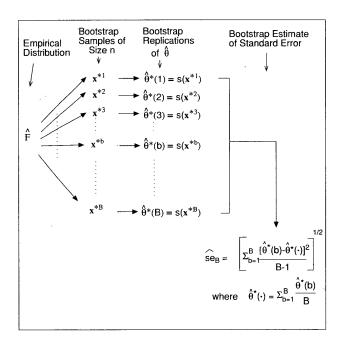
4 Resampling Methods: The Bootstrap

- <u>Situation</u>: Let x_1, x_2, \ldots, x_n be a SRS of size *n* taken from a distribution that is unknown. Let θ be a parameter of interest associated with this distribution and let $\hat{\theta} = S(x_1, x_2, \ldots, x_n)$ be a statistic used to estimate θ .
 - For example, the sample mean $\hat{\theta} = S(x_1, x_2, \dots, x_n) = \overline{x}$ is a statistic used to estimate the true mean.
- <u>Goals</u>: (i) provide a standard error $\operatorname{se}_B(\widehat{\theta})$ estimate for $\widehat{\theta}$, (ii) estimate the bias of $\widehat{\theta}$, and (iii) generate a confidence interval for the parameter θ .
- **Bootstrap methods** are computer-intensive methods of providing these estimates and depend on *bootstrap samples*.
- An (independent) **bootstrap sample** is a SRS of size n taken with replacement from the data x_1, x_2, \ldots, x_n .
- We denote a bootstrap sample as $x_1^*, x_2^*, \ldots, x_n^*$ which consists of members of the original data set x_1, x_2, \ldots, x_n with some members appearing zero times, some appearing only once, some appearing twice, and so on.
- A bootstrap sample replication of $\hat{\theta}$, denoted $\hat{\theta}^*$, is the value of $\hat{\theta}$ evaluated using the bootstrap sample $x_1^*, x_2^*, \ldots, x_n^*$.
- The bootstrap algorithm requires that a large number (B) of bootstrap samples be taken. The bootstrap sample replication $\hat{\theta}^*$ is then calculated for each of the *B* bootstrap samples. We will denote the **b**th **bootstrap replication** as $\hat{\theta}^*(b)$ for b = 1, 2, ..., B.
- The notes in this section are based on Efron and Tibshirani (1993) and Manly (2007).

4.1 The Bootstrap Estimate of the Standard Error

• The bootstrap estimate of the standard error of $\hat{\theta}$ is


$$\operatorname{se}_{B}(\widehat{\theta}) = \sqrt{\frac{\sum_{b=1}^{B} \left[\widehat{\theta}^{*}(b) - \widehat{\theta}^{*}(\cdot)\right]^{2}}{B-1}}$$
(7)

where $\hat{\theta}^*(\cdot) = \frac{\sum_{b=1}^B \hat{\theta}^*(b)}{B}$ is the sample mean of the *B* bootstrap replications.

- Note that $\operatorname{se}_B(\widehat{\theta})$ is just the sample standard deviation of the *B* bootstrap replications.
- The limit of $\operatorname{se}_B(\widehat{\theta})$ as $B \longrightarrow \infty$ is the ideal bootstrap estimate of the standard error.
- Under most circumstances, as the sample size n increases, the sampling distribution of $\hat{\theta}$ becomes more normally distributed. Under this assumption, an approximate *t*-based bootstrap confidence interval can be generated using se_B($\hat{\theta}$) and a *t*-distribution:

$$\widehat{\theta} \pm t^* \operatorname{se}_B(\widehat{\theta})$$

where t^* has n-1 degrees of freedom.

4.2 The Bootstrap Estimate of Bias

• The bias of $\hat{\theta} = S(X_1, X_2, \dots, X_n)$ as an estimator of θ is defined to be

$$\operatorname{bias}(\widehat{\theta}) = E_F(\widehat{\theta}) - \theta$$

with the expectation taken with respect to distribution F.

• The **bootstrap estimate of the bias of** $\hat{\theta}$ as an estimate of θ is calculated by replacing the distribution F with the empirical cumulative distribution function \hat{F} . This yields

$$\widehat{\text{bias}}_B(\widehat{\theta}) = \widehat{\theta}^*(\cdot) - \widehat{\theta} \quad \text{where } \widehat{\theta}^*(\cdot) = \frac{1}{B} \sum_{b=1}^B \widehat{\theta}^*(b).$$

• Then, the **bias-corrected estimate** of θ is

$$\widetilde{\theta}_B = \widehat{\theta} - \widehat{\operatorname{bias}}_B(\widehat{\theta}) = 2\widehat{\theta} - \widehat{\theta}^*(\cdot).$$

- One problem with estimating the bias is that the variance of $\widehat{\text{bias}}_B(\widehat{\theta})$ is often large. Efron and Tibshirani (1993) recommend using:
 - 1. $\widehat{\theta}$ if $\widehat{\text{bias}}_B(\widehat{\theta})$ is small relative to the $\operatorname{se}_B(\widehat{\theta})$.
 - 2. $\hat{\theta}$ if $\widehat{\text{bias}}_B(\hat{\theta})$ is large relative to the $\operatorname{se}_B(\hat{\theta})$.

They suggest and justify that if $\widehat{\text{bias}}_B(\widehat{\theta}) < .25 \text{se}_B(\widehat{\theta})$ then the bias can be ignored (unless the goal is precise confidence interval estimation using this standard error).

Manly (2007) suggests that when using bias correction, it is better to center the confidence interval limits using θ̃. This would yield the approximate bias-corrected t-based confidence interval:

$$\tilde{\theta} \pm t^* \operatorname{se}_B(\tilde{\theta})$$

4.3 Introductory Bootstrap Example

- Consider a SRS with n = 10 having y-values 0 1 2 3 4 8 8 9 10 11
- The following output is based on B = 40 bootstrap replications of the sample mean \overline{x} , the sample standard deviation s, the sample variance s^2 , and the sample median.
- The terms in the output are equivalent to the following:

theta(hat)	$= \hat{\theta} = $ the sample estimate of a parameter
mean	= the sample mean \overline{x}
S	= the sample standard deviation s
variance	= the sample variance s^2
median	= the sample median m

• These statistics are used as estimates of the population parameters μ , σ , σ^2 , and M.

theta(hat) values for mean, standard deviation, variance, median

mean	S	variance	median
5.6000	4.0332	16.2667	6.0000

The number of bootstrap samples B = 40

The bootstrap samples

8 3 2 0 2 11 11 10 4 11 8 9 3 8 2 8 3 9 2 10 2 11 9 4 8 2 8 3 2 8 3 9 8 2 1 8 9 10 10 2 11 4 8 8 3 2 10 8 0 8 9 10 9 1 1 3 10 8 3 2 3 11 9 3 10 8 3 2 3 11 11 2 3 8 2 10 1 4 8 2 10 1 4 8 8 8 2 10 1 4 8 8 8 2 11 11 11 11 2 3 11 11 11 11 2 3 11 11 11 11 2 11 10 3 2 10 1 4 8 0 10 10 4 1 8 11 0 3 2 10 11 2 11 4 2 3 11 11 2 11 4 3 3 10 11 4 2 3 11 11 11 </th
$\begin{array}{cccccccccccccccccccccccccccccccccccc$
$egin{array}{cccccccccccccccccccccccccccccccccccc$
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$
$\begin{array}{cccccccccccccccccccccccccccccccccccc$
10 2 4 1 4 3 3 10 3
8 3 9 1 1 8 10 3 10
8 11 8 2 1 2 0 11 3
0 8 3 8 10 10 8 1 8
2 0 3 3 9 11 2 11 3
$\begin{array}{cccccccccccccccccccccccccccccccccccc$
10 9 8 10 8 10 0 0 11 8 11 1 3 3 11 3 0 10
$\begin{array}{cccccccccccccccccccccccccccccccccccc$
0 9 11 2 4 10 2 8 10
8 11 0 8 0 8 1 3 0
$\begin{array}{cccccccccccccccccccccccccccccccccccc$
1 11 11 11 3 0 0 3 0

Next, we calculate the sample mean, sample standard deviation, sample variance, and sample median for each of the bootstrap samples. These represent $\hat{\theta}_b^*$ values.

The column labels below represent bootstrap labels for four different $\hat{\theta}_b^*$ cases: mean = a bootstrap sample mean \overline{x}_b^* std dev = a bootstrap sample standard deviation s_b^* variance = a bootstrap sample variance $s_b^{2^*}$ median = a bootstrap sample median m_b^*

Bootstrap re	nlication	a. thata(ha	+)^* b
mean	std dev	variance	median
5.7000	4.2960	18.4556	5.5000
6.0000	3.9721	15.7778	6.5000
5.4000	3.2042	10.2667	5.5000
6.6000	3.4705	12.0444	8.0000
5.9000	3.4140	11.6556	8.0000
6.1000	3.6347	13.2111	6.0000
6.6000	4.1687	17.3778	8.5000
6.2000	3.6757	13.5111	5.5000
6.0000	4.2164	17.7778	8.0000
4.3000	3.7431	14.0111	3.0000
4.8000	3.3267	11.0667	3.5000
4.3000	3.6833	13.5667	3.0000
6.8000	3.9384	15.5111	8.0000
7.8000	3.4254	11.7333	9.0000
4.9000	3.8427	14.7667	4.0000
6.2000	3.6757 3.8944	13.5111	8.0000 8.0000
6.5000 5.5000	$3.8944 \\ 3.9511$	15.1667 15.6111	6.0000
5.7000	3.7431	14.0111	6.0000
5.5000	4.3012	18.5000	5.5000
5.4000	4.0332	16.2667	6.0000
4.1000	4.3576	18.9889	3.0000
4.2000	3.1903	10.1778	3.0000
5.2000	3.7947	14.4000	6.0000
5.3000	4.0565	16.4556	5.5000
5.7000	4.5228	20.4556	5.5000
6.5000	3.7193	13.8333	8.0000
5.5000	4.4284	19.6111	3.0000
6.2000	4.5898	21.0667	8.5000
5.3000	3.6225	13.1222	4.0000
3.9000	4.0947	16.7667	2.0000
4.2000	3.1198	9.7333	3.5000
4.3000 7.4000	3.3015 4.0332	$10.9000 \\ 16.2667$	3.5000 8.5000
5.8000	4.2374	17.9556	5.5000
4.6000	3.3066	10.9333	3.5000
6.0000	4.0277	16.2222	6.0000
4.1000	4.2019	17.6556	2.5000
8.1000	3.6347	13.2111	9.0000
4.9000	4.9766	24.7667	3.0000

Take the mean of each column $(\widehat{\theta}^*_{(\cdot)})$ yielding $\overline{x}^*_{(\cdot)}, s^*_{(\cdot)}, s^{2*}_{(\cdot)}$, and $m^*_{(\cdot)}$.

Mean	of	the	В	bootstr	ap	replica	tic	ons:	thet	a(ha	it)^	`*_	(.)
	me	ean		S	va	ariance		med	ian				
Ę	5.58	875		3.8707	:	15.1581		5.62	250				

Take the standard deviation of each column $(se_B(\hat{\theta}))$ yielding $se_B(\bar{x}^*)$, $se_B(s^*)$, $se_B(s^{2*})$, and $se_B(m^*)$.

Bootstrap standard error: s.e._B(theta(hat)) mean S variance median 1.0229 0.4248 3.3422 2.1266

Finally, calculate the estimates of bias $\widehat{\text{Bias}}_B(\widehat{\theta}) = \widehat{\theta}^*_{(\cdot)} - \widehat{\theta}$ for the four cases.

Bootstrap bias estimate: bias(hat)_B(theta(hat)) mean s variance median -0.1625 -1.1086 -0.0125 -0.3750

4.4 Bootstrap Confidence Intervals

• Several methods for generating confidence intervals based on the bootstrap replications will now be presented.

4.4.1 Bootstrap CIs Assuming Approximate Normality

• An approximate $100(1 - \alpha)\%$ confidence interval for θ is

$$\widehat{\theta} \pm t^* \mathrm{se}_B(\widehat{\theta}) \qquad \text{or} \qquad \widehat{\theta} \pm z^* \mathrm{se}_B(\widehat{\theta})$$
(8)

where t^* is the upper $\alpha/2$ critical value from a t-distribution having n-1 degrees of freedom and z^* is the upper $\alpha/2$ critical value from a standard normal (z) distribution.

- For an approximate 90%, 95%, or 99% confidence intervals for θ to be useful, we would expect that approximately 90%, 95%, or 99% of confidence intervals generated using this method will contain θ .
- If the *n* is not large enough and the distribution sampled from is highly skewed (or, in general, is not close in shape to a normal distribution), then the confidence interval given in (8) will not be very reliable. That is, the nominal (stated) confidence level is not close to the true (actual) confidence level.

4.4.2 Confidence Intervals Using Bootstrap Percentiles

- If the sample size is relatively small or it is suspected that the sampling distribution of θ is skewed or non-normal, we want an alternative to (8) for generating a confidence interval.
- The simplest alternative is to use percentiles of the B bootstrap replications of $\hat{\theta}^*$.
- The reliability of the percentile confidence interval method depends on one assumption. It is assumed that there exists a monotonic increasing function f such that the transformed values $f(\hat{\theta})$ are normally distributed with mean $f(\theta)$ and standard deviation 1.
- Thus, with probability 1α , the following statement is true:

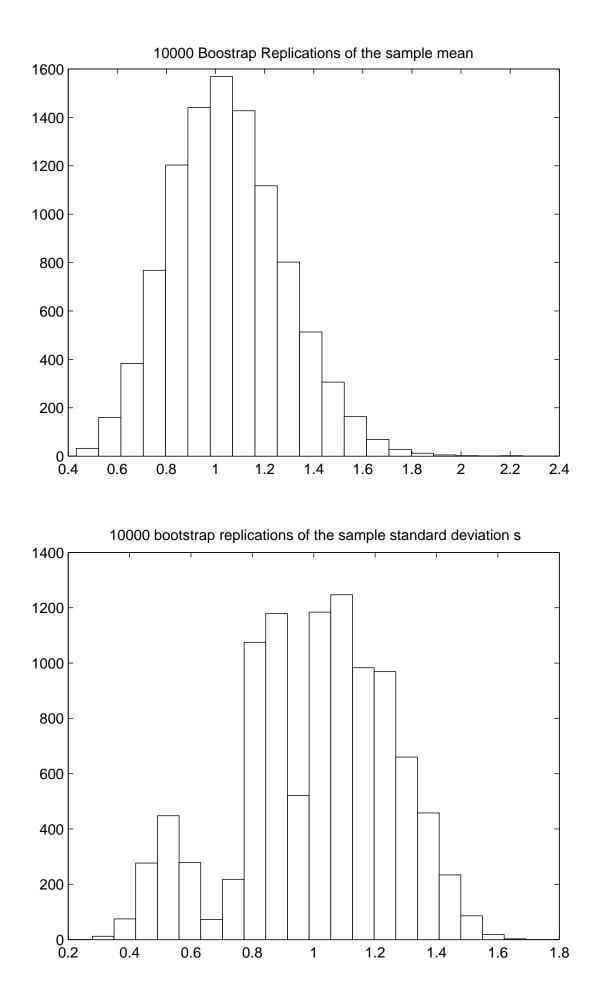
$$f(\theta) - z_{\alpha/2} < f(\theta) < f(\theta) + z_{\alpha/2}$$

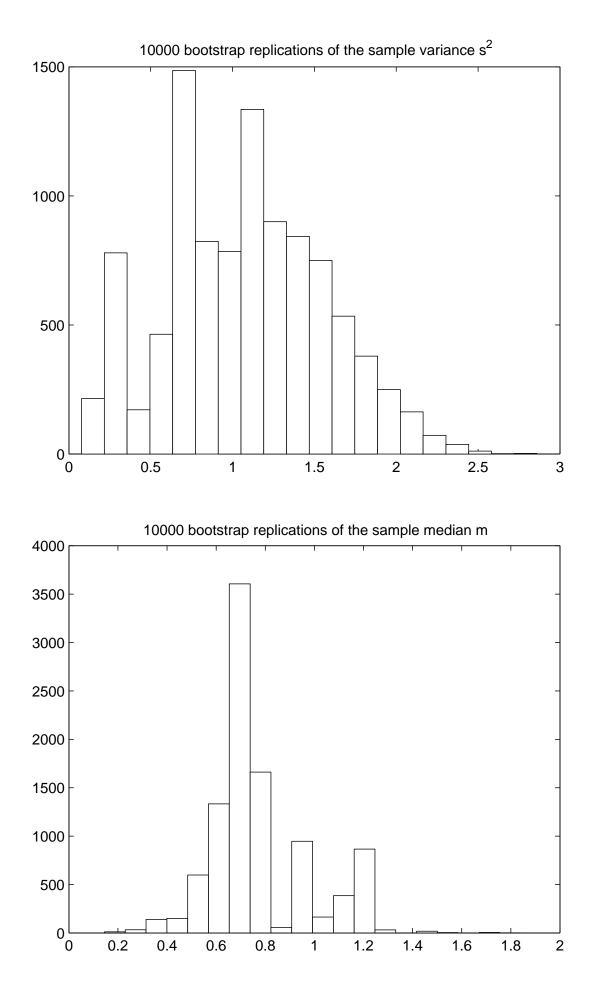
After rearranging the terms we have:

$$f(\widehat{\theta}) - z_{\alpha/2} < f(\theta) < f(\widehat{\theta}) + z_{\alpha/2}$$
(9)

- If the transformation f was known, then by applying a back-transformation f^{-1} to the confidence limits for $f(\theta)$ in (9), we have the confidence limits for θ .
- It is not necessary, however, to know the form of the function f. We only need to assume its existence. Because of the assumption that f is a monotonic and increasing function, then the ordering of the B transformed bootstrap estimates from smallest to largest must correspond to the ordering of the original B untransformed bootstrap replicates $\hat{\theta}^*(b)$ from smallest to largest.
- Thus, the confidence limits for $f(\theta)$ in (9) are those values that exceed the $\alpha/2$ percentiles in the left and right tails of the distribution of the *B* bootstrap replicates.

• That is, the approximate **bootstrap percentile-based confidence interval** for θ is


$$\widehat{\theta}_L^* < \theta < \widehat{\theta}_U^* \tag{10}$$


where $\hat{\theta}_L^*$ and $\hat{\theta}_U^*$ are the lower $\alpha/2$ and upper $(1 - \alpha/2)$ percentiles of the *B* bootstrap replications $\hat{\theta}^*$, respectively. Practically, to find $\hat{\theta}_L^*$ and $\hat{\theta}_U^*$ you

- 1. Order the *B* bootstrap replications $\hat{\theta}^*(1), \hat{\theta}^*(2), \dots, \hat{\theta}^*(B)$ from smallest to largest.
- 2. Calculate $L = B * \alpha/2$ and $U = B * (1 \alpha/2) + 1$.
- 3. Find the L^{th} and U^{th} values in the ordered list of bootstrap replications.
- 4. The L^{th} value is the lower confidence interval endpoint $\hat{\theta}_L^*$ and the U^{th} value is the upper confidence interval endpoint $\hat{\theta}_U^*$.
- There are improvements and corrections that can be applied to the percentile method when we do not believe the transformation f exists. We will consider two bias-corrected alternatives later in this section.

Bootstrapping Example: The Manly (2007) Data Set

The Data 3.56 0.69 1.84 3.93 1.25 0.18 0.50 0.10 1.13 0.27 0.82 0.39 0.67 0.01 0.61 1.70 0.11 1.20 1.21 0.72 theta(hat) values for xbar, s, s², s(with denominator n), median variance median mean S 1.0445 1.1229 0.7050 1.0597 The number of bootstrap samples B = 10000Mean of the B bootstrap replications: theta(hat)^{*}_(.) variance median mean S 1.0499 1.0066 1.0759 0.7738 s.e._B(theta(hat)) Bootstrap standard error: mean variance median S 0.4845 0.2323 0.2504 0.2014 Bootstrap bias estimate: bias(hat)_B(theta(hat)) mean s variance median 0.0054 -0.0531 -0.0470 0.0688

z-BASED CONFIDENCE INTERVALS	
95% confidence intervals z-based	
meansvariancemedian0.58920.56900.17320.31031.49981.55042.07261.0997	
Bias-adjusted confidence intervals z-bas mean s variance median 0.5838 0.6221 0.2202 0.2415 1.4944 1.6035 2.1196 1.0308	< lower endpoint
t-BASED CONFIDENCE INTERVALS	
95% confidence intervals t-based mean s variance median 0.5583 0.5357 0.1088 0.2835 1.5307 1.5837 2.1371 1.1265	
Bias-adjusted confidence intervals t-bas mean s variance median 0.5529 0.5888 0.1558 0.2147 1.5253 1.6368 2.1841 1.0576	ed < lower endpoint < upper endpoint
PERCENTILE CONFIDENCE INTERVALS	
95% percentile-based confidence intervals mean s variance median 0.6920 0.5135 0.2637 0.5000 1.4535 1.3812 1.9077 1.2000	< lower endpoint < upper endpoint
BIAS CORRECTED CONFIDENCE INTERVALS (see Se	ction 4.4.4)
95% bias-corrected percentile-based confide mean s variance median 0.6450 0.4994 0.2494 0.4450 1.5575 1.4606 2.1334 1.2100	< lower endpoint
ACCELERATED BIAS CORRECTED CONFIDENCE INTER	VALS (see Section 4.4.5)
95% accelerated bias-corrected confidence i mean s variance median 0.6975 0.5308 0.2817 0.5000 1.6560 1.5024 2.2573 1.2300	< lower endpoint

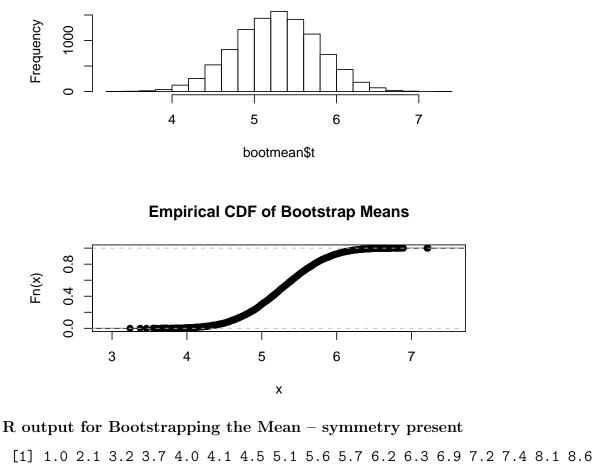
4.4.3 Bootstrap examples in R

- The 'bootstrap' package in R will generate bootstrap standard errors and estimates of bias.
- The 'bootstrap' R command will generate the bootstrap replications of a statistic and output the estimate, the standard error, and an estimate of bias.
- The 'boot.ci' R command will generate confidence intervals for the parameter of interest. I will consider three common bootstrap confidence intervals:
 - 1. The **percentile bootstrap confidence intervals**. These are generated by the procedure described in the notes.
 - 2. The normal confidence intervals. These intervals have the form

$$\tilde{\theta} \pm z^* \text{s.e.}_{\text{boot}}(\hat{\theta})$$

which is the traditional z-based normal confidence interval except we add and subtract the margin of error about the bias-corrected estimate $\tilde{\theta}$.

- 3. The **bias-corrected confidence interval**. These are percentile-based confidence intervals adjusted for the bias. That is, the endpoints of the intervals have bias adjustments.
- If you want a *t*-based confidence interval (which I recommend over a *z*-based interval), there are two possibilities:


$$\widehat{\theta} \,\pm t^* \,\mathrm{s.e.}_{\mathrm{boot}}(\widehat{\theta}) \qquad \mathrm{and} \qquad \widetilde{\theta} \,\pm t^* \,\mathrm{s.e.}_{\mathrm{boot}}(\widehat{\theta})$$

If the estimate of bias is small relative to the standard error, use the interval centered at $\hat{\theta}$. Otherwise, use the interval centered at the bias-corrected estimate $\tilde{\theta}$.

R code for Bootstrapping the Mean – symmetry present

```
library(boot)
y <- c(1,2.1,3.2,3.7,4.0,4.1,4.5,5.1,5.6,5.7,6.2,6.3,6.9,7.2,7.4,8.1,8.6)
у
n \leftarrow length(y)
n
thetahat = mean(y)
thetahat
Brep = 10000
# Bootstrap the sample mean
sampmean <- function(y,i) mean(y[i])</pre>
bootmean <- boot(data=y,statistic=sampmean,R=Brep)</pre>
bootmean
boot.ci(bootmean,conf=.95,type=c("norm"))
boot.ci(bootmean,conf=.95,type=c("perc"))
boot.ci(bootmean,conf=.95,type=c("bca"))
par(mfrow=c(2,1))
hist(bootmean$t,main="Bootstrap Sample Means")
plot(ecdf(bootmean$t),main="Empirical CDF of Bootstrap Means")
```

Bootstrap Sample Means

[1] 17 > thetahat [1] 5.276471 > # Bootstrap the sample mean ORDINARY NONPARAMETRIC BOOTSTRAP Bootstrap Statistics : original bias std. error t1* 5.276471 -0.008028824 0.5053402 BOOTSTRAP CONFIDENCE INTERVAL CALCULATIONS Based on 10000 bootstrap replicates Intervals : Level Normal (4.294, 6.275) 95% Calculations and Intervals on Original Scale Intervals : Level Percentile 95% (4.259, 6.229)Calculations and Intervals on Original Scale Intervals : Level BCa 95% (4.245, 6.212) Calculations and Intervals on Original Scale

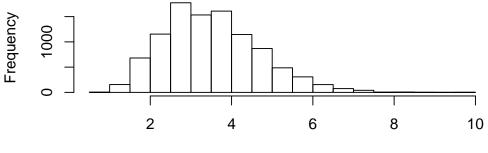
R code for Bootstrapping the Mean – skewness present

```
library(boot)
y <- c(2,2,1,4,1,0,5,3,1,6,0,0,3,1,3,0,3,0,2,20,0,2,3,1,25)
У
n <- length(y)</pre>
n
thetahat = mean(y)
thetahat
Brep = 10000
# Bootstrap the sample mean
sampmean <- function(y,i) mean(y[i])</pre>
bootmean <- boot(data=y,statistic=sampmean,R=Brep)</pre>
bootmean
boot.ci(bootmean,conf=.95,type=c("norm"))
boot.ci(bootmean,conf=.95,type=c("perc"))
boot.ci(bootmean,conf=.95,type=c("bca"))
par(mfrow=c(2,1))
hist(bootmean$t,main="Bootstrap Sample Means")
plot(ecdf(bootmean$t),main="Empirical CDF of Bootstrap Means")
```

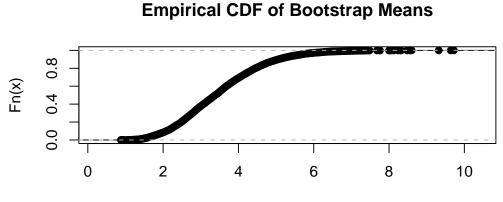
R output for Bootstrapping the Mean – skewness present

[1] 2 2 1 4 1 0 5 3 1 6 0 0 3 1 3 0 3 0 2 20 0 2 3 1 25
[1] 25
> thetahat
[1] 3.52
> # Bootstrap the sample mean
ORDINARY NONPARAMETRIC BOOTSTRAP
Bootstrap Statistics :
 original bias std. error
t1* 3.52 -0.006596 1.188251
POOTSTRAP CONFIDENCE INTERVAL CALCULATIONS

BOOTSTRAP CONFIDENCE INTERVAL CALCULATIONS Based on 10000 bootstrap replicates Intervals : Level Normal 95% (1.198, 5.856) Calculations and Intervals on Original Scale


BOOTSTRAP CONFIDENCE INTERVAL CALCULATIONS Based on 10000 bootstrap replicates

Intervals : Level Percentile 95% (1.56, 6.16) Calculations and Intervals on Original Scale


BOOTSTRAP CONFIDENCE INTERVAL CALCULATIONS Based on 10000 bootstrap replicates

Intervals : Level BCa 95% (1.84, 7.18) Calculations and Intervals on Original Scale

bootmean\$t

4.4.4 Bias-Corrected Percentile Confidence Intervals

- One problem with using the bootstrap percentile method occurs when the assumption regarding the transformation to normality is not true.
- In this case, a confidence interval based on using the percentile method would not be appropriate. That is, the nominal (stated) confidence level is not close to the true confidence level.
- If the transformation f did exist, it is a monotonic increasing function f such that the transformed values $f(\hat{\theta})$ are normally distributed with mean $f(\theta)$ and standard deviation 1. That is, $f(\hat{\theta}) \sim N(f(\theta), 1)$. This implies that

$$\Pr\left\{f(\widehat{\theta}) > f(\theta)\right\} = \Pr(\widehat{\theta} > \theta) = 0.5.$$

The probabilities are equal because the transformation is monotonic and increasing.

- Therefore, if such a transformation f exists we would expect that 50% of the bootstrap replications $(\hat{\theta}^*(b), b = 1, 2, ..., B)$ would be greater that $\hat{\theta}$. However, if the percentage is much higher or lower than 50%, we should consider removing bias.
- In other words, if B is large enough to adequately represent the distribution of the bootstrap replications, and the median of the bootstrap replications is not close to $\hat{\theta}$, it may be necessary to modify the percentile bootstrap methods by adjusting for bias.
- To construct a bias-corrected confidence interval for θ , we relax the assumptions about the transformation f to be the following. We assume that a monotonic increasing function f exists for transforming $\hat{\theta}$ such that the distribution of $f(\hat{\theta})$ is normally distributed with mean $f(\theta)-z_0$ and standard deviation 1. That is, $f(\hat{\theta}) \sim N(f(\theta)-z_0, 1)$, or, equivalently, $(f(\hat{\theta}) f(\theta) + z_0) \sim N(0, 1)$.
- This implies that $P(-z_{\alpha/2} < f(\hat{\theta}) f(\theta) + z_0 < z_{\alpha/2}) = 1 \alpha$.
- Reordering of the terms yields the desired confidence interval for $f(\theta)$:

$$f(\widehat{\theta}) + z_0 - z_{\alpha/2} < f(\theta) < f(\widehat{\theta}) + z_0 + z_{\alpha/2}.$$

$$(11)$$

- By applying the inverse transformation f^{-1} to the confidence limits gives the confidence limits for θ . To apply this method we will need to estimate the constant z_0 .
- Note that for any value t, we have

$$\Pr\{f(\widehat{\theta}) > t\} = \Pr\{f(\widehat{\theta}) - f(\theta) + z_0 > t - f(\theta) + z_0\}$$
$$= \Pr\{Z > t - f(\theta) + z_0\}$$

where $Z \sim N(0, 1)$. If we set $t = f(\theta)$, then

$$\Pr\{f(\widehat{\theta}) > f(\theta)\} = \Pr\{Z > z_0\}.$$
(12)

• Because f is monotonic and increasing, it follows from (12) that

$$\Pr\{\widehat{\theta} > \theta\} = \Pr\{Z > z_0\}.$$

Then, we assume that $\Pr\{\hat{\theta} > \theta\}$ can be estimated by p, the proportion of bootstrap replications $\hat{\theta}^*(b)$ that are greater than $\hat{\theta}$. Thus, $z_0 \approx z_p$ where z_p is the value from from the N(0,1) distribution having right-tail probability p.

• We now use z_p , the estimate of z_0 , in (11) to find the value of p_U where

$$p_U = \Pr\{f(\widehat{\theta}^*) < f(\widehat{\theta}) + z_0 + z_{\alpha/2}\}$$

=
$$\Pr\{f(\widehat{\theta}^*) - f(\widehat{\theta}) + z_0 < f(\widehat{\theta}) + z_0 + z_{\alpha/2} - f(\widehat{\theta}) + z_0\}$$

=
$$\Pr\{Z < 2z_0 + z_{\alpha/2}\}$$

with $Z \sim N(0, 1)$. This implies that the bootstrap upper confidence limit for $f(\theta)$ is the first bootstrap replication that is larger than p_U of the bootstrap replications $f(\hat{\theta}^*)$. Recall: because the function f is unknown, we do not actually know the values of the transformed bootstrap replications $f(\hat{\theta}^*)$. We only know that they exist.

- Then, once again we apply the assumption that f is monotonic and increasing, to find the bias-corrected upper confidence limit for θ . That is, find that $\hat{\theta}^*(b)$ value such that it is the first bootstrap replication that is larger than p_U of the B bootstrap replications $\hat{\theta}^*$.
- Similarly, we use z_p to find the value of p_L where

$$p_L = \Pr\{f(\widehat{\theta}^*) < f(\widehat{\theta}) + z_0 - z_{\alpha/2}\}$$

=
$$\Pr\{f(\widehat{\theta}^*) - f(\widehat{\theta}) + z_0 < f(\widehat{\theta}) + z_0 - z_{\alpha/2} - f(\widehat{\theta}) + z_0\}$$

=
$$\Pr\{Z < 2z_0 - z_{\alpha/2}\}$$

Thus, p_L is the proportion of bootstrap replications $\hat{\theta}^*(b)$ that are less than $\hat{\theta}$. To find the bias-corrected lower confidence limit for θ , find that $\hat{\theta}^*(b)$ such that it is the last bootstrap replication that is smaller than p_L of the *B* bootstrap replications $\hat{\theta}^*$.

• Therefore, the bias-corrected percentile confidence limit can be written as

INVCDF
$$\{\Phi(2z_0 - z_{\alpha/2})\}$$
 and INVCDF $\{\Phi(2z_0 + z_{\alpha/2})\}$

where Φ is the standard normal CDF function and INVCDF is the inverse CDF of the empirical distribution of the *B* bootstrap replications $\hat{\theta}^*(b), b = 1, 2, ..., B$.

4.4.5 Accelerated Bias-Corrected Percentile Confidence Intervals

- An alternative to a bias-corrected percentile confidence interval is the **accelerated biascorrected percentile confidence interval**.
- The assumptions for the accelerated bias-corrected approach are less restrictive than the assumptions for the basic bias-corrected approach. We assume that a transformation $f(\hat{\theta})$ of the estimator $\hat{\theta}$ exists such that the distribution of $f(\hat{\theta})$ is normal with mean $f(\theta) z_0(1 + Af(\theta))$ and standard deviation $1 + Af(\theta)$. That is, $f(\hat{\theta}) \sim N(f(\theta) z_0(1 + Af(\theta)))$, $1 + Af(\theta)$ where z_0 and A are constants.

- Including the constant A allows for the standard deviation to vary linearly with $f(\theta)$. This additional flexibility will allow us to correct for this form of non-constant variance if it exists.
- Note: When A = 0, we are using the bias-corrected percentile approach.
- Standardizing $f(\hat{\theta})$ by subtracting its mean and then dividing by its standard deviation implies

$$\Pr\left\{-z_{\alpha/2} < \frac{f(\hat{\theta}) - f(\theta) + z_0(1 + Af(\theta))}{1 + Af(\theta)} < z_{\alpha/2}\right\} = \Pr(-z_{\alpha/2} < Z < z_{\alpha/2}) = 1 - \alpha$$

where $Z \sim N(0, 1)$. This probability statement can be rewritten as

$$\Pr\left[\frac{f(\widehat{\theta}) + z_0 - z_{\alpha/2}}{1 - A(z_0 - z_{\alpha/2})} < f(\theta) < \frac{f(\widehat{\theta}) + z_0 + z_{\alpha/2}}{1 - A(z_0 + z_{\alpha/2})}\right] = 1 - \alpha$$
(13)

or, more simply as

$$\Pr(L < f(\theta) < U) = 1 - \alpha$$

where L and U are the endpoints in (13).

- Let $f(\hat{\theta}^*)$ denote a transformed bootstrap replicate. To approximate the lower limit L of $f(\theta)$ using bootstrapping, we assume that the bootstrap distribution of $f(\hat{\theta}^*)$ approximates the distribution of $f(\hat{\theta})$ which is $f(\hat{\theta}^*) \sim N(f(\theta) z_0(1 + Af(\theta)), 1 + Af(\theta))$.
- Therefore, we replace $f(\theta)$ in (13) with $f(\widehat{\theta}^*)$. The approximation is L^* where

$$\Pr\left[f(\widehat{\theta}^*) < L^*\right] = \Pr\left[f(\widehat{\theta}^*) < \frac{f(\widehat{\theta}) + z_0 - z_{\alpha/2}}{1 - A(z_0 - zat)}\right]$$

• After standardizing, we get

$$\Pr\left[f(\widehat{\theta}^{*}) < L^{*}\right] = \Pr\left[\frac{f(\widehat{\theta}^{*}) - f(\widehat{\theta})}{1 + Af(\widehat{\theta})} + z_{0} < \frac{z_{0} - z_{\alpha/2}}{1 - A(z_{0} - z_{\alpha/2})} + z_{0}\right]$$
(14)
$$= \Pr\left[Z < \frac{z_{0} - z_{\alpha/2}}{1 - A(z_{0} - z_{\alpha/2})} + z_{0}\right]$$

where $Z \sim N(0, 1)$.

• Equation (14) means that the probability of a transformed bootstrap replication $f(\hat{\theta}^*)$ is less than the lower confidence limit for $f(\theta)$ equals the probability that a standard normal random variable is less than

$$z_L^* = \frac{z_0 - z_{\alpha/2}}{1 - A(z_0 - z_{\alpha/2})} + z_0$$

• Therefore, the lower confidence limit can be estimated by taking the value of the bootstrap distribution of $f(\hat{\theta}^*)$ that is just greater than a fraction $\Phi(z_L^*)$. Although the form of transformation f is unknown, this is not a problem for finding the lower confidence limit of θ .

- Because of the assumption that f is monotonic and increasing, the lower confidence limit for θ is just the value of the bootstrap distribution of $\hat{\theta}^*$ that is just greater than a fraction $\Phi(z_L^*)$.
- Using the same argument we can approximate the upper confidence limit for θ . That is, the upper confidence limit for θ is just the value of the bootstrap distribution of $\hat{\theta}^*$ that is just greater than a fraction $\Phi(z_U^*)$ where

$$z_U^* = \frac{z_0 + z_{\alpha/2}}{1 - A(z_0 + z_{\alpha/2})} + z_0$$

• Therefore, the approximate $100(1 - \alpha)$ % accelerated bias-corrected bootstrap confidence interval for θ is

 $INVCDF\{\Phi(z_L)\} < \theta < INVCDF\{\Phi(z_U)\}$ (15)

where INVCDF is the inverse of the empirical CDF of the bootstrap replications $\hat{\theta}^*(b)$ for $b = 1, 2, \ldots, B$.

- The remaining problem is how to estimate the constants z_0 and A.
- z_0 can be estimated from the empirical CDF of the bootstrap replications $\hat{\theta}^*$ by continuing to assume $f(\hat{\theta}^*) \sim N(f(\theta) z_0(1 + Af(\theta)), 1 + Af(\theta))$. Then

$$\Pr\left[f(\widehat{\theta}^*) > f(\widehat{\theta})\right] = \Pr\left[\frac{f(\widehat{\theta}^*) - f(\widehat{\theta})}{1 + Af(\widehat{\theta})} + z_0 > z_0\right]$$
$$= \Pr\left[Z > z_0\right]$$

where $Z \sim N(0,1)$. Because f is assumed to be monotonic and increasing it also holds that

$$\Pr\left[\widehat{\theta}^* > \widehat{\theta}\right] = \Pr\left[Z > z_0\right]$$

• Let p be the proportion of values in the bootstrap distribution of $\hat{\theta}^*$ that are greater than $\hat{\theta}$. Then z_0 can be estimated as $z_0 = z_p$ where z_p is the value such that

$$1 - \Phi(z_p) = p$$

This is the same as the value derived for the bias-corrected percentile method.

- The final problem is estimation of the constant A. Unfortunately, A cannot be simply derived using probability statements like we did for z_0 . Efron and Tibshirani (1993) recommend the following which uses jackknife replications.
- Let $\widehat{\theta}_{(i)}$ be the i^{th} jackknife replication of i^{th} and $\widehat{\theta}_{(\cdot)}$ be the mean of the *n* jackknife replications. Then *a*, the estimated value of *A*, is

$$a = \frac{\sum_{i=1}^{n} \left(\widehat{\theta}_{(\cdot)} - \widehat{\theta}_{(i)}\right)^{3}}{6 \left[\sum_{i=1}^{n} \left(\widehat{\theta}_{(\cdot)} - \widehat{\theta}_{(i)}\right)^{2}\right]^{1.5}}$$

2 3 4 5 6 7 8 9 10 11 12 13 14 13 0.27 0.50 0.67 0.01 0.61 0.82 0.69 0.10 1.84 3.93 1.25 0.18 1.13 0.27 0.50 0.67 0.01 0.61 0.82 0.69 0.10 1.84 3.93 1.25 0.18 1.13 0.27 0.50 0.67 0.01 0.61 0.82 0.69 0.10 1.84 3.93 1.25 0.18 1.13 0.27 0.50 0.67 0.01 0.61 0.82 0.69 0.10 1.84 3.93 1.25 0.18 1.13 0.27 0.50 0.67 0.01 0.61 0.82 0.69 0.10 1.84 3.93 1.25 0.18 1.13 0.27 0.50 0.67 0.01 0.61 0.82 0.69 0.10 1.84 3.93 1.25 0.18 1.13 0.27 0.50 0.67 0.01 0.61 0.82 0.69 0.10 1.84 3.93 1.25 0.18 1.13 0.27 0.50 0.67 0.01 0.61 0.82 0.69 0.10 1.84 3.93 1.25 0.18 1.13 0.27 0.50 0.67 0.01 0.61 0.82 0.69 0.10 1.84 3.93 1.25 0.18 1.13 0.27 0.50 0.67 0.01 0.61 0.82 0.69 0.10 1.84 3.93 1.25 0.18 1.13 0.27 0.50 0.67 0.01 0.61 0.82 0.69 0.10 1.84 3.93 1.25 0.18 1.13 0.27 0.50 0.67 0.01 0.61 0.82 0.69 0.10 1.84 3.93 1.25 0.18 1.13 0.27 0.50 0.67 0.01 0.61 0.82 0.69 0.10 1.84 3.93 1.25 0.18 1.13 0.27 0.50 0.67 0.01 0.61 0.82 0.69 0.10 1.84 3.93 1.25 0.18 1.13 0.27 0.50 0.67 0.01 0.61 0.82 0.69 0.10 1.84 3.93 1.25 0.18 1.13 0.27 0.50 0.67 0.01 0.61 0.82 0.69 0.10 1.84 3.93 1.25 0.18 1.13 0.27 0.50 0.67 0.01 0.61 0.82 0.69 0.10 1.84 3.93 1.25 0.18 1.13 0.27 0.50 0.67 0.01 0.61 0.82 0.69 0.10 1.84 3.93 1.25 0.18 1.13 0.27 0.50 0.67 0.01 0.61 0.82 0.69 0.10 1.84 3.93 1.25 0.18 1.13 0.27 0.50 0.67 0.01 0.61 0.82 0.69 0.10 1.84 3.93 1.25 0.18 1.13 0.27 0.50 0.67 0.01 0.61 0.82 0.69 0.10 1.84 3.93 1.25 0.18 1.13 0.27 0.50 0.67 0.01 0.61 0.82 0.69 0.10 1.84 3.93 1.25 0.18 1.13 0.27 0.50 0.67 0.01 0.61 0.82 0.69 0.10 1.84 3.93 1.25 0.18 1.13 0.27 0.50 0.67 0.01 0.61 0.82 0.69 0.10 1.84 3.93 1.25 0.18 1.13 0.27 0.50 0.67 0.01 0.61 0.82 0.69 0.10 1.84 3.93 1.25 0.18 1.13 0.27 0.50 0.67 0.01 0.61 0.82 0.69 0.10 1.84 3.93 1.25 0.18 1.13 0.27 0.50 0.67 0.01 0.61 0.82 0.69 0.10 1.84 3.93 1.25 0.18 1.13 0.27 0.50 0.67 0.01 0.61 0.82 0.69 0.10 1.84 3.93 1.25 0.18 1.13 0.27 0.50 0.67 0.01 0.61 0.82 0.69 0.001 0.61 0.82 0.69 0.001 0.61 0.82 0.69 0.001 0.61 0.82 0.69 0.001 0.61 0.82 0.69 0.001 0.61 0.82 0.69 0.001 0.61 0.82 0.69 0.001 0.61 0.82 0.69 0.001 0.6	2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 0.69 010 184 3.93 1.25 0.18 1.13 0.27 0.50 0.67 0.01 0.61 0.82 1.70 0.39 0.11 0.69 010 184 3.93 1.25 0.18 1.13 0.27 0.50 0.67 0.01 0.61 0.82 1.70 0.39 0.11 0.10 184 3.93 1.25 0.18 1.13 0.27 0.50 0.67 0.01 0.61 0.82 1.70 0.39 0.11 0.10 184 3.93 1.25 0.18 1.13 0.27 0.50 0.67 0.01 0.61 0.82 1.70 0.39 0.11 0.10 184 3.93 1.25 0.18 1.13 0.27 0.50 0.67 0.01 0.61 0.82 1.70 0.39 0.11 0.69 0.10 184 3.93 1.25 0.18 1.13 0.27 0.50 0.67 0.01 0.61 0.82 1.70 0.39 0.11 0.69 0.10 184 3.93 1.25 0.18 1.13 0.27 0.50 0.67 0.01 0.61 0.82 1.70 0.39 0.11 0.69 0.10 184 3.93 1.25 0.18 1.13 0.27 0.50 0.67 0.01 0.61 0.82 1.70 0.39 0.11 0.69 0.10 184 3.93 1.25 0.18 1.13 0.27 0.50 0.67 0.01 0.61 0.82 1.70 0.39 0.11 0.69 0.10 184 3.93 1.25 0.18 1.13 0.27 0.50 0.67 0.01 0.61 0.82 1.70 0.39 0.11 0.69 0.10 1.84 3.93 1.25 0.18 1.13 0.27 0.50 0.67 0.01 0.61 0.82 1.70 0.39 0.11 0.69 0.10 1.84 3.93 1.25 0.18 1.13 0.27 0.50 0.67 0.01 0.61 0.82 1.70 0.39 0.11 0.69 0.10 1.84 3.93 1.25 0.18 1.13 0.27 0.50 0.67 0.01 0.61 0.82 1.70 0.39 0.11 0.69 0.10 1.84 3.93 1.25 0.18 1.13 0.27 0.50 0.67 0.01 0.61 0.82 1.70 0.39 0.11 0.69 0.10 1.84 3.93 1.25 0.18 1.13 0.27 0.50 0.67 0.01 0.61 0.82 1.70 0.39 0.11 0.69 0.10 1.84 3.93 1.25 0.18 1.13 0.27 0.50 0.67 0.01 0.61 0.82 1.70 0.39 0.11 0.69 0.10 1.84 3.93 1.25 0.18 1.13 0.27 0.50 0.67 0.01 0.61 0.82 1.70 0.39 0.11 0.69 0.10 1.84 3.93 1.25 0.18 1.13 0.27 0.50 0.67 0.01 0.61 0.82 1.70 0.39 0.11 0.69 0.10 1.84 3.93 1.25 0.18 1.13 0.27 0.50 0.67 0.01 0.61 0.82 1.70 0.39 0.11 0.69 0.10 1.84 3.93 1.25 0.18 1.13 0.27 0.50 0.67 0.01 0.61 0.82 1.70 0.39 0.11 0.69 0.10 1.84 3.93 1.25 0.18 1.13 0.27 0.50 0.67 0.01 0.61 0.82 1.70 0.39 0.11 0.69 0.10 1.84 3.93 1.25 0.18 1.13 0.27 0.50 0.67 0.01 0.61 0.82 1.70 0.39 0.11 0.69 0.10 1.84 3.93 1.25 0.18 1.13 0.27 0.50 0.67 0.01 0.61 0.82 1.70 0.39 0.11 0.69 0.10 1.84 3.93 1.25 0.18 1.13 0.27 0.50 0.67 0.01 0.61 0.82 1.70 0.39 0.11 0.69 0.10 1.84 3.93 1.25 0.18 1.13 0.27 0.50 0.67 0.01 0.61 0.82 1.70 0.39 0.11 0.69 0																								
0.69 0.10 184 3.89 1.25 0.18 1.13 0.27 0.50 0.67 0.01 0.61 0.82 1.70 0.39 0.11 1.20 1.21 0.72 1.03 \leftarrow 0.032 0.69 0.10 184 3.89 1.25 0.18 1.13 0.27 0.50 0.67 0.01 0.61 0.82 1.70 0.39 0.11 1.20 1.21 0.72 1.036 0.566 0.11 284 3.89 1.25 0.18 1.13 0.27 0.50 0.67 0.01 0.61 0.82 1.70 0.39 0.11 1.20 1.21 0.72 1.036 0.566 0.69 0.10 184 3.89 1.25 0.18 1.13 0.27 0.50 0.67 0.01 0.61 0.82 1.70 0.39 0.11 1.20 1.21 0.72 1.036 0.566 0.69 0.10 184 3.89 1.25 0.18 1.13 0.27 0.50 0.67 0.01 0.61 0.82 1.70 0.39 0.11 1.20 1.21 0.72 1.036 0.567 0.69 0.10 184 3.89 1.25 0.18 1.13 0.27 0.50 0.67 0.01 0.61 0.82 1.70 0.39 0.11 1.20 1.21 0.72 1.069 0.067 0.69 0.10 184 3.89 1.25 0.18 1.13 0.27 0.50 0.67 0.01 0.61 0.82 1.70 0.39 0.11 1.20 1.21 0.72 1.069 0.057 0.69 0.10 184 3.89 1.25 0.18 1.13 0.27 0.50 0.67 0.01 0.61 0.82 1.70 0.39 0.11 1.20 1.21 0.72 1.069 0.057 0.69 0.10 184 3.89 1.25 0.18 1.13 0.27 0.50 0.67 0.01 0.61 0.82 1.70 0.39 0.11 1.20 1.21 0.72 1.069 0.557 0.67 0.10 184 3.89 1.25 0.18 1.13 0.27 0.50 0.67 0.01 0.61 0.82 1.70 0.39 0.11 1.20 1.21 0.72 1.046 0.589 0.69 0.10 184 3.89 1.25 0.18 1.13 0.27 0.50 0.67 0.01 0.61 0.82 1.70 0.39 0.11 1.20 1.21 0.72 1.046 0.587 0.065 0.67 0.10 184 3.89 1.25 0.18 1.13 0.27 0.50 0.67 0.01 0.61 0.82 1.70 0.39 0.11 1.20 1.21 0.72 1.046 0.587 0.065 0.69 0.10 184 3.89 1.25 0.18 1.13 0.27 0.50 0.67 0.01 0.61 0.82 1.70 0.39 0.11 1.20 1.21 0.72 1.046 0.578 0.065 0.01 184 3.89 1.25 0.18 1.13 0.27 0.50 0.67 0.01 0.61 0.82 1.70 0.39 0.11 1.20 1.21 0.72 1.046 0.578 0.065 0.01 184 3.89 1.25 0.18 1.13 0.27 0.50 0.67 0.01 0.61 0.82 1.70 0.39 0.11 1.20 1.21 0.72 1.046 0.578 0.065 0.09 0.10 184 3.89 1.25 0.18 1.13 0.27 0.50 0.67 0.01 0.61 0.82 1.70 0.39 0.11 1.20 1.21 0.72 1.046 0.578 0.065 0.09 0.10 184 3.89 1.25 0.18 1.13 0.27 0.50 0.67 0.01 0.61 0.82 1.70 0.39 0.11 1.20 1.21 0.72 1.046 0.578 0.69 0.10 184 3.89 1.25 0.18 1.13 0.27 0.50 0.67 0.01 0.61 0.82 1.70 0.39 0.11 1.20 1.21 0.72 1.049 0.775 0.69 0.10 184 3.89 1.25 0.18 1.13 0.27 0.50 0.67 0.01 0.61 0.82 1.70 0.39 0.11 1.20 1.21 0.72 1.049 0.775 0.69 0.	0.69 0.10 1.84 3.93 1.25 0.18 1.13 0.27 0.50 0.67 0.01 0.61 0.82 1.70 0.39 0.11 0.69 0.10 1.84 3.93 1.25 0.18 1.13 0.27 0.50 0.67 0.01 0.61 0.82 1.70 0.39 0.11 0.69 0.10 1.84 3.93 1.25 0.18 1.13 0.27 0.50 0.67 0.01 0.61 0.82 1.70 0.39 0.11 0.69 0.10 1.84 3.93 1.25 0.18 1.13 0.27 0.50 0.67 0.01 0.61 0.82 1.70 0.39 0.11 0.69 0.10 1.84 3.93 1.25 0.18 1.13 0.27 0.50 0.67 0.01 0.61 0.82 1.70 0.39 0.11 0.69 0.10 1.84 3.93 1.25 0.18 1.13 0.27 0.50 0.67 0.01 0.61 0.82 1.70 0.39 0.11 0.69 0.10 1.84 3.93 1.25 0.18 1.13 0.27 0.50 0.67 0.01 0.61 0.82 1.70 0.39 0.11 0.69 0.10 1.84 3.93 1.25 0.18 1.13 0.27 0.50 0.67 0.01 0.61 0.82 1.70 0.39 0.11 0.69 0.10 1.84 3.93 1.25 0.18 1.13 0.27 0.50 0.67 0.01 0.61 0.82 1.70 0.39 0.11 0.69 0.10 1.84 3.93 1.25 0.18 1.13 0.27 0.50 0.67 0.01 0.61 0.82 1.70 0.39 0.11 0.69 0.10 1.84 3.93 1.25 0.18 1.13 0.27 0.50 0.67 0.01 0.61 0.82 1.70 0.39 0.11 0.69 0.10 1.84 3.93 1.25 0.18 1.13 0.27 0.50 0.67 0.01 0.61 0.82 1.70 0.39 0.11 0.69 0.10 1.84 3.93 1.25 0.18 1.13 0.27 0.50 0.67 0.01 0.61 0.82 1.70 0.39 0.11 0.69 0.10 1.84 3.93 1.25 0.18 1.13 0.27 0.50 0.67 0.01 0.61 0.82 1.70 0.39 0.11 0.69 0.10 1.84 3.93 1.25 0.18 1.13 0.27 0.50 0.67 0.01 0.61 0.82 1.70 0.39 0.11 0.69 0.10 1.84 3.93 1.25 0.18 1.13 0.27 0.50 0.67 0.01 0.61 0.82 1.70 0.39 0.11 0.69 0.10 1.84 3.93 1.25 0.18 1.13 0.27 0.50 0.67 0.01 0.61 0.82 1.70 0.39 0.11 0.69 0.10 1.84 3.93 1.25 0.18 1.13 0.27 0.50 0.67 0.01 0.61 0.82 1.70 0.39 0.11 0.69 0.10 1.84 3.93 1.25 0.18 1.13 0.27 0.50 0.67 0.01 0.61 0.82 1.70 0.39 0.11 0.69 0.10 1.84 3.93 1.25 0.18 1.13 0.27 0.50 0.67 0.01 0.61 0.82 1.70 0.39 0.11 0.69 0.10 1.84 3.93 1.25 0.18 1.13 0.27 0.50 0.67 0.01 0.61 0.82 1.70 0.39 0.11 0.69 0.10 1.84 3.93 1.25 0.18 1.13 0.27 0.50 0.67 0.01 0.61 0.82 1.70 0.39 0.11 0.69 0.10 1.84 3.93 1.25 0.18 1.13 0.27 0.50 0.67 0.01 0.61 0.82 1.70 0.39 0.11 0.69 0.10 1.84 3.93 1.25 0.18 1.13 0.27 0.50 0.67 0.01 0.61 0.82 1.70 0.39 0.11 0.69 0.10 1.84 3.93 1.25 0.18 1.13 0.27 0.50 0.67 0.01 0.61 0.82 1.70 0.39 0.11 0.69 0.10 1.84 3.93 1.25 0.18 1.13 0.27 0.50	I	61	ი	4	വ	9	7	00	· 6	10	11	12	13	14	15	16	17	18	19	20	SD	ΡV	SD	PV'
0.69 0.10 1.84 3.93 1.25 0.18 1.13 0.27 0.50 0.67 0.01 0.61 0.82 1.70 0.39 0.11 1.20 1.21 0.72 10.66 0.656 0.065 0.656 0.050 0.050 0.050 0.050 0.050 0.050 0.050 0.050 0.050 0.050 0.050	0.69 0.10 1.84 3.93 1.25 0.18 1.13 0.27 0.50 0.67 0.01 0.61 0.82 1.70 0.39 0.11 0.63 0.83 1.25 0.18 1.13 0.27 0.50 0.67 0.01 0.61 0.82 1.70 0.39 0.11 0.63 0.10 1.84 3.33 1.25 0.18 1.13 0.27 0.50 0.67 0.01 0.61 0.82 1.70 0.39 0.11 0.69 0.10 1.84 3.33 1.25 0.18 1.13 0.27 0.50 0.67 0.01 0.61 0.82 1.70 0.39 0.11 0.69 0.10 1.84 3.33 1.25 0.18 1.13 0.27 0.50 0.67 0.01 0.61 0.82 1.70 0.39 0.11 0.69 0.10 1.84 3.33 1.25 0.18 1.13 0.27 0.50 0.67 0.01 0.61 0.82 1.70 0.39 0.11 0.69 0.10 1.84 3.33 1.25 0.18 1.13 0.27 0.50 0.67 0.01 0.61 0.82 1.70 0.39 0.11 0.69 0.10 1.84 3.33 1.25 0.18 1.13 0.27 0.50 0.67 0.01 0.61 0.82 1.70 0.39 0.11 0.69 0.10 1.84 3.33 1.25 0.18 1.13 0.27 0.50 0.67 0.01 0.61 0.82 1.70 0.39 0.11 0.69 0.10 1.84 3.33 1.25 0.18 1.13 0.27 0.50 0.67 0.01 0.61 0.82 1.70 0.39 0.11 0.69 0.10 1.84 3.33 1.25 0.18 1.13 0.27 0.50 0.67 0.01 0.61 0.82 1.70 0.39 0.11 0.69 0.10 1.84 3.33 1.25 0.18 1.13 0.27 0.50 0.67 0.01 0.61 0.82 1.70 0.39 0.11 0.68 0.10 1.84 3.33 1.25 0.18 1.13 0.27 0.50 0.67 0.01 0.61 0.82 1.70 0.39 0.11 0.68 0.10 1.84 3.33 1.25 0.18 1.13 0.27 0.50 0.67 0.01 0.61 0.82 1.70 0.39 0.11 0.68 0.10 1.84 3.33 1.25 0.18 1.13 0.27 0.50 0.67 0.01 0.61 0.82 1.70 0.39 0.11 0.68 0.10 1.84 3.33 1.25 0.18 1.13 0.27 0.50 0.67 0.01 0.61 0.82 1.70 0.39 0.11 0.68 0.10 1.84 3.33 1.25 0.18 1.13 0.27 0.50 0.67 0.01 0.61 0.82 1.70 0.39 0.11 0.68 0.10 1.84 3.33 1.25 0.18 1.13 0.27 0.50 0.67 0.01 0.61 0.82 1.70 0.39 0.11 0.68 0.10 1.84 3.33 1.25 0.18 1.13 0.27 0.50 0.67 0.01 0.61 0.82 1.70 0.39 0.11 0.68 0.10 1.84 3.33 1.25 0.18 1.13 0.27 0.50 0.67 0.01 0.61 0.82 1.70 0.39 0.11 0.68 0.10 1.84 3.33 1.25 0.18 1.13 0.27 0.50 0.67 0.01 0.61 0.82 1.70 0.39 0.11 0.68 0.10 1.84 3.33 1.25 0.18 1.13 0.27 0.50 0.67 0.01 0.61 0.82 1.70 0.39 0.11 0.68 0.10 1.84 3.33 1.25 0.18 1.13 0.27 0.50 0.67 0.01 0.61 0.82 1.70 0.39 0.11 0.68 0.10 1.84 3.33 1.25 0.18 1.13 0.27 0.50 0.67 0.01 0.61 0.82 1.70 0.39 0.11 0.68 0.10 1.84 3.33 1.25 0.18 1.13 0.27 0.50 0.67 0.01 0.61 0.82 1.70 0.39 0.11 0.68 0.10 1.84 3.33 1.25 0.18 1.13 0.27 0.50 0.67 0.01	× .				3.93	1.25	0.18	1.13	.27		1		[1		1	0.72	1.03€	1	0.032	-
0.10 L84 3.83 1.25 0.18 1.33 0.27 0.50 0.67 0.01 0.61 0.22 1.70 0.39 0.11 1.20 1.21 0.72 10.65 0.566 0.005 0.69 0.10 1.84 3.93 1.25 0.18 1.13 0.27 0.50 0.67 0.01 0.61 0.82 1.70 0.39 0.11 1.20 1.21 0.72 10.65 0.566 0.067 0.69 0.10 1.84 3.93 1.25 0.18 1.13 0.27 0.50 0.67 0.01 0.61 0.82 1.70 0.39 0.11 1.20 1.21 0.72 10.65 0.564 0.69 0.10 1.84 3.93 1.25 0.18 1.13 0.27 0.50 0.67 0.01 0.61 0.82 1.70 0.39 0.11 1.20 1.21 0.72 10.65 0.564 0.69 0.10 1.84 3.93 1.25 0.18 1.13 0.27 0.50 0.67 0.01 0.61 0.82 1.70 0.39 0.11 1.20 1.21 0.72 10.65 0.564 0.69 0.10 1.84 3.93 1.25 0.18 1.13 0.27 0.50 0.67 0.01 0.61 0.82 1.70 0.39 0.11 1.20 1.21 0.72 10.65 0.564 0.69 0.10 1.84 3.93 1.25 0.18 1.13 0.27 0.50 0.67 0.01 0.61 0.82 1.70 0.39 0.11 1.20 1.21 0.72 10.65 0.564 0.69 0.10 1.84 3.93 1.25 0.18 1.13 0.27 0.50 0.67 0.01 0.61 0.82 1.70 0.39 0.11 1.20 1.21 0.72 10.65 0.567 0.69 0.10 1.84 3.93 1.25 0.18 1.13 0.27 0.50 0.67 0.01 0.61 0.82 1.70 0.39 0.11 1.20 1.21 0.72 10.65 0.677 0.69 0.10 1.84 3.93 1.25 0.18 1.13 0.27 0.50 0.67 0.01 0.61 0.82 1.70 0.39 0.11 1.20 1.21 0.72 10.65 0.677 0.69 0.10 1.84 3.93 1.25 0.18 1.13 0.27 0.50 0.67 0.01 0.61 0.82 1.70 0.39 0.11 1.20 1.21 0.72 10.65 0.567 0.69 0.10 1.84 3.93 1.25 0.18 1.13 0.27 0.50 0.67 0.01 0.61 0.82 1.70 0.39 0.11 1.20 1.21 0.72 10.65 0.567 0.69 0.10 1.84 3.93 1.25 0.18 1.13 0.27 0.50 0.67 0.01 0.61 0.82 1.70 0.39 0.11 1.20 1.21 0.72 10.63 0.577 0.067 0.69 0.10 1.84 3.93 1.25 0.18 1.13 0.27 0.50 0.67 0.01 0.61 0.82 1.70 0.39 0.11 1.20 1.21 0.72 10.63 0.557 0.69 0.10 1.84 3.93 1.25 0.18 1.13 0.27 0.50 0.67 0.01 0.61 0.82 1.70 0.39 0.11 1.20 1.21 0.72 10.63 0.557 0.69 0.10 1.84 3.93 1.25 0.18 1.13 0.27 0.50 0.67 0.01 0.61 0.82 1.70 0.39 0.11 1.20 1.21 0.72 10.63 0.557 0.69 0.10 1.84 3.93 1.25 0.18 1.13 0.27 0.50 0.67 0.01 0.61 0.82 1.70 0.39 0.11 1.20 1.21 0.72 10.63 0.557 0.69 0.10 1.84 3.93 1.25 0.18 1.13 0.27 0.50 0.67 0.01 0.61 0.82 1.70 0.39 0.11 1.20 1.21 0.72 10.63 0.557 0.69 0.10 1.84 3.93 1.25 0.18 1.13 0.27 0.50 0.67 0.01 0.61 0.82 1.70 0.39 0.11 1.20 1.21	0.10 1.84 3.93 1.25 0.18 1.13 0.27 0.50 0.67 0.01 0.61 0.82 1.70 0.39 0.11 0.65 0.11 0.83 1.25 0.18 1.13 0.27 0.50 0.67 0.01 0.61 0.82 1.70 0.39 0.11 0.65 0.10 1.84 3.93 1.25 0.18 1.13 0.27 0.50 0.67 0.01 0.61 0.82 1.70 0.39 0.11 0.65 0.10 1.84 3.93 1.25 0.18 1.13 0.27 0.50 0.67 0.01 0.61 0.82 1.70 0.39 0.11 0.65 0.10 1.84 3.93 1.25 0.18 1.13 0.27 0.50 0.67 0.01 0.61 0.82 1.70 0.39 0.11 0.65 0.10 1.84 3.93 1.25 0.18 1.13 0.27 0.50 0.67 0.01 0.61 0.82 1.70 0.39 0.11 0.65 0.10 1.84 3.93 1.25 0.18 1.13 0.27 0.50 0.67 0.01 0.61 0.82 1.70 0.39 0.11 0.65 0.10 1.84 3.93 1.25 0.18 1.13 0.27 0.50 0.67 0.01 0.61 0.82 1.70 0.39 0.11 0.65 0.10 1.84 3.93 1.25 0.18 1.13 0.27 0.50 0.67 0.01 0.61 0.82 1.70 0.39 0.11 0.65 0.10 1.84 3.93 1.25 0.18 1.13 0.27 0.50 0.67 0.01 0.61 0.82 1.70 0.39 0.11 0.65 0.10 1.84 3.93 1.25 0.18 1.13 0.27 0.50 0.67 0.01 0.61 0.82 1.70 0.39 0.11 0.65 0.10 1.84 3.93 1.25 0.18 1.13 0.27 0.50 0.67 0.01 0.61 0.82 1.70 0.39 0.11 0.65 0.10 1.84 3.93 1.25 0.18 1.13 0.27 0.50 0.67 0.01 0.61 0.82 1.70 0.39 0.11 0.65 0.10 1.84 3.93 1.25 0.18 1.13 0.27 0.50 0.67 0.01 0.61 0.82 1.70 0.39 0.11 0.65 0.10 1.84 3.93 1.25 0.18 1.13 0.27 0.50 0.67 0.01 0.61 0.82 1.70 0.39 0.11 0.65 0.10 1.84 3.93 1.25 0.18 1.13 0.27 0.50 0.67 0.01 0.61 0.82 1.70 0.39 0.11 0.65 0.11 84 3.93 1.25 0.18 1.13 0.27 0.50 0.67 0.01 0.61 0.82 1.70 0.39 0.11 0.65 0.10 1.84 3.93 1.25 0.18 1.13 0.27 0.50 0.67 0.01 0.61 0.82 1.70 0.39 0.11 0.65 0.11 84 3.93 1.25 0.18 1.13 0.27 0.50 0.67 0.01 0.61 0.82 1.70 0.39 0.11 0.65 0.10 1.84 3.93 1.25 0.18 1.13 0.27 0.50 0.67 0.01 0.61 0.82 1.70 0.39 0.11 0.65 0.10 1.84 3.93 1.25 0.18 1.13 0.27 0.50 0.67 0.01 0.61 0.82 1.70 0.39 0.11 0.65 0.18 1.13 0.27 0.50 0.67 0.01 0.61 0.82 1.70 0.39 0.11 0.65 0.18 1.13 0.27 0.50 0.67 0.01 0.61 0.82 1.70 0.39 0.11 0.65 0.11 84 3.93 1.25 0.18 1.13 0.27 0.50 0.67 0.01 0.61 0.82 1.70 0.39 0.11 0.65 0.18 1.13 0.27 0.50 0.67 0.01 0.61 0.82 1.70 0.39 0.11 0.65 0.18 1.13 0.27 0.50 0.67 0.01 0.61 0.82 1.70 0.39 0.11 0.65 0.11 84 3.93 1.25 0.18 1.13 0.27 0.50 0.67 0.01 0.61 0.8		0.69			3.93	1.25	0.18		27					0.82			-			0 7 0	0 870	080 5	0.100	
069 11 84 339 125 0.18 113 027 0.50 067 001 061 0.82 1.70 039 0.11 120 121 0.72 1036 0.971 0.035 0.010 1.84 3.93 125 0.18 113 027 0.50 067 0.01 061 0.82 1.70 0.39 0.11 120 121 0.72 1036 0.941 0.067 0.067 0.068 0.10 1.84 3.93 125 0.18 113 0.27 0.50 067 0.01 061 0.82 1.70 0.39 0.11 120 121 0.72 1036 0.544 0.057 0.668 0.10 1.84 3.93 125 0.18 113 0.27 0.50 067 0.01 061 0.82 1.70 0.39 0.11 120 121 0.72 1040 0.889 0.008 0.018 1.39 0.27 0.50 067 0.01 061 0.82 1.70 0.39 0.11 120 121 0.72 1040 0.899 0.064 0.668 0.008 0.10 1.84 3.93 125 0.18 113 0.27 0.50 0.67 0.01 061 0.82 1.70 0.39 0.11 120 121 0.72 1060 0.899 0.0054 0.669 0.10 1.84 3.93 125 0.18 113 0.27 0.50 0.051 0.62 0.01 0.61 0.82 1.70 0.39 0.11 120 121 0.72 1060 0.589 0.064 0.65 0.01 0.61 0.82 1.70 0.39 0.11 120 121 0.72 1060 0.539 0.064 0.65 0.01 0.61 0.82 1.70 0.39 0.11 120 121 0.72 1060 0.539 0.065 0.65 0.01 0.184 3.93 125 0.18 113 0.27 0.50 0.07 0.003 0.11 120 121 0.12 0.12 0.72 1060 0.56 0.057 0.055 0.067 0.66 0.10 1.84 3.93 125 0.18 113 0.27 0.50 0.67 0.01 0.61 0.82 1.70 0.39 0.11 120 121 0.72 1063 0.65 0.067 0.65 0.01 0.184 3.93 125 0.18 113 0.27 0.50 0.67 0.01 0.61 0.82 1.70 0.39 0.11 120 121 0.72 1050 0.65 0.067 0.65 0.001 0.184 3.93 125 0.18 113 0.27 0.50 0.67 0.01 0.61 0.82 1.70 0.39 0.11 120 121 0.72 1050 0.65 0.007 0.65 0.01 1.84 3.93 125 0.18 113 0.27 0.50 0.67 0.01 0.61 0.82 1.70 0.39 0.11 120 121 0.72 1063 0.65 0.007 0.65 0.01 1.84 3.93 125 0.18 113 0.27 0.50 0.67 0.01 0.61 0.82 1.70 0.39 0.11 120 121 0.72 1063 0.55 0.067 0.65 0.001 0.84 3.93 125 0.18 113 0.27 0.50 0.67 0.01 0.61 0.82 1.70 0.39 0.11 120 121 0.72 1063 0.55 0.057 0.067 0.01 0.81 0.82 1.70 0.39 0.11 120 1.21 0.121 0.72 1063 0.55 0.057 0.065 0.001 0.84 3.93 125 0.18 113 0.27 0.50 0.67 0.039 0.11 120 1.21 0.120 1.21 0.22 0.55 0.057 0.055 0.067 0.68 0.10 1.84 3.93 125 0.18 113 0.27 0.50 0.051 0.01 0.61 0.82 1.70 0.39 0.11 120 1.21 0.120 0.23 0.55 0.057 0.065 0.001 0.84 1.30 0.21 0.21 0.21 0.21 0.52 0.55 0.057 0.055 0.001 0.184 3.93 125 0.18 113 0.27 0.50 0.67 0.001 0.61 0.82 1.70 0.39	0.65 184 3.93 125 0.18 113 0.27 0.50 0.67 0.01 0.61 0.82 1.70 0.39 0.11 0.69 0.10 184 3.93 125 0.18 113 0.27 0.50 0.67 0.01 0.61 0.82 1.70 0.39 0.11 0.69 0.10 184 3.93 125 0.18 113 0.27 0.50 0.67 0.01 0.61 0.82 1.70 0.39 0.11 0.69 0.10 184 3.93 125 0.18 113 0.27 0.50 0.67 0.01 0.61 0.82 1.70 0.39 0.11 0.69 0.10 184 3.93 125 0.18 113 0.27 0.50 0.67 0.01 0.61 0.82 1.70 0.39 0.11 0.69 0.10 184 3.93 125 0.18 113 0.27 0.50 0.67 0.01 0.61 0.82 1.70 0.39 0.11 0.69 0.10 184 3.93 125 0.18 113 0.27 0.50 0.67 0.01 0.61 0.82 1.70 0.39 0.11 0.69 0.10 184 3.93 125 0.18 113 0.27 0.50 0.67 0.01 0.61 0.82 1.70 0.39 0.11 0.69 0.10 184 3.93 125 0.18 113 0.27 0.50 0.67 0.01 0.61 0.82 1.70 0.39 0.11 0.69 0.10 184 3.93 125 0.18 113 0.27 0.50 0.67 0.01 0.61 0.82 1.70 0.39 0.11 0.69 0.10 184 3.93 125 0.18 113 0.27 0.50 0.67 0.01 0.61 0.82 1.70 0.39 0.11 0.69 0.10 184 3.93 125 0.18 113 0.27 0.50 0.67 0.01 0.61 0.82 1.70 0.39 0.11 0.69 0.10 184 3.93 125 0.18 113 0.27 0.50 0.67 0.01 0.61 0.82 1.70 0.39 0.11 0.69 0.10 184 3.93 125 0.18 113 0.27 0.50 0.67 0.01 0.61 0.82 1.70 0.39 0.11 0.69 0.10 184 3.93 125 0.18 113 0.27 0.50 0.67 0.01 0.61 0.82 1.70 0.39 0.11 0.69 0.10 184 3.93 125 0.18 113 0.27 0.50 0.67 0.01 0.61 0.82 1.70 0.39 0.11 0.69 0.10 184 3.93 125 0.18 113 0.27 0.50 0.67 0.01 0.61 0.82 1.70 0.39 0.11 0.69 0.10 184 3.93 125 0.18 113 0.27 0.50 0.67 0.01 0.61 0.82 1.70 0.39 0.11 0.69 0.10 184 3.93 125 0.18 113 0.27 0.50 0.67 0.01 0.61 0.82 1.70 0.39 0.11 0.69 0.10 184 3.93 125 0.18 1.13 0.27 0.50 0.67 0.01 0.61 0.82 1.70 0.39 0.11 0.69 0.10 184 3.93 125 0.18 1.13 0.27 0.50 0.67 0.01 0.61 0.82 1.70 0.39 0.11 0.69 0.10 184 3.93 125 0.18 1.13 0.27 0.50 0.67 0.01 0.61 0.82 1.70 0.39 0.11 0.69 0.10 184 3.93 125 0.18 1.13 0.27 0.50 0.67 0.01 0.61 0.82 1.70 0.39 0.11 0.69 0.10 184 3.93 125 0.18 1.13 0.27 0.50 0.67 0.01 0.61 0.82 1.70 0.39 0.11 0.69 0.10 184 3.93 125 0.18 1.13 0.27 0.50 0.67 0.01 0.61 0.82 1.70 0.39 0.11 0.69 0.10 184 3.93 125 0.18 1.13 0.27 0.50 0.67 0.01 0.61 0.82 1.70 0.39 0.11 0.69 0.10 184 3.93 125 0.18 1.13 0.27 0.5					3.93	1.25	0.18		27					0.82						0.72	1.056	0.586	-0.128	0.306 -0.306
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$\begin{array}{cccccccccccccccccccccccccccccccccccc$				1.84	3.93	1.25	0.18		27					0.82						0.72	1.036	0.971	0.035	260.0-
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	0:69<0.10					3.93	1.25	0.18		27					0.82						0.72	1 043	0.840	0.040	140.0-
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$\begin{array}{cccccccccccccccccccccccccccccccccccc$						1.25	0.18		27					0.82						0.72	0.813	5.202	20.00-	4 570
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$\begin{array}{cccccccccccccccccccccccccccccccccccc$					3.93		0.18		27					0.82						0.72	1.059	0.544	0.057	-0.435
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$\begin{array}{cccccccccccccccccccccccccccccccccccc$					3.93	1.25			57											0.72	1.040	0.898	0.039	960.0-
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	0.69 0.10 1.84 3.93 1.25 0.18 1.13 0.27 0.67 0.01 0.61 0.82 1.70 0.39 0.11 0.69 0.10 1.84 3.93 1.25 0.18 1.13 0.27 0.66 0.01 0.61 0.82 1.70 0.39 0.11 0.69 0.10 1.84 3.93 1.25 0.18 1.13 0.27 0.50 0.67 0.01 0.61 0.82 1.70 0.39 0.11 0.69 0.10 1.84 3.93 1.25 0.18 1.13 0.27 0.50 0.67 0.01 0.61 0.82 1.70 0.39 0.11 0.69 0.10 1.84 3.93 1.25 0.18 1.13 0.27 0.50 0.67 0.01 0.61 0.82 1.70 0.39 0.11 0.69 0.10 1.84 3.93 1.25 0.18 1.13 0.27 0.50 0.67 0.01 0.61 0.82 1.70 0.39 0.11 0.69					3.93	1.25	0.18	-	27											0.72	1.059	0.527	0.058	-0.452
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	0.69 0.10 1.84 3.93 1.25 0.18 1.13 0.27 0.50 0.67 0.01 0.61 0.82 1.70 0.39 0.11 0.69 0.10 1.84 3.93 1.25 0.18 1.13 0.27 0.50 0.67 0.01 0.61 0.82 1.70 0.39 0.11 0.69 0.10 1.84 3.93 1.25 0.18 1.13 0.27 0.50 0.67 0.01 0.61 0.82 1.70 0.39 0.11 0.69 0.10 1.84 3.93 1.25 0.18 1.13 0.27 0.50 0.67 0.01 0.61 0.82 1.70 0.39 0.11 0.69 0.10 1.84 3.93 1.25 0.18 1.13 0.27 0.50 0.67 0.01 0.61 0.82 1.70 0.39 0.11 0.69 0.10 1.84 3.93 1.25 0.18 1.13 0.27 0.50 0.67 0.01 0.61 0.82 1.70 0.39 0.11 0.69 0.10 1.84 3.93 1.25 0.18 1.13 0.27 0.50 0.67 0.01 0.61 0.82 1.70 0.39 0.11 0.69 0.10 1.84 3.93 1.25 0.18 1.13 0.27 0.50 0.67 0.01 0.61 0.82 1.70 0.39 0.11 0.69 0.10 1.84 3.93 1.25 0.18 1.13 0.27 0.50 0.67 0.01 0.61 0.82 1.70 0.39 0.11 0.69 0.10 1.84 3.93 1.25 0.18 1.13 0.27 0.50 0.67 0.01 0.61 0.82 1.70 0.39 0.11 0.69 0.10 1.84 3.93 1.25 0.18 1.13 0.27 0.50 0.67 0.01 0.61 0.82 1.70 0.39 0.11 0.69 0.10 1.84 3.93 1.25 0.18 1.13 0.27 0.50 0.67 0.01 0.61 0.82 1.70 0.39 0.11 0.69 0.10 1.84 3.93 1.25 0.18 1.13 0.27 0.50 0.67 0.01 0.61 0.82 1.70 0.39 0.11 0.69 0.10 1.84 3.93 1.25 0.18 1.13 0.27 0.50 0.67 0.01 0.61 0.82 1.70 0.39 0.11 0.69 0.10 1.84 3.93 1.25 0.18 1.13 0.27 0.50 0.67 0.01 0.61 0.82 1.70 0.39 0.11 0.63 0.03 0.12 0.63 0.10 1.84 3.93 1.25 0.18 1.13 0.27 0.50 0.67 0.01 0.61 0.82 1.70 0.39 0.11 0.63 0.10 1.84 3.93 1.25 0.18 1.13 0.27 0.50 0.67 0.01 0.61 0.82 1.70 0.39 0.11 0.63 0.10 1.84 3.93 1.25 0.18 1.13 0.27 0.50 0.67 0.01 0.61 0.82 1.70 0.39 0.11 0.63 0.10 2.64 3.93 1.25 0.13 1.25 0.18 1.13 0.27 0.50 0.67 0.01 0.61 0.82 1.70 0.39 0.11 0.63 0.55 0.55 0.55 0.55 0.55 0.55 0.55 0.5					3.93	1.25	0.18	1.13	-											0.72	1.044	0.823	0.043	-0.170
0.69 0.10 184 3.93 126 0.18 1.13 0.27 0.50 0.67 0.61 0.82 1.70 0.39 0.11 1.20 1.21 0.72 1.056 0.593 0.004 0.69 0.10 1.84 3.93 125 0.18 1.13 0.27 0.50 0.67 0.01 0.61 0.82 1.70 0.39 0.11 1.20 1.21 0.72 1.065 0.617 0.053 0.69 0.10 1.84 3.93 125 0.18 1.13 0.27 0.50 0.67 0.01 0.61 1.77 0.39 0.11 1.20 1.21 0.72 1.048 0.738 0.047 0.69 0.10 1.84 3.93 125 0.18 1.13 0.27 0.50 0.67 0.01 0.61 0.82 1.70 0.39 0.11 1.20 1.21 0.72 1.048 0.738 0.047 0.69 0.10 1.84 3.93 125 0.18 1.13 0.27 0.50 0.67 0.01 0.61 0.82 1.70 0.39 0.11 1.20 1.21 0.72 1.048 0.738 0.047 0.69 0.10 1.84 3.93 125 0.18 1.13 0.27 0.50 0.67 0.01 0.61 0.82 1.70 0.39 0.11 1.20 1.21 0.72 1.048 0.738 0.047 0.69 0.10 1.84 3.93 125 0.18 1.13 0.27 0.50 0.67 0.01 0.61 0.82 1.70 0.39 0.11 1.20 1.21 0.72 1.049 0.738 0.047 0.69 0.10 1.84 3.93 125 0.18 1.13 0.27 0.50 0.67 0.01 0.61 0.82 1.70 0.39 0.11 1.20 1.21 0.72 1.057 0.057 0.69 0.10 1.84 3.93 125 0.18 1.13 0.27 0.50 0.67 0.01 0.61 0.82 1.70 0.39 0.11 1.20 1.21 0.72 1.057 0.057 0.69 0.10 1.84 3.93 125 0.18 1.13 0.27 0.50 0.67 0.01 0.61 0.82 1.70 0.39 0.11 1.20 1.21 1.077 0.575 0.057 0.69 0.10 1.84 3.93 125 0.18 1.13 0.27 0.50 0.67 0.01 0.61 0.82 1.70 0.39 0.11 1.20 1.21 1.067 0.575 0.057 0.69 0.10 1.84 3.93 125 0.18 1.13 0.27 0.50 0.67 0.01 0.61 0.82 1.70 0.39 0.11 1.20 1.21 1.067 0.575 0.057 0.69 0.10 1.84 3.93 125 0.18 1.13 0.27 0.50 0.67 0.01 0.61 0.82 1.70 0.39 0.11 1.20 1.21 1.067 0.575 0.057 0.69 0.10 1.84 3.93 125 0.18 1.13 0.27 0.50 0.67 0.01 0.61 0.82 1.70 0.39 0.11 1.20 1.21 1.067 0.575 0.055 0.69 0.10 1.84 3.93 125 0.18 1.13 0.27 0.50 0.57 0.01 0.61 0.82 1.70 0.39 0.11 1.20 1.21 1.067 0.575 0.055 0.69 0.10 1.84 3.93 125 0.18 1.13 0.27 0.50 0.57 0.057 0.057 0.057 0.057 0.057 0.057 0.057 0.055 1.003 0.21 1.203 0.57 0.063 0.01 0.61 0.82 1.70 0.32 0.50 (-0.63 0.71) = 1.096 1.07 0.051 0.72 1.059 0.575 0.055	0.69 0.10 1.84 3.93 1.25 0.18 1.13 0.27 0.50 0.67 0.61 0.82 1.70 0.39 0.11 0.69 0.10 1.84 3.93 1.25 0.18 1.13 0.27 0.50 0.67 0.01 0.61 0.82 1.70 0.39 0.11 0.69 0.10 1.84 3.93 1.25 0.18 1.13 0.27 0.50 0.67 0.01 0.61 1.70 0.39 0.11 0.69 0.10 1.84 3.93 1.25 0.18 1.13 0.27 0.50 0.67 0.01 0.61 0.82 1.70 0.39 0.11 0.69 0.10 1.84 3.93 1.25 0.18 1.13 0.27 0.50 0.67 0.01 0.61 0.82 1.70 0.39 0.11 0.69 0.10 1.84 3.93 1.25 0.18 1.13 0.27 0.50 0.67 0.01 0.61 0.82 1.70 0.39 0.11 0.69 0.10 1.84 3.93 1.25 0.18 1.13 0.27 0.50 0.67 0.01 0.61 0.82 1.70 0.39 0.11 0.69 0.10 1.84 3.93 1.25 0.18 1.13 0.27 0.50 0.67 0.01 0.61 0.82 1.70 0.39 0.11 0.69 0.10 1.84 3.93 1.25 0.18 1.13 0.27 0.50 0.67 0.01 0.61 0.82 1.70 0.39 0.11 0.69 0.10 1.84 3.93 1.25 0.18 1.13 0.27 0.50 0.67 0.01 0.61 0.82 1.70 0.39 0.11 0.69 0.10 1.84 3.93 1.25 0.18 1.13 0.27 0.50 0.67 0.01 0.61 0.82 1.70 0.39 0.11 0.69 0.10 1.84 3.93 1.25 0.18 1.13 0.27 0.50 0.67 0.01 0.61 0.82 1.70 0.39 0.11 0.69 0.10 1.84 3.93 1.25 0.18 1.13 0.27 0.50 0.67 0.01 0.61 0.82 1.70 0.39 0.11 0.69 0.10 1.84 3.93 1.25 0.18 1.13 0.27 0.50 0.67 0.01 0.61 0.82 1.70 0.39 0.11 0.69 0.10 1.84 3.93 1.25 0.18 1.13 0.27 0.50 0.67 0.01 0.61 0.82 1.70 0.39 0.11 0.69 0.10 1.84 3.93 1.25 0.18 1.13 0.27 0.50 0.67 0.01 0.61 0.82 1.70 0.39 0.11 0.69 0.10 1.84 3.93 1.25 0.18 1.13 0.27 0.50 0.67 0.01 0.61 0.82 1.70 0.39 0.11 0.69 0.10 1.84 3.93 1.25 0.18 1.13 0.27 0.50 0.67 0.01 0.61 0.82 1.70 0.39 0.11 0.69 0.10 0.61 0.82 1.70 0.39 0.11 0.69 0.10 0.61 0.82 1.70 0.39 0.11 0.69 0.10 0.61 0.82 1.70 0.39 0.11 0.69 0.10 0.61 0.82 1.70 0.39 0.11 0.69 0.10 0.61 0.82 1.70 0.39 0.11 0.69 0.10 0.61 0.82 1.70 0.39 0.11 0.69 0.10 0.61 0.82 1.70 0.39 0.11 0.69 0.10 0.61 0.82 1.70 0.39 0.11 0.69 0.10 0.61 0.82 1.70 0.39 0.11 0.69 0.67 0.10 0.61 0.82 1.70 0.39 0.11 0.69 0.67 0.10 0.61 0.82 1.70 0.39 0.11 0.69 0.67 0.10 0.61 0.82 1.70 0.39 0.11 0.69 0.67 0.10 0.61 0.82 1.70 0.39 0.11 0.69 0.67 0.10 0.61 0.82 1.70 0.39 0.12 0.65 0.65 0.10 0.61 0.82 1.70 0.39 0.11 0.69 0.60 0.67 0.10 0.61 0.82 0.60 0.67 0.00 0.60 0.60 0.60	100				3.93	1.25	0.18	1.13		-										0.72	1.052	0.671	0.051	-0.315
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	0.66 0.10 1.84 3.93 1.25 0.18 1.13 0.27 0.50 0.67 0.01 0.61 0.82 1.70 0.39 0.11 0.68 0.10 1.84 3.93 1.25 0.18 1.13 0.27 0.50 0.67 0.01 0.61 1.70 0.39 0.11 0.69 0.10 1.84 3.93 1.25 0.18 1.13 0.27 0.50 0.67 0.01 0.61 0.82 1.70 0.39 0.11 0.69 0.10 1.84 3.93 1.25 0.18 1.13 0.27 0.50 0.67 0.01 0.61 0.82 1.70 0.39 0.11 0.69 0.10 1.84 3.93 1.25 0.18 1.13 0.27 0.50 0.67 0.01 0.61 0.82 1.70 0.39 0.11 0.69 0.10 1.84 3.93 1.25 0.18 1.13 0.27 0.50 0.67 0.01 0.61 0.82 1.70 0.39 0.11 0.69 0.10 1.84 3.93 1.25 0.18 1.13 0.27 0.50 0.67 0.01 0.61 0.82 1.70 0.39 0.11 0.69 0.10 1.84 3.93 1.25 0.18 1.13 0.27 0.50 0.67 0.01 0.61 0.82 1.70 0.39 0.11 0.69 0.10 1.84 3.93 1.25 0.18 1.13 0.27 0.50 0.67 0.01 0.61 0.82 1.70 0.39 0.11 0.69 0.10 1.84 3.93 1.25 0.18 1.13 0.27 0.50 0.67 0.01 0.61 0.82 1.70 0.39 0.11 0.69 0.10 1.84 3.93 1.25 0.18 1.13 0.27 0.50 0.67 0.01 0.61 0.82 1.70 0.39 0.11 0.69 0.10 1.84 3.93 1.25 0.18 1.13 0.27 0.50 0.67 0.01 0.61 0.82 1.70 0.39 0.11 0.69 0.10 1.84 3.93 1.25 0.18 1.13 0.27 0.50 0.67 0.01 0.61 0.82 1.70 0.39 0.11 0.69 0.10 1.84 3.93 1.25 0.18 1.13 0.27 0.50 0.67 0.01 0.61 0.82 1.70 0.39 0.11 0.69 0.10 1.84 3.93 1.25 0.18 1.13 0.27 0.50 0.67 0.01 0.61 0.82 1.70 0.39 0.11 0.69 0.10 1.84 3.93 1.25 0.18 1.13 0.27 0.50 0.67 0.01 0.61 0.82 1.70 0.39 0.11 0.69 0.10 2.84 3.93 1.25 0.18 1.13 0.27 0.50 0.67 0.01 0.61 0.82 1.70 0.39 0.11 0.69 0.10 2.84 3.93 1.25 0.18 1.13 0.27 0.50 0.67 0.01 0.61 0.82 1.70 0.39 0.11 0.69 0.10 2.85 1.20 0.50 0.50 0.50 0.50 0.50 0.50 0.50 0	30				3.93	1.25	0.18		27	0.50	-									0.72	1.056	0.593	0.054	-0.389
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	0.69 0.10 1.84 3.93 1.25 0.18 1.13 0.27 0.50 0.67 0.01 0.61 1.70 0.39 0.11 0.69 0.10 1.84 3.93 1.25 0.18 1.13 0.27 0.50 0.67 0.01 0.61 0.82 1.70 0.39 0.11 0.69 0.10 1.84 3.93 1.25 0.18 1.13 0.27 0.50 0.67 0.01 0.61 0.82 1.70 0.39 0.11 0.69 0.10 1.84 3.93 1.25 0.18 1.13 0.27 0.50 0.67 0.01 0.61 0.82 1.70 0.39 0.11 0.69 0.10 1.84 3.93 1.25 0.18 1.13 0.27 0.50 0.67 0.01 0.61 0.82 1.70 0.39 0.11 0.69 0.10 1.84 3.93 1.25 0.18 1.13 0.27 0.50 0.67 0.01 0.61 0.82 1.70 0.39 0.11 0.69 0.10 1.84 3.93 1.25 0.18 1.13 0.27 0.50 0.67 0.01 0.61 0.82 1.70 0.39 0.11 0.69 0.10 1.84 3.93 1.25 0.18 1.13 0.27 0.50 0.67 0.01 0.61 0.82 1.70 0.39 0.11 0.69 0.10 1.84 3.93 1.25 0.18 1.13 0.27 0.50 0.67 0.01 0.61 0.82 1.70 0.39 0.11 0.69 0.10 1.84 3.93 1.25 0.18 1.13 0.27 0.50 0.67 0.01 0.61 0.82 1.70 0.39 0.11 0.69 0.10 1.84 3.93 1.25 0.18 1.13 0.27 0.50 0.67 0.01 0.61 0.82 1.70 0.39 0.11 0.69 0.10 1.84 3.93 1.25 0.18 1.13 0.27 0.50 0.67 0.01 0.61 0.82 1.70 0.39 0.11 0.69 0.10 1.84 3.93 1.25 0.18 1.13 0.27 0.50 0.67 0.01 0.61 0.82 1.70 0.39 0.11 0.69 0.10 1.84 3.93 1.25 0.18 1.13 0.27 0.50 0.67 0.01 0.61 0.82 1.70 0.39 0.11 0.69 0.10 1.84 3.93 1.25 0.18 1.13 0.27 0.50 0.67 0.01 0.61 0.82 1.70 0.39 0.11 0.69 0.10 1.84 3.93 1.25 0.18 1.13 0.27 0.50 0.67 0.01 0.61 0.82 1.70 0.39 0.11 0.69 0.10 1.84 3.93 1.25 0.18 1.13 0.27 0.50 0.67 0.01 0.61 0.82 1.70 0.39 0.11 0.69 0.10 1.84 3.93 1.25 0.18 1.13 0.27 0.50 0.67 0.01 0.61 0.82 1.70 0.39 0.11 0.69 0.10 1.84 3.93 1.25 0.18 1.13 0.27 0.50 0.67 0.01 0.61 0.82 1.70 0.39 0.11 0.69 0.10 1.84 3.93 1.25 0.18 1.13 0.27 0.50 0.67 0.01 0.61 0.82 1.70 0.39 0.11 0.69 0.67 0.01 0.61 0.82 1.70 0.39 0.11 0.69 0.10 0.61 0.82 1.70 0.39 0.11 0.69 0.10 0.61 0.82 1.70 0.39 0.11 0.69 0.10 0.61 0.82 1.70 0.39 0.57 0.50 0.67 0.01 0.61 0.82 1.70 0.39 0.57 0.50 0.67 0.01 0.61 0.82 1.70 0.39 0.57 0.50 0.67 0.01 0.61 0.82 0.50 0.67 0.00 0.60 0.60 0.60 0.60 0.60 0.6	10				3.93	1.25	0.18		27		0.67	-								0.72	1.031	1.062	0.031	0.060
0.69 0.10 1.84 3.93 1.25 0.18 1.3 0.27 0.50 0.67 0.01 0.61 0.82 0.39 0.11 1.20 1.21 0.72 1.058 0.648 0.057 0.69 0.10 1.84 3.93 1.25 0.18 1.13 0.27 0.50 0.67 0.01 0.61 0.82 1.70 0.39 0.11 1.20 1.21 0.72 1.048 0.737 0.047 0.69 0.10 1.84 3.93 1.25 0.18 1.13 0.27 0.50 0.67 0.01 0.61 0.82 1.70 0.39 0.11 1.20 1.21 0.72 1.059 0.635 0.057 0.65 0.10 1.84 3.93 1.25 0.18 1.13 0.27 0.50 0.67 0.01 0.61 0.82 1.70 0.39 0.11 1.20 1.21 0.72 1.059 0.635 0.057 0.65 0.10 1.84 3.93 1.25 0.18 1.13 0.27 0.50 0.67 0.01 0.61 0.82 1.70 0.39 0.11 1.20 1.21 0.72 1.059 0.635 0.057 0.65 0.10 1.84 3.93 1.25 0.18 1.13 0.27 0.50 0.67 0.01 0.61 0.82 1.70 0.39 0.11 1.20 1.21 0.72 1.059 0.535 0.057 0.65 0.10 1.84 3.93 1.25 0.18 1.13 0.27 0.50 0.67 0.01 0.61 0.82 1.70 0.39 0.11 1.20 1.21 1.057 0.555 0.057 0.057 0.65 0.67 0.01 0.61 0.82 1.70 0.39 0.11 1.20 1.21 1.055 0.535 0.057 0.057 0.65 0.10 1.84 3.93 1.25 0.18 1.13 0.27 0.50 0.67 0.01 0.61 0.82 1.70 0.39 0.11 1.20 1.21 1.059 0.535 0.057 0.65 0.657 0.001 1.84 3.93 1.25 0.18 1.13 0.27 0.50 0.67 0.01 0.61 0.82 1.70 0.39 0.11 1.20 1.21 1.055 0.535 0.057 0.657 0.057 0.650 0.67 0.01 0.61 0.82 1.70 0.39 0.11 1.20 1.21 1.055 0.535 0.057 0.055 0.657 0.005 0.657 0.001 0.61 0.82 1.70 0.39 0.11 1.20 1.21 1.056 \leftarrow 0.057 0.057 0.055 0.056 0.055 0.056 0.055 0.056 0.055 0.055 0.056 0.055 0.056 0.056 0.056 0.055 0.056 0.056 0.056 0.055 0.056 0.056 0.056 0.055 0.056 0.056 0.055 0.056 0.055 0.056 0.056 0.056 0.055 0.056 0.056 0.056 0.055 0.056 0.056 0.055 0.056 0.056 0.056 0.055 0.	0.69 0.10 1.84 3.93 1.25 0.18 1.13 0.27 0.50 0.67 0.01 0.61 0.82 1.70 0.39 0.11 0.69 0.10 1.84 3.93 1.25 0.18 1.13 0.27 0.50 0.67 0.01 0.61 0.82 1.70 0.39 0.11 0.69 0.10 1.84 3.93 1.25 0.18 1.13 0.27 0.50 0.67 0.01 0.61 0.82 1.70 0.39 0.11 0.69 0.10 1.84 3.93 1.25 0.18 1.13 0.27 0.50 0.67 0.01 0.61 0.82 1.70 0.39 0.11 0.69 0.10 1.84 3.93 1.25 0.18 1.13 0.27 0.50 0.67 0.01 0.61 0.82 1.70 0.39 0.11 0.69 0.10 1.84 3.93 1.25 0.18 1.13 0.27 0.50 0.67 0.01 0.61 0.82 1.70 0.39 0.11 0.69 0.10 1.84 3.93 1.25 0.18 1.13 0.27 0.50 0.67 0.01 0.61 0.82 1.70 0.39 0.11 0.69 0.10 1.84 3.93 1.25 0.18 1.13 0.27 0.50 0.67 0.01 0.61 0.82 1.70 0.39 0.11 0.69 0.10 1.84 3.93 1.25 0.18 1.13 0.27 0.50 0.67 0.01 0.61 0.82 1.70 0.39 0.11 0.69 0.10 1.84 3.93 1.25 0.18 1.13 0.27 0.50 0.67 0.01 0.61 0.82 1.70 0.39 0.11 0.69 0.10 1.84 3.93 1.25 0.18 1.13 0.27 0.50 0.67 0.01 0.61 0.82 1.70 0.39 0.11 0.69 0.10 1.84 3.93 1.25 0.18 1.13 0.27 0.50 0.67 0.01 0.61 0.82 1.70 0.39 0.11 0.69 0.10 1.84 3.93 1.25 0.18 1.13 0.27 0.50 0.67 0.01 0.61 0.82 1.70 0.39 0.11 0.69 0.10 1.84 3.93 1.25 0.18 1.13 0.27 0.50 0.67 0.01 0.61 0.82 1.70 0.39 0.11 0.69 0.10 1.84 3.93 1.25 0.18 1.13 0.27 0.50 0.67 0.01 0.61 0.82 1.70 0.39 0.11 0.69 0.10 1.84 3.93 1.25 0.18 1.13 0.27 0.50 0.67 0.01 0.61 0.82 1.70 0.39 0.11 0.69 0.10 1.84 3.93 1.25 0.18 1.13 0.27 0.50 0.67 0.01 0.61 0.82 1.70 0.39 0.11 0.69 0.10 0.69 0.10 1.84 3.93 1.25 0.18 1.13 0.27 0.50 0.67 0.01 0.61 0.82 1.70 0.39 0.11 0.69 0.10 0.69 0.10 0.69 0.10 0.69 0.10 0.60 0.60 0.67 0.01 0.61 0.82 1.70 0.39 0.11 0.69 0.10 0.69 0.10 0.60 0.60 0.10 0.61 0.82 1.70 0.39 0.10 0.69 0.10 0.60 0.60 0.60 0.00 0.60 0.60 0.60	10				3.93	1.25	0.18		27			0.01	0							0.72	1.055	0.617	0.053	-0.366
0.69 0.10 1.84 3.93 1.25 0.18 1.13 0.27 0.50 0.67 0.01 0.61 0.82 1.70 0.39 0.11 1.20 1.21 0.72 1.048 0.737 0.047 0.69 0.10 1.84 3.93 1.25 0.18 1.13 0.27 0.50 0.67 0.01 0.61 0.82 1.70 0.39 1.12 0.72 1.037 0.962 0.036 0.69 0.10 1.84 3.93 1.25 0.18 1.13 0.27 0.50 0.67 0.01 0.61 0.82 1.70 0.39 0.11 1.20 1.21 0.72 1.059 0.535 0.057 0.69 0.10 1.84 3.93 1.25 0.18 1.13 0.27 0.50 0.67 0.01 0.61 0.82 1.70 0.39 0.11 1.20 1.21 0.72 1.059 0.535 0.057 0.69 0.10 1.84 3.93 1.25 0.18 1.13 0.27 0.50 0.67 0.01 0.61 0.82 1.70 0.39 0.11 1.20 1.21 0.72 1.059 0.535 0.057 0.69 0.10 1.84 3.93 1.25 0.18 1.13 0.27 0.50 0.67 0.01 0.61 0.82 1.70 0.39 0.11 1.20 1.21 1.057 0.575 0.055 0.69 0.10 1.84 3.93 1.25 0.18 1.13 0.27 0.50 0.67 0.01 0.61 0.82 1.70 0.39 0.11 1.20 1.21 1.057 0.575 0.055 0.69 0.10 1.84 3.93 1.25 0.18 1.13 0.27 0.50 0.67 0.01 0.61 0.82 1.70 0.39 0.11 1.20 1.21 1.057 0.575 0.055 0.69 0.10 1.84 3.93 1.25 0.18 1.13 0.27 0.50 0.67 0.01 0.61 0.82 1.70 0.39 0.11 1.20 1.21 1.057 0.575 0.055 0.69 0.10 1.84 3.93 1.25 0.18 1.13 0.27 0.50 0.67 0.01 0.61 0.82 1.70 0.39 0.11 1.20 1.21 1.057 0.575 0.055 0.55 0.10 1.84 3.93 1.25 0.18 1.13 0.27 0.50 0.67 0.01 0.61 0.82 1.70 0.39 0.11 1.20 1.21 1.056 $Jackhnife estimate (mean) 1.096$ Jackhnife standard error, 0.273 I.ower 95% confidence interval 0.526 Upper 95% confidence interval 0.526 Upper 95% confidence interval 0.526 Upper 95% confidence interval 1.666 $Jackhnife 2.100 2.23 2.5 - (-0.23 2.7) = 1.094612= 1.023257$ $= 1.022857$ $= 76 - 8165 = 1.0322857 (-0.23277) = 1.094612$	0.69 0.10 1.84 3.93 1.25 0.18 1.13 0.27 0.50 0.67 0.01 0.61 0.82 1.70 0.39 0.11 0.69 0.10 1.84 3.93 1.25 0.18 1.13 0.27 0.50 0.67 0.01 0.61 0.82 1.70 0.39 0.11 0.69 0.10 1.84 3.93 1.25 0.18 1.13 0.27 0.50 0.67 0.01 0.61 0.82 1.70 0.39 0.11 0.69 0.10 1.84 3.93 1.25 0.18 1.13 0.27 0.50 0.67 0.01 0.61 0.82 1.70 0.39 0.11 0.69 0.10 1.84 3.93 1.25 0.18 1.13 0.27 0.50 0.67 0.01 0.61 0.82 1.70 0.39 0.11 0.69 0.10 1.84 3.93 1.25 0.18 1.13 0.27 0.50 0.67 0.01 0.61 0.82 1.70 0.39 0.11 0.69 0.10 1.84 3.93 1.25 0.18 1.13 0.27 0.50 0.67 0.01 0.61 0.82 1.70 0.39 0.11 0.69 0.10 1.84 3.93 1.25 0.18 1.13 0.27 0.50 0.67 0.01 0.61 0.82 1.70 0.39 0.11 0.69 0.10 1.84 3.93 1.25 0.18 1.13 0.27 0.50 0.67 0.01 0.61 0.82 1.70 0.39 0.11 0.69 0.10 1.84 3.93 1.25 0.18 1.13 0.27 0.50 0.67 0.01 0.61 0.82 1.70 0.39 0.11 0.69 0.10 1.84 3.93 1.25 0.18 1.13 0.27 0.50 0.67 0.01 0.61 0.82 1.70 0.39 0.11 0.69 0.10 1.84 3.93 1.25 0.18 1.13 0.27 0.50 0.67 0.01 0.61 0.82 1.70 0.39 0.11 0.69 0.10 1.84 3.93 1.25 0.18 1.13 0.27 0.50 0.67 0.01 0.61 0.82 1.70 0.39 0.11 0.69 0.10 2.84 3.93 1.25 0.18 1.13 0.27 0.50 0.67 0.01 0.61 0.82 1.70 0.39 0.11 0.69 0.69 0.10 1.84 3.93 1.25 0.18 1.13 0.27 0.50 0.67 0.01 0.61 0.82 1.70 0.39 0.11 0.69 0.69 0.10 0.61 0.82 1.70 0.39 0.11 0.69 0.10 2.85 1.70 0.39 0.11 0.69 0.10 1.84 3.93 1.25 0.18 1.13 0.27 0.50 0.67 0.01 0.61 0.82 1.70 0.39 0.11 0.69 0.69 0.10 1.84 3.93 1.25 0.18 1.13 0.27 0.50 0.67 0.01 0.61 0.82 1.70 0.39 0.11 0.69 0.69 0.10 0.61 0.82 1.70 0.39 0.11 0.69 0.10 0.61 0.82 1.70 0.39 0.11 0.69 0.10 0.61 0.82 1.20 0.35 0.55 1.10 0.32 0.55 1.10 0.32 0.55 1.10 0.32 0.55 1.10 0.32 0.55 1.10 0.32 0.55 1.10 0.32 0.55 1.10 0.32 0.55 1.10 0.32 0.55 1.10 0.32 0.55 1.10 0.32 0.55 1.10 0.32 0.55 1.10 0.32 0.55 1.10 0.32 0.55 1.10 0.32 0.55 1.00 0.32 0.55 1.00 0.32 0.55 1.00 0.32 0.55 1.00 0.32 0.55 1.00 0.32 0.55 1.00 0.32 0.55 1.00 0.32 0.55 1.00 0.32 0.55 1.00 0.32 0.55 1.00 0.32 0.55 1.10 0.32 0.55 1.00 0.32 0.55 1.00 0.55 0.55 0.55 0.55 0.55 0.55					3.93		0.18		27				0.61							0.72	1.058	0.548	0.057	-0.431
0.69 0.10 1.84 3.93 1.25 0.18 1.13 0.27 0.50 0.67 0.01 0.61 0.82 1.70 0.39 1.20 1.21 0.72 1.048 0.737 0.047 0.69 0.10 1.84 3.93 1.25 0.18 1.13 0.27 0.50 0.67 0.01 0.61 0.82 1.70 0.39 0.11 1.20 1.21 0.72 1.059 0.535 0.057 0.69 0.10 1.84 3.93 1.25 0.18 1.13 0.27 0.50 0.67 0.01 0.61 0.82 1.70 0.39 0.11 1.20 0.72 1.059 0.537 0.057 0.69 0.10 1.84 3.93 1.25 0.18 1.13 0.27 0.50 0.67 0.01 0.61 0.82 1.70 0.39 0.11 1.20 0.72 1.059 0.537 0.057 0.69 0.10 1.84 3.93 1.25 0.18 1.13 0.27 0.50 0.67 0.01 0.61 0.82 1.70 0.39 0.11 1.20 0.72 1.059 0.575 0.055 0.69 0.10 1.84 3.93 1.25 0.18 1.13 0.27 0.50 0.67 0.01 0.61 0.82 1.70 0.39 0.11 1.20 0.72 1.056 0.575 0.055 0.69 0.10 1.84 3.93 1.25 0.18 1.13 0.27 0.50 0.67 0.01 0.61 0.82 1.70 0.39 0.11 1.20 1.21 1.067 0.575 0.055 0.69 0.10 1.84 3.93 1.25 0.18 1.13 0.27 0.50 0.67 0.01 0.61 0.82 1.70 0.39 0.11 1.20 1.21 1.067 0.575 0.055 0.69 0.10 1.84 3.93 1.25 0.18 1.13 0.27 0.50 0.67 0.01 0.61 0.82 1.70 0.39 0.11 1.20 1.21 1.067 0.575 0.055 0.69 0.10 1.84 3.93 1.25 0.18 1.13 0.27 0.50 0.67 0.01 0.61 0.82 1.70 0.39 0.11 1.20 1.21 1.067 0.575 0.055 0.69 0.10 1.84 3.93 1.25 0.18 1.13 0.27 0.50 0.67 0.01 0.61 0.82 1.70 0.39 0.11 1.20 1.21 1.067 0.575 0.055 0.65 Jackknife estimate (mean) 1.096 \leftarrow Jackknife standard error, 0.273 1.0022 JS BiAs = 19(1.024 52- 1.032 JS) = -,0632 7 $= 1.0232 S^{-1} = 0.632 S^{-1} = 0.032 S^{-1} = 0.032 S^{-1} = 0.0437$ $= 1.0232 S^{-1} = 0.032 S^{-1} = 0.032 S^{-1} = 0.0437$	$\begin{array}{cccccccccccccccccccccccccccccccccccc$			0.10	• •	3.93		0.18		27											0.72	1.048	0.738	0.047	-0.251
0.69 0.10 1.84 3.93 1.25 0.18 1.13 0.27 0.50 0.67 0.01 0.61 0.82 1.70 0.39 1.20 1.21 0.72 1.037 0.962 0.036 0.69 0.10 1.84 3.93 1.25 0.18 1.13 0.27 0.50 0.67 0.01 0.61 0.82 1.70 0.39 0.11 1.20 0.72 1.059 0.537 0.057 0.69 0.10 1.84 3.93 1.25 0.18 1.13 0.27 0.50 0.67 0.01 0.61 0.82 1.70 0.39 0.11 1.20 0.72 1.059 0.57 0.055 0.69 0.10 1.84 3.93 1.25 0.18 1.13 0.27 0.50 0.67 0.01 0.61 0.82 1.70 0.39 0.11 1.20 1.21 1.067 0.575 0.055 0.69 0.10 1.84 3.93 1.25 0.18 1.13 0.27 0.50 0.67 0.01 0.61 0.82 1.70 0.39 0.11 1.20 1.21 1.057 0.575 0.055 0.69 0.10 1.84 3.93 1.25 0.18 1.13 0.27 0.50 0.67 0.01 0.61 0.82 1.70 0.39 0.11 1.20 1.21 1.057 0.575 0.055 0.69 0.10 1.84 3.93 1.25 0.18 1.13 0.27 0.50 0.67 0.01 0.61 0.82 1.70 0.39 0.11 1.20 1.21 1.067 0.575 0.055 0.69 0.10 1.84 3.93 1.25 0.18 1.13 0.27 0.50 0.67 0.01 0.61 0.82 1.70 0.39 0.11 1.20 1.21 1.067 0.575 0.055 0.69 0.10 1.84 3.93 1.25 0.18 1.13 0.27 0.50 0.67 0.01 0.61 0.82 1.70 0.39 0.11 1.20 1.21 1.067 0.575 0.055 0.69 0.10 1.84 3.93 1.25 0.18 1.13 0.27 0.50 0.67 0.01 0.61 0.82 1.70 0.39 0.11 1.20 1.21 1.067 0.575 0.055 Jackknife estimate (mean) 1.096 \leftarrow Jackknife standard error 0.273 Lower 95% confidence interval 0.526 Upper 95% confidence interval 0.526 Upper 95% confidence interval 1.666 Upper 95% confidence interval 1.666 Upper 95% confidence interval 1.666 Jackknife 3.73 1.004512 $= 1.02355$ $= 7.063277$ $= 7.063277$ $= 1.032.85-(-DL_3277)= 1.09612$	0.69 0.10 1.84 3.93 1.25 0.18 1.13 0.27 0.50 0.67 0.01 0.61 0.82 1.70 0.39 0.11 0.69 0.10 1.84 3.93 1.25 0.18 1.13 0.27 0.50 0.67 0.01 0.61 0.82 1.70 0.39 0.11 0.69 0.10 1.84 3.93 1.25 0.18 1.13 0.27 0.50 0.67 0.01 0.61 0.82 1.70 0.39 0.11 0.69 0.10 1.84 3.93 1.25 0.18 1.13 0.27 0.50 0.67 0.01 0.61 0.82 1.70 0.39 0.11 0.69 0.10 1.84 3.93 1.25 0.18 1.13 0.27 0.50 0.67 0.01 0.61 0.82 1.70 0.39 0.11 0.69 0.10 1.84 3.93 1.25 0.18 1.13 0.27 0.50 0.67 0.01 0.61 0.82 1.70 0.39 0.11 0.69 0.10 1.84 3.93 1.25 0.18 1.13 0.27 0.50 0.67 0.01 0.61 0.82 1.70 0.39 0.11 0.69 0.10 1.84 3.93 1.25 0.18 1.13 0.27 0.50 0.67 0.01 0.61 0.82 1.70 0.39 0.11 0.69 0.10 1.84 3.93 1.25 0.18 1.13 0.27 0.50 0.67 0.01 0.61 0.82 1.70 0.39 0.11 0.69 0.10 1.84 3.93 1.25 0.18 1.13 0.27 0.50 0.67 0.01 0.61 0.82 1.70 0.39 0.11 0.69 0.10 1.84 3.93 1.25 0.18 1.13 0.27 0.50 0.67 0.01 0.61 0.82 1.70 0.39 0.11 0.69 0.10 1.84 3.93 1.25 0.18 1.13 0.27 0.50 0.67 0.01 0.61 0.82 1.70 0.39 0.11 0.69 0.10 1.84 3.93 1.25 0.18 1.13 0.27 0.50 0.67 0.01 0.61 0.82 1.70 0.39 0.11 0.69 0.10 1.84 3.93 1.25 0.18 1.13 0.27 0.50 0.67 0.01 0.61 0.82 1.70 0.39 0.11 0.69 0.10 1.84 3.93 1.25 0.18 1.13 0.27 0.50 0.67 0.01 0.61 0.82 1.70 0.39 0.11 0.69 0.10 1.84 3.93 1.25 0.18 1.13 0.27 0.50 0.67 0.01 0.61 0.82 1.70 0.39 0.11 0.69 0.10 1.84 3.93 1.25 0.18 1.13 0.27 0.50 0.67 0.01 0.61 0.82 1.70 0.39 0.11 0.69 0.10 1.84 3.93 1.25 0.18 1.13 0.27 0.50 0.67 0.01 0.61 0.82 1.70 0.39 0.10 0.60 0.60 0.60 0.60 0.60 0.60 0.60			0.10	• •	3.93		0.18		27						i.70	Ŭ				0.72	1.048	0.737	0.047	-0.252
0.69 0.10 1.84 3.93 1.25 0.18 1.13 0.27 0.50 0.67 0.01 0.61 0.82 1.70 0.39 0.11 1.20 0.72 1.059 0.537 0.057 0.69 0.10 1.84 3.93 1.25 0.18 1.13 0.27 0.50 0.67 0.01 0.61 0.82 1.70 0.39 0.11 1.20 1.21 1.057 0.575 0.055 0.65 0.10 1.84 3.93 1.25 0.18 1.13 0.27 0.50 0.67 0.01 0.61 0.82 1.70 0.39 0.11 1.20 1.21 1.057 0.575 0.055 0.65 0.10 1.84 3.93 1.25 0.18 1.13 0.27 0.50 0.67 0.01 0.61 0.82 1.70 0.39 0.11 1.20 1.21 1.057 0.575 0.055 0.65 0.67 0.01 0.61 0.82 1.70 0.39 0.11 1.20 1.21 1.057 0.575 0.055 0.65 0.60 0.67 0.01 0.61 0.82 1.70 0.39 0.11 1.20 1.21 1.057 0.575 0.055 0.65 0.10 1.84 3.93 1.25 0.18 1.13 0.27 0.50 0.67 0.01 0.61 0.62 1.70 0.39 0.11 1.20 1.21 1.057 0.575 0.055 0.655 0.100 1.84 3.93 1.25 0.18 1.13 0.27 0.50 0.67 0.01 0.61 0.52 1.70 0.39 0.11 1.20 1.21 1.067 0.273 0.555 0.053 0.027 0.526 0.055 0.055 0.053 0.027 0.526 0.055 0.055 0.053 0.027 0.526 0.055 0.053 0.055 0.053 0.055 0.053 0.055 0.053 0.055 0.053 0.055 0.053 0.055 0.053 0.055 0.053 0.053 0.055 0.053	0.69 0.10 1.84 3.93 1.25 0.18 1.13 0.27 0.50 0.67 0.01 0.61 0.82 1.70 0.39 0.11 0.69 0.10 1.84 3.93 1.25 0.18 1.13 0.27 0.50 0.67 0.01 0.61 0.82 1.70 0.39 0.11 0.69 0.10 1.84 3.93 1.25 0.18 1.13 0.27 0.50 0.67 0.01 0.61 0.82 1.70 0.39 0.11 1 Junction 1.84 3.93 1.25 0.18 1.13 0.27 0.50 0.67 0.01 0.61 0.82 1.70 0.39 0.11 1 Junction 1.84 3.93 1.25 0.18 1.13 0.27 0.50 0.67 0.01 0.61 0.82 1.70 0.39 0.11 0.69 0.10 1.84 3.93 1.25 0.18 1.13 0.27 0.50 0.67 0.01 0.61 0.82 1.70 0.39 0.11 1 Junction 1.84 3.93 1.25 0.18 1.13 0.27 0.50 0.67 0.01 0.61 0.82 1.70 0.39 0.11 1 Junction 1.84 3.93 1.25 0.18 1.13 0.27 0.50 0.67 0.01 0.61 0.82 1.70 0.39 0.11 1 Junction 1.84 3.93 1.25 0.18 1.13 0.27 0.50 0.67 0.01 0.61 0.82 1.70 0.39 0.11 1 Junction 1.84 3.93 1.25 0.18 1.13 0.27 0.50 0.67 0.01 0.61 0.82 1.70 0.39 0.11 1 Junction 1.84 3.93 1.25 0.18 1.13 0.27 0.50 0.67 0.01 0.61 0.82 1.70 0.39 0.11 1 Junction 1.84 3.93 1.25 0.18 1.13 0.27 0.50 0.67 0.01 0.61 0.82 1.70 0.39 0.11 1 Junction 1.84 3.93 1.25 0.18 1.13 0.27 0.50 0.67 0.01 0.61 0.82 1.70 0.39 0.11 1 Junction 1.84 3.93 1.25 0.18 1.13 0.27 0.50 0.67 0.01 0.61 0.82 1.70 0.39 0.11 1 Junction 1.84 3.93 1.25 0.18 1.13 0.27 0.50 0.67 0.01 0.61 0.82 1.70 0.39 0.11 1 Junction 1.84 3.93 1.25 0.18 1.13 0.27 0.50 0.67 0.01 0.61 0.82 1.70 0.39 0.11 1 Junction 1.84 3.93 1.25 0.18 1.13 0.27 0.50 0.67 0.01 0.61 0.82 0.50 1.00 0.67 0.01 0.61 0.82 0.50 1.00 0.60 0.60 0.60 0.60 0.60 0.60 0.6			0.10		3.93		0.18		27							0.39	-	20		0.72	1.037	0.962	0.036	-0.037
0.69 0.10 1.84 3.93 1.25 0.18 1.13 0.27 0.50 0.67 0.01 0.61 0.82 1.70 0.39 0.11 1.20 0.72 1.059 0.537 0.055 0.69 0.10 1.84 3.93 1.25 0.18 1.13 0.27 0.50 0.67 0.01 0.61 0.82 1.70 0.39 0.11 1.20 1.21 1.057 0.575 0.055 Jackknife estimate (mean) 1.096 \leftarrow Jackknife standard error, 0.278 Lower 95% confidence interval 0.526 Upper 95% confidence interval 1.666 1.032 85 81.45 1.023 251 = 1.032 853 =06327 = 1.0235 $= 19(1.02952 - 1.03235) =06327$	0.69 0.10 1.84 3.93 1.25 0.18 1.13 0.27 0.50 0.67 0.01 0.61 0.82 1.70 0.39 0.11 0.69 0.10 1.84 3.93 1.25 0.18 1.13 0.27 0.50 0.67 0.01 0.61 0.82 1.70 0.39 0.11 Junce I Junce I Jun			0.10		3.93		0.18	ო	57								0.11			0.72	1.059	0.535	0.057	-0.444
0.69 0.10 1.84 3.93 1.25 0.18 1.13 0.27 0.50 0.67 0.01 0.61 0.82 1.70 0.39 0.11 1.20 1.21 1.057 0.575 0.055 Jackhnife estimate (mean) 1.096 \leftarrow Jackhnife standard error, 0.273 Lower 95% confidence interval 0.526 Upper 95% confidence interval 1.666 1.032 85 BiAs = 19(1.029 52-1.03285) = -,06327 = 1.02952 = 7 \hat{O}_{ron} = $\hat{O} - BiAs = 1.032 85-(-,0.2327) = 1.09612$	0.69 0.10 1.84 3.93 1.25 0.18 0.27 0.50 0.67 0.01 0.61 0.82 1.70 0.39 0.11 Journal	· ~ ·		0.10		3.93		0.18	ო	27									.20	0	0.72	1.059	0.537	0.057	-0.442
Jackhnife estimate (mean) 1.096 Jackhnife standard error, 0.273 Lower 95% confidence interval 0.526 Upper 95% confidence interval 1.666 BiAs = 19(1.02952 - 1.03285) = -,06327 $= 2 \hat{\sigma}_{ror} = \hat{\sigma} - Bi\hat{A} = 1.03285 - (-,0.527) = 1.09612$	$BiAs = 19(1.02952 - 1.03285) = -,0632^{-1}$ $BiAs = 1.032850632^{-1}$		•		1.84	3.93	1.25		1.13	53	I	67	5		82					.21	:	1.057	0.575	0.055	-0.405
Jackhnife standard error 0.273 Lower 95% confidence interval 0.526 Upper 95% confidence interval 1.666 Upper 95% confidence interval 1.666 $JAS = 19(1.02952 - 1.03285) = -,06327= 7 \hat{\sigma}_{rorr} = \hat{\sigma} - 81\hat{A}S = 1.03285 - (-,0.6327) = 1.09612$	Lower Upper BIAS = 19(1.02952-1.03285)= -,0632 => Grack = O-BIAS = 1.03285-														-			Jac	kknife	estin	nate (i	nean)	1 ⁻	4	0.133
$B_{1}AS = 19(1.02952 - 1.03285) = -,06327$ $B_{2}AS = -19(1.02952 - 1.03285) = -,06327$ $= 2 \hat{\sigma}_{20.1} = \hat{\sigma}_{-8}\hat{A}S = 1.03285 - (-,0.327) = 1.09612$	BIAS = 19(1.02952-1.03285)= -,06 => Grack = G-BIAS = 1.032			14														Ja	lckkni	fe sta	ndard	error	0.273		0.290
$B_{1}A_{5} = 19(1.02952 - 1.03285) =06327$ $= 2 \hat{\sigma}_{20.1} = \hat{\sigma}_{-} B_{1}A_{5} = 1.03285 - (06327) = 1.09612$	BiAS = 19(1.02952-1.03285)= -,06 => Grack = O-BIAS = 1.032					• •											Ľ,	ower 9	22% CC	nfide	nce in	terval	0.526		-0.473
BiAs = 19(1.02952-1.03285)= -,06327 => Grain = G-BIAS = 1.03285-(-,06327)=	BiAS = 19(1.02952-1.03285)= -,06											-					D	pper 15	5% CC	nfide	nce in	terval	1.666		0.740
BIAS = 19(1.02952-1.03285)= -,06327 => Gran. = O-BIAS = 1.03285-(-06327)=	BIAS = 19(1.02952-1.03285)= -,0(=> Grack = G-BIAS = 1.032			â			•				-	-									. .				
=> Grain = G-BIAS = 1.032 85-(-06327)=	=> GJACK = G-BIAS = 1.032		0 II	32 (هَ/	•				ょ		328	\sim	}	06				•	`			<i>.</i>
=> 0-BIAS = 1.032 85-(-06327)=	=> Grack = G-BIAS = 1.032			i i	۲ ۱	-			۲			K		(
		ت _ا	<u>`</u> "	024	25			介	0			6	B	₹ S		1.03		с Г С		5.3	(12		09612		

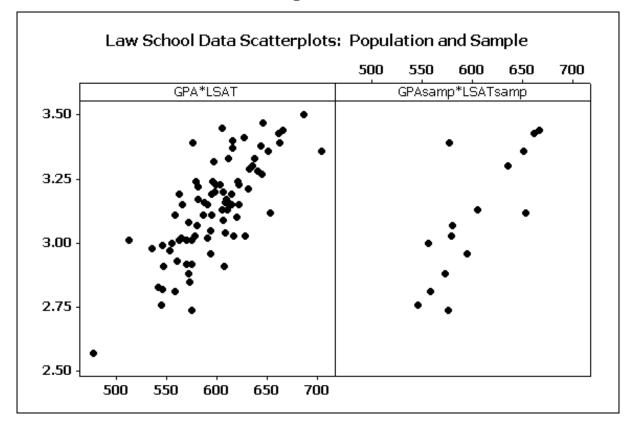

.

Table 4.1: Law School data in Efron and Tibshirani (1993)

school	LSAT	GPA									
1	622	3.23	22	614	3.19	43	573	2.85	63	572	3.08
2	542	2.83	23	628	3.03	44	644	3.38	64	610	3.13
3	579	3.24	24	575	3.01	(45)	545	2.76	65	562	3.01
(4)	653	3.12	25	662	3.39	46	645	3.27	66	635	3.30
5	606	3.09	26	627	3.41	(47)	651	3.36	67	614	3.15
(6)	576	3.39	27	608	3.04	48	562	3.19	68	546	2.82
7	620	3.10	28	632	3.29	49	609	3.17	69	598	3.20
8	615	3.40	29	587	3.16	(50)	555	3.00	(70)	666	3.44
9	553	2.97	30	581	3.17	51	586	3.11	71	570	3.01
10	607	2.91	(31)	605	3.13	(52)	580	3.07	72	570	2.92
11	558	3.11	32	704	3.36	(53)	594	2.96	73	605	3.45
12	596	3.24	33	477	2.57	54	594	3.05	74	565	3.15
(13)	635	3.30	34	591	3.02	55	560	2.93	75	686	3.50
14	581	3.22	(35)	578	3.03	56	641	3.28	76	608	3.16
(15)	661	3.43	(36)	572	2.88	57	512	3.01	77	595	3.19
16	547	2.91	37	615	3.37	58	631	3.21	78	590	3.15
17	599	3.23	38	606	3.20	59	597	3.32	(79)	558	2.81
18	646	3.47	39	603	3.23	60	621	3.24	80	611	3.16
19	622	3.15	40	535	2.98	61	617	3.03	81	564	3.02
20	611	3.33	41	595	3.11	62	637	3.33	(82)	575	2.74
21	546	2.99	42	575	2.92						

Sampled schools have bold-faced school numbers.

Figure 4.1

- Reconsider the law school data in Table 4.1 and Figure 4.1 on the previous page.
- $\hat{\rho} = r = \text{Pearson correlation coefficient}$
- $\hat{\xi} = \frac{1}{2} ln \left(\frac{1+r}{1-r} \right) = \text{transformed Pearson correlation coefficient}$
- We will use R to generate bootstrap estimates of ρ and ξ for the law school data given on the previous page.

R output for Bootstrapping r and $\hat{\xi}$

> # Bootstrap the Pearson correlation coefficient

ORDINARY NONPARAMETRIC BOOTSTRAP

Bootstrap Statistics :

original bias std. error t1* 0.7763745 -0.006956509 0.1324587

BOOTSTRAP CONFIDENCE INTERVAL CALCULATIONS Based on 10000 bootstrap replicates

Intervals : Level Normal Basic 95% (0.5237, 1.0429) (0.5914, 1.0887)

Level Percentile BCa 95% (0.4641, 0.9613) (0.3369, 0.9403)

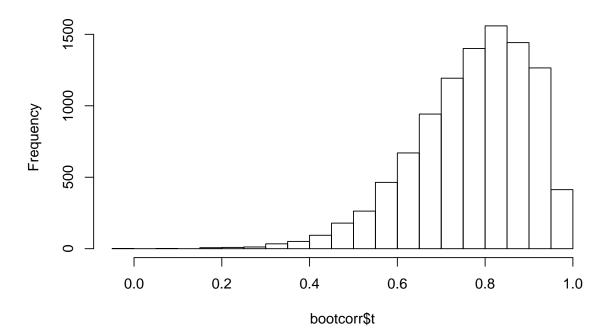
> # Bootstrap the transformed Pearson correlation coefficient

ORDINARY NONPARAMETRIC BOOTSTRAP

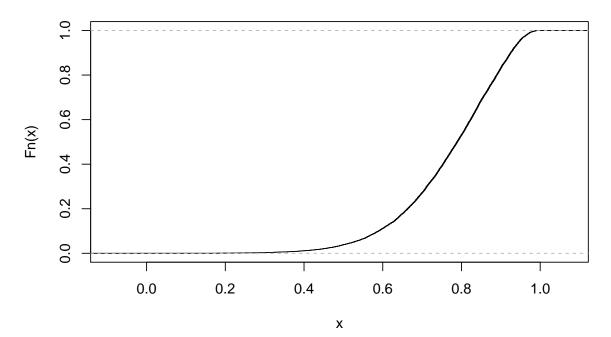
Bootstrap Statistics :

original bias std. error t1* 1.036178 0.08097614 0.3794925

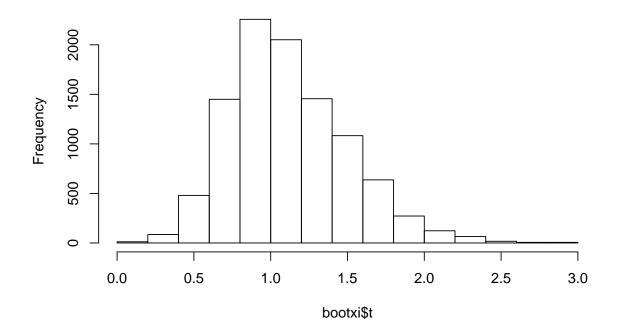
BOOTSTRAP CONFIDENCE INTERVAL CALCULATIONS Based on 10000 bootstrap replicates

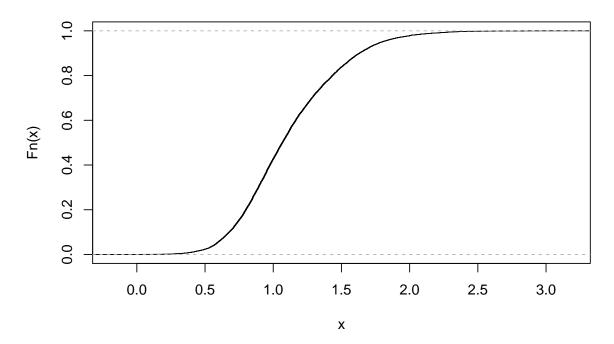

Intervals : Level Normal Basic 95% (0.211, 1.699) (0.105, 1.565) Level Percentile BCa 95% (0.507, 1.967) (0.356, 1.759)

R code for Bootstrapping r and $\hat{\xi}$


```
library(boot)
LSAT <- c(576,635,558,578,666,580,555,661,651,605,653,575,545,572,594)
GPA <- c(3.39,3.30,2.81,3.03,3.44,3.07,3.00,3.43,3.36,3.13,3.12,2.74,
2.76, 2.88, 2.96
n = length(LSAT)
Brep = 10000
xy <- data.frame(cbind(LSAT,GPA))</pre>
# Bootstrap the Pearson correlation coefficient
pearson <- function(d,i=c(1:n)){</pre>
        d2 <- d[i,]
        return(cor(d2$LSAT,d2$GPA))
     }
bootcorr <- boot(data=xy,statistic=pearson,R=Brep)</pre>
bootcorr
boot.ci(bootcorr,conf=.95)
windows()
par(mfrow=c(2,1))
hist(bootcorr$t,main="Bootstrap Pearson Sample Correlation Coefficients")
plot(ecdf(bootcorr$t),main="ECDF of Bootstrap Correlation Coefficients")
# Bootstrap the transformed Pearson correlation coefficient
xihat <- function(dd,i=c(1:n)){</pre>
        dd2 <- dd[i,]
        return(.5*log((1+cor(dd2$LSAT,dd2$GPA)))/(1-cor(dd2$LSAT,dd2$GPA))))
     }
bootxi <- boot(data=xy,statistic=xihat,R=Brep)</pre>
bootxi
boot.ci(bootxi,conf=.95)
windows()
par(mfrow=c(2,1))
hist(bootxi$t,main="Bootstrap Transformed Correlation Coefficients")
plot(ecdf(bootxi$t),main="ECDF of Bootstrap Transformed Correlation
Coefficients")
```

Here are histograms and ECDF plots of 10000 bootstrap replications of r and $\hat{\xi}$.


Bootstrap Pearson Sample Correlation Coefficients


ECDF of Bootstrap Correlation Coefficients

Bootstrap Transformed Correlation Coefficients

ECDF of Bootstrap Transformed Correlation Coefficients

