8 1 8 4 8 3 0 9 10
8 3 9 1 1 8 10 3 10 0
8 11 8 2 1 2 0 11 3 11
0 8 3 8 10 10 8 1 8 9
2 0 3 3 9 11 2 11 3 11
11 1 0 10 9 9 8 2 11 1
2 8 10 1 11 4 8 4 3 2
10 9 1 0 3 2 2 0 2 10
2 8 11 3 0 4 4 4 3 3
3 0 8 2 4 8 1 3 10 4
10 9 8 10 8 10 0 0 11 8
8 11 1 3 3 11 3 0 10 8
8 3 1 4 8 3 8 9 1 1
0 9 11 2 4 10 2 8 10 4
8 11 0 8 0 8 1 3 0 2
9 9 8 11 10 2 11 11 9 1
1 11 11 11 3 0 0 3 0 9

Next, we calculate the sample mean, sample standard deviation, sample variance, and sample

median for each of the bootstrap samples. These represent θ̂∗b values.
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The column labels below represent bootstrap labels for four different θ̂∗b cases:
mean = a bootstrap sample mean x∗b
std dev = a bootstrap sample standard deviation s∗b
variance = a bootstrap sample variance s2∗b
median = a bootstrap sample median m∗

b

Bootstrap replications: theta(hat)^*_b
mean std dev variance median

5.7000 4.2960 18.4556 5.5000
6.0000 3.9721 15.7778 6.5000
5.4000 3.2042 10.2667 5.5000
6.6000 3.4705 12.0444 8.0000
5.9000 3.4140 11.6556 8.0000
6.1000 3.6347 13.2111 6.0000
6.6000 4.1687 17.3778 8.5000
6.2000 3.6757 13.5111 5.5000
6.0000 4.2164 17.7778 8.0000
4.3000 3.7431 14.0111 3.0000
4.8000 3.3267 11.0667 3.5000
4.3000 3.6833 13.5667 3.0000
6.8000 3.9384 15.5111 8.0000
7.8000 3.4254 11.7333 9.0000
4.9000 3.8427 14.7667 4.0000
6.2000 3.6757 13.5111 8.0000
6.5000 3.8944 15.1667 8.0000
5.5000 3.9511 15.6111 6.0000
5.7000 3.7431 14.0111 6.0000
5.5000 4.3012 18.5000 5.5000
5.4000 4.0332 16.2667 6.0000
4.1000 4.3576 18.9889 3.0000
4.2000 3.1903 10.1778 3.0000
5.2000 3.7947 14.4000 6.0000
5.3000 4.0565 16.4556 5.5000
5.7000 4.5228 20.4556 5.5000
6.5000 3.7193 13.8333 8.0000
5.5000 4.4284 19.6111 3.0000
6.2000 4.5898 21.0667 8.5000
5.3000 3.6225 13.1222 4.0000
3.9000 4.0947 16.7667 2.0000
4.2000 3.1198 9.7333 3.5000
4.3000 3.3015 10.9000 3.5000
7.4000 4.0332 16.2667 8.5000
5.8000 4.2374 17.9556 5.5000
4.6000 3.3066 10.9333 3.5000
6.0000 4.0277 16.2222 6.0000
4.1000 4.2019 17.6556 2.5000
8.1000 3.6347 13.2111 9.0000
4.9000 4.9766 24.7667 3.0000

Take the mean of each column (θ̂∗(·)) yielding x∗(·), s
∗
(·), s

2∗
(·), and m∗

(·).

Mean of the B bootstrap replications: theta(hat)^*_(.)
mean s variance median

5.5875 3.8707 15.1581 5.6250

Take the standard deviation of each column (seB(θ̂)) yielding seB(x∗), seB(s∗), seB(s2∗), and seB(m∗).

Bootstrap standard error: s.e._B(theta(hat))
mean s variance median

1.0229 0.4248 3.3422 2.1266

Finally, calculate the estimates of bias B̂iasB(θ̂) = θ̂∗(·) − θ̂ for the four cases.

Bootstrap bias estimate: bias(hat)_B(theta(hat))
mean s variance median

-0.0125 -0.1625 -1.1086 -0.3750
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4.4 Bootstrap Confidence Intervals

• Several methods for generating confidence intervals based on the bootstrap replications
will now be presented.

4.4.1 Bootstrap CIs Assuming Approximate Normality

• An approximate 100(1− α)% confidence interval for θ is

θ̂ ± t∗seB(θ̂) or θ̂ ± z∗seB(θ̂) (8)

where t∗ is the upper α/2 critical value from a t-distribution having n − 1 degrees of
freedom and z∗ is the upper α/2 critical value from a standard normal (z) distribution.

• For an approximate 90%, 95%, or 99% confidence intervals for θ to be useful, we would
expect that approximately 90%, 95%, or 99% of confidence intervals generated using this
method will contain θ.

• If the n is not large enough and the distribution sampled from is highly skewed (or, in
general, is not close in shape to a normal distribution), then the confidence interval given
in (8) will not be very reliable. That is, the nominal (stated) confidence level is not close
to the true (actual) confidence level.

4.4.2 Confidence Intervals Using Bootstrap Percentiles

• If the sample size is relatively small or it is suspected that the sampling distribution of θ̂ is
skewed or non-normal, we want an alternative to (8) for generating a confidence interval.

• The simplest alternative is to use percentiles of the B bootstrap replications of θ̂∗.

• The reliability of the percentile confidence interval method depends on one assumption. It
is assumed that there exists a monotonic increasing function f such that the transformed
values f(θ̂) are normally distributed with mean f(θ) and standard deviation 1.

• Thus, with probability 1− α, the following statement is true:

f(θ) − zα/2 < f(θ̂) < f(θ) + zα/2.

After rearranging the terms we have:

f(θ̂) − zα/2 < f(θ) < f(θ̂) + zα/2 (9)

• If the transformation f was known, then by applying a back-transformation f−1 to the
confidence limits for f(θ) in (9), we have the confidence limits for θ.

• It is not necessary, however, to know the form of the function f . We only need to assume
its existence. Because of the assumption that f is a monotonic and increasing function,
then the ordering of the B transformed bootstrap estimates from smallest to largest must
correspond to the ordering of the original B untransformed bootstrap replicates θ̂∗(b) from
smallest to largest.

• Thus, the confidence limits for f(θ) in (9) are those values that exceed the α/2 percentiles
in the left and right tails of the distribution of the B bootstrap replicates.
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• That is, the approximate bootstrap percentile-based confidence interval for θ is

θ̂∗L < θ < θ̂∗U (10)

where θ̂∗L and θ̂∗U are the lower α/2 and upper (1 − α/2) percentiles of the B bootstrap

replications θ̂∗, respectively. Practically, to find θ̂∗L and θ̂∗U you

1. Order the B bootstrap replications θ̂∗(1), θ̂∗(2), . . . , θ̂∗(B) from smallest to largest.

2. Calculate L = B ∗ α/2 and U = B ∗ (1− α/2) + 1.

3. Find the Lth and U th values in the ordered list of bootstrap replications.

4. The Lth value is the lower confidence interval endpoint θ̂∗L and the U th value is the

upper confidence interval endpoint θ̂∗U .

• There are improvements and corrections that can be applied to the percentile method
when we do not believe the transformation f exists. We will consider two bias-corrected
alternatives later in this section.

Bootstrapping Example: The Manly (2007) Data Set

The Data
3.56 0.69 0.10 1.84 3.93 1.25 0.18 1.13 0.27 0.50
0.67 0.01 0.61 0.82 1.70 0.39 0.11 1.20 1.21 0.72

theta(hat) values for xbar, s, s^2, s(with denominator n), median
mean s variance median

1.0445 1.0597 1.1229 0.7050

The number of bootstrap samples B = 10000

Mean of the B bootstrap replications: theta(hat)^*_(.)
mean s variance median

1.0499 1.0066 1.0759 0.7738

Bootstrap standard error: s.e._B(theta(hat))
mean s variance median

0.2323 0.2504 0.4845 0.2014

Bootstrap bias estimate: bias(hat)_B(theta(hat))
mean s variance median

0.0054 -0.0531 -0.0470 0.0688
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-----------------------------------------------------------------
z-BASED CONFIDENCE INTERVALS
-----------------------------------------------------------------
95% confidence intervals -- z-based

mean s variance median
0.5892 0.5690 0.1732 0.3103 <-- lower endpoint
1.4998 1.5504 2.0726 1.0997 <-- upper endpoint

Bias-adjusted confidence intervals -- z-based
mean s variance median

0.5838 0.6221 0.2202 0.2415 <-- lower endpoint
1.4944 1.6035 2.1196 1.0308 <-- upper endpoint

-----------------------------------------------------------------
t-BASED CONFIDENCE INTERVALS
-----------------------------------------------------------------
95% confidence intervals -- t-based

mean s variance median
0.5583 0.5357 0.1088 0.2835 <-- lower endpoint
1.5307 1.5837 2.1371 1.1265 <-- upper endpoint

Bias-adjusted confidence intervals -- t-based
mean s variance median

0.5529 0.5888 0.1558 0.2147 <-- lower endpoint
1.5253 1.6368 2.1841 1.0576 <-- upper endpoint

-----------------------------------------------------------------
PERCENTILE CONFIDENCE INTERVALS
-----------------------------------------------------------------
95% percentile-based confidence intervals

mean s variance median
0.6920 0.5135 0.2637 0.5000 <-- lower endpoint
1.4535 1.3812 1.9077 1.2000 <-- upper endpoint

-----------------------------------------------------------------
BIAS CORRECTED CONFIDENCE INTERVALS (see Section 4.4.4)
-----------------------------------------------------------------

95% bias-corrected percentile-based confidence intervals
mean s variance median

0.6450 0.4994 0.2494 0.4450 <-- lower endpoint
1.5575 1.4606 2.1334 1.2100 <-- upper endpoint

---------------------------------------------------------------------
ACCELERATED BIAS CORRECTED CONFIDENCE INTERVALS (see Section 4.4.5)
---------------------------------------------------------------------

95% accelerated bias-corrected confidence intervals
mean s variance median

0.6975 0.5308 0.2817 0.5000 <-- lower endpoint
1.6560 1.5024 2.2573 1.2300 <-- upper endpoint
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4.4.3 Bootstrap examples in R

• The ‘bootstrap’ package in R will generate bootstrap standard errors and estimates of
bias.

• The ‘bootstrap’ R command will generate the bootstrap replications of a statistic and
output the estimate, the standard error, and an estimate of bias.

• The ‘boot.ci’ R command will generate confidence intervals for the parameter of interest.
I will consider three common bootstrap confidence intervals:

1. The percentile bootstrap confidence intervals. These are generated by the
procedure described in the notes.

2. The normal confidence intervals. These intervals have the form

θ̃ ± z∗ s.e.boot(θ̂)

which is the traditional z-based normal confidence interval except we add and subtract
the margin of error about the bias-corrected estimate θ̃.

3. The bias-corrected confidence interval. These are percentile-based confidence
intervals adjusted for the bias. That is, the endpoints of the intervals have bias
adjustments.

• If you want a t-based confidence interval (which I recommend over a z-based interval),
there are two possibilities:

θ̂ ± t∗ s.e.boot(θ̂) and θ̃ ± t∗ s.e.boot(θ̂)

If the estimate of bias is small relative to the standard error, use the interval centered at

θ̂. Otherwise, use the interval centered at the bias-corrected estimate θ̃.

R code for Bootstrapping the Mean – symmetry present

library(boot)
y <- c(1,2.1,3.2,3.7,4.0,4.1,4.5,5.1,5.6,5.7,6.2,6.3,6.9,7.2,7.4,8.1,8.6)
y
n <- length(y)
n
thetahat = mean(y)
thetahat
Brep = 10000

# Bootstrap the sample mean
sampmean <- function(y,i) mean(y[i])

bootmean <- boot(data=y,statistic=sampmean,R=Brep)
bootmean
boot.ci(bootmean,conf=.95,type=c("norm"))
boot.ci(bootmean,conf=.95,type=c("perc"))
boot.ci(bootmean,conf=.95,type=c("bca"))

par(mfrow=c(2,1))

hist(bootmean$t,main="Bootstrap Sample Means")
plot(ecdf(bootmean$t),main="Empirical CDF of Bootstrap Means")
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Bootstrap Sample Means
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R output for Bootstrapping the Mean – symmetry present

[1] 1.0 2.1 3.2 3.7 4.0 4.1 4.5 5.1 5.6 5.7 6.2 6.3 6.9 7.2 7.4 8.1 8.6
[1] 17
> thetahat
[1] 5.276471

> # Bootstrap the sample mean

ORDINARY NONPARAMETRIC BOOTSTRAP

Bootstrap Statistics :
original bias std. error

t1* 5.276471 -0.008028824 0.5053402

BOOTSTRAP CONFIDENCE INTERVAL CALCULATIONS
Based on 10000 bootstrap replicates

Intervals :
Level Normal
95% ( 4.294, 6.275 )
Calculations and Intervals on Original Scale

Intervals :
Level Percentile
95% ( 4.259, 6.229 )
Calculations and Intervals on Original Scale
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Intervals :
Level BCa
95% ( 4.245, 6.212 )
Calculations and Intervals on Original Scale

R code for Bootstrapping the Mean – skewness present

library(boot)
y <- c(2,2,1,4,1,0,5,3,1,6,0,0,3,1,3,0,3,0,2,20,0,2,3,1,25)
y
n <- length(y)
n
thetahat = mean(y)
thetahat
Brep = 10000

# Bootstrap the sample mean
sampmean <- function(y,i) mean(y[i])

bootmean <- boot(data=y,statistic=sampmean,R=Brep)
bootmean
boot.ci(bootmean,conf=.95,type=c("norm"))
boot.ci(bootmean,conf=.95,type=c("perc"))
boot.ci(bootmean,conf=.95,type=c("bca"))

par(mfrow=c(2,1))

hist(bootmean$t,main="Bootstrap Sample Means")
plot(ecdf(bootmean$t),main="Empirical CDF of Bootstrap Means")

R output for Bootstrapping the Mean – skewness present

[1] 2 2 1 4 1 0 5 3 1 6 0 0 3 1 3 0 3 0 2 20 0 2 3 1 25
[1] 25
> thetahat
[1] 3.52

> # Bootstrap the sample mean

ORDINARY NONPARAMETRIC BOOTSTRAP

Bootstrap Statistics :
original bias std. error

t1* 3.52 -0.006596 1.188251

BOOTSTRAP CONFIDENCE INTERVAL CALCULATIONS
Based on 10000 bootstrap replicates
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Intervals :
Level Normal
95% ( 1.198, 5.856 )
Calculations and Intervals on Original Scale

BOOTSTRAP CONFIDENCE INTERVAL CALCULATIONS
Based on 10000 bootstrap replicates

Intervals :
Level Percentile
95% ( 1.56, 6.16 )
Calculations and Intervals on Original Scale

BOOTSTRAP CONFIDENCE INTERVAL CALCULATIONS
Based on 10000 bootstrap replicates

Intervals :
Level BCa
95% ( 1.84, 7.18 )
Calculations and Intervals on Original Scale
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4.4.4 Bias-Corrected Percentile Confidence Intervals

• One problem with using the bootstrap percentile method occurs when the assumption
regarding the transformation to normality is not true.

• In this case, a confidence interval based on using the percentile method would not be ap-
propriate. That is, the nominal (stated) confidence level is not close to the true confidence
level.

• If the transformation f did exist, it is a monotonic increasing function f such that the
transformed values f(θ̂) are normally distributed with mean f(θ) and standard deviation

1. That is, f(θ̂) ∼ N( f(θ), 1). This implies that

Pr
{
f(θ̂) > f(θ)

}
= P(θ̂ > θ) = 0.5.

The probabilities are equal because the transformation is monotonic and increasing.

• Therefore, if such a transformation f exists we would expect that 50% of the bootstrap
replications (θ̂∗(b), b = 1, 2, . . . , B) would be greater that θ̂. However, if the percentage is
much higher or lower than 50%, we should consider removing bias.

• In other words, if B is large enough to adequately represent the distribution of the boot-
strap replications, and the median of the bootstrap replications is not close to θ̂, it may
be necessary to modify the percentile bootstrap methods by adjusting for bias.

• To construct a bias-corrected confidence interval for θ, we relax the assumptions about the
transformation f to be the following. We assume that a monotonic increasing function f
exists for transforming θ̂ such that the distribution of f(θ̂) is normally distributed with

mean f(θ)−z0 and standard deviation 1. That is, f(θ̂) ∼ N( f(θ)−z0, 1), or, equivalently,

(f(θ̂)− f(θ) + z0) ∼ N(0, 1).

• This implies that P (−zα/2 < f(θ̂)− f(θ) + z0 < zα/2) = 1− α.

• Reordering of the terms yields the desired confidence interval for f(θ):

f(θ̂) + z0 − zα/2 < f(θ) < f(θ̂) + z0 + zα/2. (11)

• By applying the inverse transformation f−1 to the confidence limits gives the confidence
limits for θ. To apply this method we will need to estimate the constant z0.

• Note that for any value t, we have

Pr{f(θ̂) > t} = Pr{f(θ̂)− f(θ) + z0 > t− f(θ) + z0}
= Pr{Z > t− f(θ) + z0}

where Z ∼ N(0, 1). If we set t = f(θ), then

Pr{f(θ̂) > f(θ)} = Pr{Z > z0}. (12)
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• Because f is monotonic and increasing, it follows from (12) that

Pr{θ̂ > θ} = Pr{Z > z0}.

Then, we assume that Pr{θ̂ > θ} can be estimated by p, the proportion of bootstrap

replications θ̂∗(b) that are greater than θ̂. Thus, z0 ≈ zp where zp is the value from from
the N(0, 1) distribution having right-tail probability p.

• We now use zp, the estimate of z0, in (11) to find the value of pU where

pU = Pr{f(θ̂∗) < f(θ̂) + z0 + zα/2}
= Pr{f(θ̂∗)− f(θ̂) + z0 < f(θ̂) + z0 + zα/2 − f(θ̂) + z0}
= Pr{Z < 2z0 + zα/2}

with Z ∼ N(0, 1). This implies that the bootstrap upper confidence limit for f(θ) is the

first bootstrap replication that is larger than pU of the bootstrap replications f(θ̂∗). Recall:
because the function f is unknown, we do not actually know the values of the transformed
bootstrap replications f(θ̂∗). We only know that they exist.

• Then, once again we apply the assumption that f is monotonic and increasing, to find the
bias-corrected upper confidence limit for θ. That is, find that θ̂∗(b) value such that
it is the first bootstrap replication that is larger than pU of the B bootstrap
replications θ̂∗.

• Similarly, we use zp to find the value of pL where

pL = Pr{f(θ̂∗) < f(θ̂) + z0 − zα/2}
= Pr{f(θ̂∗)− f(θ̂) + z0 < f(θ̂) + z0 − zα/2 − f(θ̂) + z0}
= Pr{Z < 2z0 − zα/2}

Thus, pL is the proportion of bootstrap replications θ̂∗(b) that are less than θ̂. To find

the bias-corrected lower confidence limit for θ, find that θ̂∗(b) such that it is the last

bootstrap replication that is smaller than pL of the B bootstrap replications θ̂∗.

• Therefore, the bias-corrected percentile confidence limit can be written as

INVCDF{Φ(2z0 − zα/2)} and INVCDF{Φ(2z0 + zα/2)}

where Φ is the standard normal CDF function and INVCDF is the inverse CDF of the
empirical distribution of the B bootstrap replications θ̂∗(b), b = 1, 2, . . . , B.

4.4.5 Accelerated Bias-Corrected Percentile Confidence Intervals

• An alternative to a bias-corrected percentile confidence interval is the accelerated bias-
corrected percentile confidence interval.

• The assumptions for the accelerated bias-corrected approach are less restrictive than the
assumptions for the basic bias-corrected approach. We assume that a transformation
f(θ̂) of the estimator θ̂ exists such that the distribution of f(θ̂) is normal with mean

f(θ)− z0(1 +Af(θ)) and standard deviation 1 +Af(θ). That is, f(θ̂) ∼ N( f(θ)− z0(1 +
Af(θ)), 1 + Af(θ)) where z0 and A are constants.
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• Including the constant A allows for the standard deviation to vary linearly with f(θ). This
additional flexibility will allow us to correct for this form of non-constant variance if it
exists.

• Note: When A = 0, we are using the bias-corrected percentile approach.

• Standardizing f(θ̂) by subtracting its mean and then dividing by its standard deviation
implies

Pr

{
−zα/2 <

f(θ̂)− f(θ) + z0(1 + Af(θ))

1 + Af(θ)
< zα/2

}
= Pr(−zα/2 < Z < zα/2) = 1− α

where Z ∼ N(0, 1). This probability statement can be rewritten as

Pr

[
f(θ̂) + z0 − zα/2
1− A(z0 − zα/2)

< f(θ) <
f(θ̂) + z0 + zα/2
1− A(z0 + zα/2)

]
= 1− α (13)

or, more simply as
Pr(L < f(θ) < U) = 1− α

where L and U are the endpoints in (13).

• Let f(θ̂∗) denote a transformed bootstrap replicate. To approximate the lower limit L of

f(θ) using bootstrapping, we assume that the bootstrap distribution of f(θ̂∗) approximates

the distribution of f(θ̂) which is f(θ̂∗) ∼ N( f(θ)− z0(1 + Af(θ)), 1 + Af(θ)).

• Therefore, we replace f(θ) in (13) with f(θ̂∗). The approximation is L∗ where

Pr
[
f(θ̂∗) < L∗

]
= Pr

[
f(θ̂∗) <

f(θ̂) + z0 − zα/2
1− A(z0 − zat)

]

• After standardizing, we get

Pr
[
f(θ̂∗) < L∗

]
= Pr

[
f(θ̂∗)− f(θ̂)

1 + Af(θ̂)
+ z0 <

z0 − zα/2
1− A(z0 − zα/2)

+ z0

]
(14)

= Pr

[
Z <

z0 − zα/2
1− A(z0 − zα/2)

+ z0

]
where Z ∼ N(0, 1).

• Equation (14) means that the probability of a transformed bootstrap replication f(θ̂∗) is
less than the lower confidence limit for f(θ) equals the probability that a standard normal
random variable is less than

z∗L =
z0 − zα/2

1− A(z0 − zα/2)
+ z0

• Therefore, the lower confidence limit can be estimated by taking the value of the bootstrap
distribution of f(θ̂∗) that is just greater than a fraction Φ(z∗L). Although the form of
transformation f is unknown, this is not a problem for finding the lower confidence limit
of θ.
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• Because of the assumption that f is monotonic and increasing, the lower confidence limit
for θ is just the value of the bootstrap distribution of θ̂∗ that is just greater than a fraction
Φ(z∗L).

• Using the same argument we can approximate the upper confidence limit for θ. That is,
the upper confidence limit for θ is just the value of the bootstrap distribution of θ̂∗ that
is just greater than a fraction Φ(z∗U) where

z∗U =
z0 + zα/2

1− A(z0 + zα/2)
+ z0

• Therefore, the approximate 100(1 − α)% accelerated bias-corrected bootstrap confidence
interval for θ is

INVCDF{Φ(zL)} < θ < INVCDF{Φ(zU)} (15)

where INVCDF is the inverse of the empirical CDF of the bootstrap replications θ̂∗(b) for
b = 1, 2, . . . , B.

• The remaining problem is how to estimate the constants z0 and A.

• z0 can be estimated from the empirical CDF of the bootstrap replications θ̂∗ by continuing
to assume f(θ̂∗) ∼ N( f(θ)− z0(1 + Af(θ)), 1 + Af(θ)). Then

Pr
[
f(θ̂∗) > f(θ̂)

]
= Pr

[
f(θ̂∗)− f(θ̂)

1 + Af(θ̂)
+ z0 > z0

]
= Pr [Z > z0]

where Z ∼ N(0, 1). Because f is assumed to be monotonic and increasing it also holds
that

Pr
[
θ̂∗ > θ̂

]
= Pr [Z > z0]

• Let p be the proportion of values in the bootstrap distribution of θ̂∗ that are greater than
θ̂. Then z0 can be estimated as z0 = zp where zp is the value such that

1− Φ(zp) = p

This is the same as the value derived for the bias-corrected percentile method.

• The final problem is estimation of the constant A. Unfortunately, A cannot be simply
derived using probability statements like we did for z0. Efron and Tibshirani (1993)
recommend the following which uses jackknife replications.

• Let θ̂(i) be the ith jackknife replication of ith and θ̂(·) be the mean of the n jackknife
replications. Then a, the estimated value of A, is

a =

∑n
i=1

(
θ̂(·) − θ̂(i)

)3
6

[∑n
i=1

(
θ̂(·) − θ̂(i)

)2]1.5
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Table 4.1: Law School data in Efron and Tibshirani (1993)

school LSAT GPA school LSAT GPA school LSAT GPA school LSAT GPA

1 622 3.23 22 614 3.19 43 573 2.85 63 572 3.08
2 542 2.83 23 628 3.03 44 644 3.38 64 610 3.13
3 579 3.24 24 575 3.01 (45) 545 2.76 65 562 3.01

(4) 653 3.12 25 662 3.39 46 645 3.27 66 635 3.30
5 606 3.09 26 627 3.41 (47) 651 3.36 67 614 3.15

(6) 576 3.39 27 608 3.04 48 562 3.19 68 546 2.82
7 620 3.10 28 632 3.29 49 609 3.17 69 598 3.20
8 615 3.40 29 587 3.16 (50) 555 3.00 (70) 666 3.44
9 553 2.97 30 581 3.17 51 586 3.11 71 570 3.01
10 607 2.91 (31) 605 3.13 (52) 580 3.07 72 570 2.92
11 558 3.11 32 704 3.36 (53) 594 2.96 73 605 3.45
12 596 3.24 33 477 2.57 54 594 3.05 74 565 3.15

(13) 635 3.30 34 591 3.02 55 560 2.93 75 686 3.50
14 581 3.22 (35) 578 3.03 56 641 3.28 76 608 3.16

(15) 661 3.43 (36) 572 2.88 57 512 3.01 77 595 3.19
16 547 2.91 37 615 3.37 58 631 3.21 78 590 3.15
17 599 3.23 38 606 3.20 59 597 3.32 (79) 558 2.81
18 646 3.47 39 603 3.23 60 621 3.24 80 611 3.16
19 622 3.15 40 535 2.98 61 617 3.03 81 564 3.02
20 611 3.33 41 595 3.11 62 637 3.33 (82) 575 2.74
21 546 2.99 42 575 2.92

Sampled schools have bold-faced school numbers.

Figure 4.1
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Example: Bootstrapping a correlation coefficient ρ

• Reconsider the law school data in Table 4.1 and Figure 4.1 on the previous page.

• ρ̂ = r = Pearson correlation coefficient

• ξ̂ =
1

2
ln

(
1 + r

1− r

)
= transformed Pearson correlation coefficient

• We will use R to generate bootstrap estimates of ρ and ξ for the law school data given on the
previous page.

R output for Bootstrapping r and ξ̂

> # Bootstrap the Pearson correlation coefficient

ORDINARY NONPARAMETRIC BOOTSTRAP

Bootstrap Statistics :

original bias std. error
t1* 0.7763745 -0.006956509 0.1324587

BOOTSTRAP CONFIDENCE INTERVAL CALCULATIONS
Based on 10000 bootstrap replicates

Intervals :
Level Normal Basic
95% ( 0.5237, 1.0429 ) ( 0.5914, 1.0887 )

Level Percentile BCa
95% ( 0.4641, 0.9613 ) ( 0.3369, 0.9403 )

> # Bootstrap the transformed Pearson correlation coefficient

ORDINARY NONPARAMETRIC BOOTSTRAP

Bootstrap Statistics :

original bias std. error
t1* 1.036178 0.08097614 0.3794925

BOOTSTRAP CONFIDENCE INTERVAL CALCULATIONS
Based on 10000 bootstrap replicates

Intervals :
Level Normal Basic
95% ( 0.211, 1.699 ) ( 0.105, 1.565 )

Level Percentile BCa
95% ( 0.507, 1.967 ) ( 0.356, 1.759 )
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R code for Bootstrapping r and ξ̂

library(boot)

LSAT <- c(576,635,558,578,666,580,555,661,651,605,653,575,545,572,594)
GPA <- c(3.39,3.30,2.81,3.03,3.44,3.07,3.00,3.43,3.36,3.13,3.12,2.74,
2.76,2.88,2.96)

n = length(LSAT)
Brep = 10000

xy <- data.frame(cbind(LSAT,GPA))

# Bootstrap the Pearson correlation coefficient

pearson <- function(d,i=c(1:n)){
d2 <- d[i,]
return(cor(d2$LSAT,d2$GPA))

}
bootcorr <- boot(data=xy,statistic=pearson,R=Brep)
bootcorr
boot.ci(bootcorr,conf=.95)

windows()
par(mfrow=c(2,1))
hist(bootcorr$t,main="Bootstrap Pearson Sample Correlation Coefficients")
plot(ecdf(bootcorr$t),main="ECDF of Bootstrap Correlation Coefficients")

# Bootstrap the transformed Pearson correlation coefficient

xihat <- function(dd,i=c(1:n)){
dd2 <- dd[i,]
return(.5*log((1+cor(dd2$LSAT,dd2$GPA))/(1-cor(dd2$LSAT,dd2$GPA))))

}
bootxi <- boot(data=xy,statistic=xihat,R=Brep)
bootxi
boot.ci(bootxi,conf=.95)

windows()
par(mfrow=c(2,1))
hist(bootxi$t,main="Bootstrap Transformed Correlation Coefficients")
plot(ecdf(bootxi$t),main="ECDF of Bootstrap Transformed Correlation
Coefficients")

Here are histograms and ECDF plots of 10000 bootstrap replications of r and ξ̂.
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Bootstrap Pearson Sample Correlation Coefficients
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Bootstrap Transformed Correlation Coefficients

bootxi$t
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