
3 Resampling Methods: The Jackknife

3.1 Introduction

• In this section, much of the content is a summary of material from Efron and Tibshirani
(1993) and Manly (2007). Here are several useful reference texts on resampling methods.

1. Davison and Hinkley (1997) Bootstrapping and its Applications, Cambridge University Press.

2. Efron, B. (1982) The Jackknife, the Bootstrap and Other Resampling Plans, SIAM.

3. Efron, B. and Tibshirani, R.J. (1993) An Introduction to the Bootstrap, Chapman & Hall.

4. Manly, Bryan F.J. (2007) Randomization, Bootstrap, and Monte Carlo Methods in Biology, Chap-
man & Hall/CRC Press.

5. Shao, J. and Tu, T. (1995) The Jackknife and Bootstrap, Springer-Verlag.

• In statistical inference, the goal is often the estimation of parameters or some characteris-
tics of a probability distribution f based on a random sample x = (x1, x2, . . . , xn) of size
n taken from f .

• The empirical distribution function f̂ is the discrete distribution that assigns proba-
bility 1/n to each value xi (i = 1, 2, . . . , n) in the sample. Note: this is not a cumulative
distribution function.

• Note: the xi values do not have to be unique. That is, xi could equal xj for some i 6= j.

• If there are repeated data values, we can express f̂ as a vector of observed frequencies f̂k
for each observed value k. That is,

f̂k =
Number of cases when xi = k

n

• Therefore, f̂ assigns to any set A the empirical probability

P̂({A}) =
Number of cases when xi ∈ A

n

• Table 3.1 contains data from a population of 82 pairs of average LSAT scores and average
GPA of 82 American law schools who participated in a study of admission practices. The
LSAT is an exam required for admittance into a US law school. The GPA is the student
grade point average. A random sample of 15 pairs of LSAT scores and GPA was selected
from the 82 schools. The sampled schools are in parentheses ().

• Figure 3.1 contains scatterplots of the the average LSAT scores versus the average GPA
scores for (i) the population and (ii) the sample.

– The empirical distribution f̂ assigns probability 1/15 to each of the 15 data points.
Consider the set A = {(y, z) : y < 600, z < 3.00} where y is the LSAT score and z is

the GPA. Then the empirical probability P̂({A}) = 5/15 because 5 of the 15 schools
are elements of the set A.

– In statistical inference, we want to make inferences about the population shown in
the left-side plot based on the sample shown in the right-side plot (Figure 3.1).

– Specifically, we may want to make inferences about the population correlation coef-
ficient based on the sample correlation coefficient.
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Table 3.1: Law School data in Efron and Tibshirani (1993)

school LSAT GPA school LSAT GPA school LSAT GPA school LSAT GPA

1 622 3.23 22 614 3.19 43 573 2.85 63 572 3.08
2 542 2.83 23 628 3.03 44 644 3.38 64 610 3.13
3 579 3.24 24 575 3.01 (45) 545 2.76 65 562 3.01

(4) 653 3.12 25 662 3.39 46 645 3.27 66 635 3.30
5 606 3.09 26 627 3.41 (47) 651 3.36 67 614 3.15

(6) 576 3.39 27 608 3.04 48 562 3.19 68 546 2.82
7 620 3.10 28 632 3.29 49 609 3.17 69 598 3.20
8 615 3.40 29 587 3.16 (50) 555 3.00 (70) 666 3.44
9 553 2.97 30 581 3.17 51 586 3.11 71 570 3.01
10 607 2.91 (31) 605 3.13 (52) 580 3.07 72 570 2.92
11 558 3.11 32 704 3.36 (53) 594 2.96 73 605 3.45
12 596 3.24 33 477 2.57 54 594 3.05 74 565 3.15

(13) 635 3.30 34 591 3.02 55 560 2.93 75 686 3.50
14 581 3.22 (35) 578 3.03 56 641 3.28 76 608 3.16

(15) 661 3.43 (36) 572 2.88 57 512 3.01 77 595 3.19
16 547 2.91 37 615 3.37 58 631 3.21 78 590 3.15
17 599 3.23 38 606 3.20 59 597 3.32 (79) 558 2.81
18 646 3.47 39 603 3.23 60 621 3.24 80 611 3.16
19 622 3.15 40 535 2.98 61 617 3.03 81 564 3.02
20 611 3.33 41 595 3.11 62 637 3.33 (82) 575 2.74
21 546 2.99 42 575 2.92

Sampled schools have bold-faced school numbers.

Figure 3.1
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• Consider the following random sample of 50 values:

2 0 1 1 3 0 1 2 1 3 1 2 0 1 1 2 2 0 1 2 0 1 3 2 1
1 0 2 1 0 1 1 3 2 0 1 2 3 1 1 3 0 0 1 1 2 0 1 3 0

The empirical distribution f̂ would assign probability 1/50 to each of the 50 data values.

But, for a random sample, we can summarize f̂ by

(f̂1, f̂2, f̂3, f̂4) =

(
12

50
,
20

50
,
11

50
,

7

50

)
= (.24, .40, .22, .14)

where f̂i = the proportion of xi values = 0, 1, 2, and 3, respectively for i = 1, 2, 3, 4.

• Mathematical statistics results: It can be proved that the vector of observed frequencies
f = (f̂1, f̂2, f̂3, . . .) is a sufficient statistic for the true distribution f . That is, all of the
information about f that is contained in the sample x = (x1, x2, . . . , xn) is also contained

in f = (f̂1, f̂2, f̂3, . . .).

– Remember that the sufficiency assumes that the data set has been generated by
random sampling. For other data sets (such as time series data) this will not be true.

– We can also write a parameter θ directly as a function of f . That is, θ = t(F ).
For example, µX = the expectation of a random variable X can be written as the
parameter θ = µX = Ef (X) = t(f).

• A parameter is a function of a probability distribution F . A statistic is a function of a
sample x.

– For the law school data, the parameters µy = 597.55, µz = 3.135, and ρ = .761. Based
on the sample of size n = 15, the corresponding statistics are y = 600.3, z = 3.095,
and Pearson’s sample correlation coefficient r = .776.

3.2 The Jackknife Method

• Let θ be some parameter associated with a distribution f . Suppose We have a random
sample x = (x1, x2, . . . , xn) and an estimator θ̂ of θ, and the goal is to estimate the bias

and standard error of θ̂.

• Let x(i) be the sample but with the ith observation removed:

x(i) = (x1, x2, . . . , xi−1, xi+1, . . . , xn) (1)

x(i) is the ith jackknife sample.

• The jackknife method of estimation is based on the n jackknife samples x(i) (i =
1, 2, . . . , n).

• Suppose θ̂ = g(x) for some function g of the data. The ith jackknife replication of θ̂ is

θ̂(i) = g(x(i)) (2)
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• For example, consider the following example from Manly (2007) summarized in Table 3.2.
The goal is to estimate the population standard deviation. That is, θ = σ.

– The data set has n = 20 values given in the row labeled Data. Manly (2007)
calculated the square root of the biased MLE estimator of the variance having n
instead of n− 1 in the denominator:

θ̂ = σ̂ =

√√√√ 1

n

20∑
i=1

(xi − x)2 = 1.03

(and not the sample standard deviation s which has (n− 1) = 19 df).

– Rows labeled 1 to 20 have one value removed, leaving 19 remaining values. The 19
values in columns 1 to 20 form the 20 jackknife samples.

– The ith jackknife replication is

σi =

√√√√ ̂1

19

∑
j 6=i

(xj − x)2

which is calculated from the 19 values (without xi) in the ith jackknife sample. The
values are given in the first SD column.

3.2.1 Jackknife Bias Estimation

• Let θ̂(·) =
n∑

i=1

θ̂(i)/n. The jackknife estimate of bias is defined as

b̂ias(θ̂) = (n− 1)(θ̂(·) − θ̂) (3)

• The bias-corrected jackknife estimate of θ is

θ̂jack = θ̂ − b̂ias(θ̂) = nθ̂ − (n− 1)θ̂(·)

• Mathematically, it can be shown that b̂ias(θ̂) is an unbiased estimator of the true bias for
many statistics.

• For other statistics, although θ̂jack is a biased estimator of the true bias, the bias of θ̂jack
is reduced in comparison to the unadjusted estimate θ̂.
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3.2.2 Jackknife Standard Error Estimation

• Consider what we usually do when estimating a mean of a distribution. We use the sample

mean X =
n∑

i=1

Xi as our estimator.

• To see the relationship with jackknife estimation, we can write the mean with the ith

observation removed as X(i) as:

X(i) =

(∑n
j=1Xj

)
−Xi

n− 1

• Therefore an individual Xi can be written as

Xi =

(
n∑

j=1

Xj

)
− (n− 1)X(i) = nX − (n− 1)X(i). (4)

That is, it is possible to determine an observation from the sample mean and from the
sample mean with the ith observation removed.

• We now apply this approach to statistics other than the sample mean. For example, when
estimating a parameter θ with estimator θ̂, if we replace the sample means in (4) with the
corresponding estimators of θ, we have

PV(x(i)) = nθ̂ − (n− 1)θ̂(i)

• PV(x(i)) is called the ith pseudo-value.

• Note that we expect that PV(x(i)) ≈ nθ − (n− 1)θ = θ. Thus, each pseudo-value can be
viewed as an estimate of θ, and the average of the pseudo-values is

PV =
1

n

n∑
i=1

(
nθ̂ − (n− 1)θ̂(i)

)
=

n∑
i=1

θ̂ + (n− 1)

(
1

n

n∑
i=1

θ̂(i)

)
= nθ̂ − (n− 1)θ̂(·)

which is the bias-corrected jackknife estimate. That is, PV = θ̂jack. This suggests the

natural estimator for the variance of θ̂jack is s2jack/n where s2jack is the sample variance of
the n pseudo-values:

v̂ar(θ̂jack) =
s2jack
n

=
1

n

1

n− 1

n∑
i=1

(
PV(x(i))− PV

)2
. (5)

and the jackknife standard error of θ̂jack is s.e.(θ̂jack) =

√
v̂ar(θ̂jack).

• In their textbook, Efron and Tibshirani (1993) state that the jackknife standard error is

s.e.(θ̂jack) =

[
n− 1

n

n∑
i=1

(θ̂(i) − θ̂(·))2
]1/2

=

[
(n− 1)2

n
× (s2 for the θ̂(i) values)

]1/2
(6)

It can be shown that the standard errors in (5) and (6) are computationally equivalent.
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• Look again at the example in Table 3.2. The goal was to estimate the population standard
deviation σ. So, in this example, θ = σ.

– The uncorrected estimate θ̂ = σ̂ = 1.03285 ≈ 1.03. (in the SD column of Data row).

– The 20 sample the jackknife replications (σ̂(i) values) appear in the SD column.

– The 20 pseudo-values (the PV(x(i)) values) appear in the PVi column.

– The average of the pseudo-values PV = σ̂jack = 1.09616 ≈ 1.096.

– Therefore, b̂ias(σ̂) ≈ (19)(1.02952− 1.03285) = −.06327 (slight round-off error).

– Or, you can estimate the bias using

b̂ias(σ̂) = θ̂ − θ̂jack ≈ 1.03285− 1.09616 ≈ −.06331 (more accurate).

• Suppose we want to apply the jackknife method to 3 other situations:

1. Suppose we wanted to estimate θ = µ? What would happen if we use the sample
mean (θ̂ = X)?

2. Suppose we wanted to estimate θ = σ? What would happen if we use the sample
standard deviation (θ̂ = s)?

3. Suppose we wanted to estimate θ = σ2? What would happen if we use the sample
standard variance (θ̂ = s2)?

The results are summarized in the following table.

Parameter Statistic θ̂(·) θ̂ b̂ias(θ̂) θ̂jack s.e.(θ̂jack)
µ x 1.04450 1.04450 0 1.04450 0.23695
σ s 1.05773 1.05968 −0.03710 1.09678 0.28028

σ
√
σ̂2
MLE 1.02952 1.03285 −0.06331 1.09616 0.27280

σ2 s2 1.12292 1.12292 0 1.12292 0.54424

• There are several important things to notice in these results.

1. We know x and s2 are unbiased estimators of µ and σ2. Therefore, applying the
jackknife method to an unbiased estimator has no effect. That is, θ̂jack = θ̂, and the
estimated bias will then be 0.

2. Both bias-corrected estimates of σ are still biased, but the bias is reduced compared
to the original estimates (statistics). After bias correction, the two θ̂jack values for
estimating σ are very close.

3. The standard errors can then be used to calculate t-based confidence intervals:

θ̂jack ± t∗ s.e.(θ̂jack)

where t∗ is the 1 − α/2 critical value from a t-distribution with n − 1 degrees of
freedom.

44



Theta(hat) values for 4 different estimates

mean s s^2 s_mle
1.0445 1.05968 1.12292 1.03285

Jackknife Samples and Jackknife Replications (Table 3.2 data)

Obs y1 y2 y3 y4 y5 y6 y7 y8 y9 y10 y11 y12 y13 y14 y15

1 . 0.69 0.1 1.84 3.93 1.25 0.18 1.13 0.27 0.5 0.67 0.01 0.61 0.82 1.7
2 3.56 . 0.1 1.84 3.93 1.25 0.18 1.13 0.27 0.5 0.67 0.01 0.61 0.82 1.7
3 3.56 0.69 . 1.84 3.93 1.25 0.18 1.13 0.27 0.5 0.67 0.01 0.61 0.82 1.7
4 3.56 0.69 0.1 . 3.93 1.25 0.18 1.13 0.27 0.5 0.67 0.01 0.61 0.82 1.7
5 3.56 0.69 0.1 1.84 . 1.25 0.18 1.13 0.27 0.5 0.67 0.01 0.61 0.82 1.7
6 3.56 0.69 0.1 1.84 3.93 . 0.18 1.13 0.27 0.5 0.67 0.01 0.61 0.82 1.7
7 3.56 0.69 0.1 1.84 3.93 1.25 . 1.13 0.27 0.5 0.67 0.01 0.61 0.82 1.7
8 3.56 0.69 0.1 1.84 3.93 1.25 0.18 . 0.27 0.5 0.67 0.01 0.61 0.82 1.7
9 3.56 0.69 0.1 1.84 3.93 1.25 0.18 1.13 . 0.5 0.67 0.01 0.61 0.82 1.7
10 3.56 0.69 0.1 1.84 3.93 1.25 0.18 1.13 0.27 . 0.67 0.01 0.61 0.82 1.7
11 3.56 0.69 0.1 1.84 3.93 1.25 0.18 1.13 0.27 0.5 . 0.01 0.61 0.82 1.7
12 3.56 0.69 0.1 1.84 3.93 1.25 0.18 1.13 0.27 0.5 0.67 . 0.61 0.82 1.7
13 3.56 0.69 0.1 1.84 3.93 1.25 0.18 1.13 0.27 0.5 0.67 0.01 . 0.82 1.7
14 3.56 0.69 0.1 1.84 3.93 1.25 0.18 1.13 0.27 0.5 0.67 0.01 0.61 . 1.7
15 3.56 0.69 0.1 1.84 3.93 1.25 0.18 1.13 0.27 0.5 0.67 0.01 0.61 0.82 .
16 3.56 0.69 0.1 1.84 3.93 1.25 0.18 1.13 0.27 0.5 0.67 0.01 0.61 0.82 1.7
17 3.56 0.69 0.1 1.84 3.93 1.25 0.18 1.13 0.27 0.5 0.67 0.01 0.61 0.82 1.7
18 3.56 0.69 0.1 1.84 3.93 1.25 0.18 1.13 0.27 0.5 0.67 0.01 0.61 0.82 1.7
19 3.56 0.69 0.1 1.84 3.93 1.25 0.18 1.13 0.27 0.5 0.67 0.01 0.61 0.82 1.7
20 3.56 0.69 0.1 1.84 3.93 1.25 0.18 1.13 0.27 0.5 0.67 0.01 0.61 0.82 1.7

Obs y16 y17 y18 y19 y20 j(mean) j(s) j(s^2) j(s_mle)

1 0.39 0.11 1.2 1.21 0.72 0.91211 0.90292 0.81526 0.87884
2 0.39 0.11 1.2 1.21 0.72 1.06316 1.08534 1.17796 1.05639
3 0.39 0.11 1.2 1.21 0.72 1.09421 1.06449 1.13314 1.03610
4 0.39 0.11 1.2 1.21 0.72 1.00263 1.07159 1.14830 1.04301
5 0.39 0.11 1.2 1.21 0.72 0.89263 0.83570 0.69840 0.81341
6 0.39 0.11 1.2 1.21 0.72 1.03368 1.08758 1.18284 1.05858
7 0.39 0.11 1.2 1.21 0.72 1.09000 1.06846 1.14160 1.03996
8 0.39 0.11 1.2 1.21 0.72 1.04000 1.08852 1.18488 1.05949
9 0.39 0.11 1.2 1.21 0.72 1.08526 1.07249 1.15023 1.04388
10 0.39 0.11 1.2 1.21 0.72 1.07316 1.08073 1.16797 1.05190
11 0.39 0.11 1.2 1.21 0.72 1.06421 1.08494 1.17710 1.05601
12 0.39 0.11 1.2 1.21 0.72 1.09895 1.05959 1.12272 1.03132
13 0.39 0.11 1.2 1.21 0.72 1.06737 1.08364 1.17426 1.05473
14 0.39 0.11 1.2 1.21 0.72 1.05632 1.08736 1.18236 1.05836
15 0.39 0.11 1.2 1.21 0.72 1.01000 1.07712 1.16018 1.04839
16 . 0.11 1.2 1.21 0.72 1.07895 1.07715 1.16025 1.04842
17 0.39 . 1.2 1.21 0.72 1.09368 1.06501 1.13424 1.03660
18 0.39 0.11 . 1.21 0.72 1.03632 1.08807 1.18389 1.05905
19 0.39 0.11 1.2 . 0.72 1.03579 1.08798 1.18370 1.05896
20 0.39 0.11 1.2 1.21 . 1.06158 1.08589 1.17915 1.05692

R code for jackknifing the Manly data

library(bootstrap)
# The Manly data
x <- c(3.56, 0.69, 0.10, 1.84, 3.93, 1.25, 0.18, 1.13, 0.27, 0.50,

0.67, 0.01, 0.61, 0.82, 1.70, 0.39, 0.11, 1.20, 1.21, 0.72)

# Sample mean
mean(x)
# Jackknife the mean
jackmean <- jackknife(x,mean)
jackmean
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# Bias-corrected jackknife estimate
meanjack = mean(x) - jackmean$jack.bias
meanjack

# Sample standard deviation
sd(x)
# Jackknife the standard deviation
jacksd <- jackknife(x,sd)
jacksd
# Bias-corrected jackknife estimate
sdjack = sd(x) - jacksd$jack.bias
sdjack

# Sample standard deviation with n in denominator (MLE)
sdmle <- function(x)(sqrt((length(x)-1)/length(x))*sd(x))
sdmle(x)
# Jackknife the MLE standard deviation (denominator with n)
jacksdmle <- jackknife(x,sdmle)
jacksdmle
# Bias-corrected jackknife estimate
sdmlejack = sdmle(x) - jacksdmle$jack.bias
sdmlejack

# Sample variance
var(x)
# Jackknife the variance
jackvar <- jackknife(x,var)
jackvar
# Bias-corrected jackknife estimate
varjack = var(x) - jackvar$jack.bias
varjack

R output for Jackknifing the Manly Data

# Jackknife the mean
----------------------
# Sample mean 1.0445
jack.se 0.2369516
jack.bias 0

jack.values
[1] 0.9121053 1.0631579 1.0942105 1.0026316 0.8926316 1.0336842 1.0900000
[8] 1.0400000 1.0852632 1.0731579 1.0642105 1.0989474 1.0673684 1.0563158

[15] 1.0100000 1.0789474 1.0936842 1.0363158 1.0357895 1.0615789

# Bias-corrected jackknife estimate 1.0445

# Jackknife the standard deviation
------------------------------------
# Sample standard deviation 1.059680
jack.se 0.2802791
jack.bias -0.03710029

jack.values
[1] 0.9029186 1.0853369 1.0644890 1.0715868 0.8357022 1.0875825 1.0684568
[8] 1.0885209 1.0724860 1.0807253 1.0849440 1.0595853 1.0836350 1.0873628

[15] 1.0771155 1.0771511 1.0650050 1.0880677 1.0879814 1.0858855

# Bias-corrected jackknife estimate 1.096780
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# Jackknife the MLE standard deviation (denominator with n)
-----------------------------------------------------------
# Sample standard deviation with n in denominator (MLE) 1.032848
jack.se 0.2728037
jack.bias -0.06330983

jack.values
[1] 0.8788364 1.0563893 1.0360975 1.0430060 0.8134128 1.0585751 1.0399595
[8] 1.0594885 1.0438813 1.0519008 1.0560070 1.0313246 1.0547329 1.0583612

[15] 1.0483872 1.0484218 1.0365998 1.0590473 1.0589633 1.0569234

# Bias-corrected jackknife estimate 1.096158

# Jackknife the variance
------------------------
# Sample variance 1.122921
jack.se 0.5442438
jack.bias 0

jack.values
[1] 0.8152620 1.1779561 1.1331368 1.1482982 0.6983982 1.1828357 1.1416000
[8] 1.1848778 1.1502263 1.1679673 1.1771035 1.1227211 1.1742649 1.1823579

[15] 1.1601778 1.1602544 1.1342357 1.1838912 1.1837035 1.1791474

# Bias-corrected jackknife estimate 1.122921

3.3 Jackknifing the Correlation Coefficient

• Let us consider estimation of a correlation coefficient ρ. We will calculate the jackknife
estimates from the 15 (y, z) points from the following law school data (see Figure 3.1 and
Table 3.1). Recall: LSAT score = y, GPA = z.

School LSAT GPA School LSAT GPA School LSAT GPA

1 576 3.39 6 580 3.07 11 653 3.12
2 635 3.30 7 555 3.00 12 575 2.74
3 558 2.81 8 661 3.43 13 545 2.76
4 578 3.03 9 651 3.36 14 572 2.88
5 666 3.44 10 605 3.13 15 594 2.96
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R code for Jackknifing the law school data

# Jackknifing correlation coefficients for the law school data

library(bootstrap)
n=15; # the number of design points

yzdata <- as.matrix(c(576,3.39,580,3.07,653,3.12,
635,3.30,555,3.00,575,2.74,558,2.81,661,3.43,545,2.76,
578,3.03,651,3.36,572,2.88,666,3.44,605,3.13,594,2.96))
dim(yzdata) <- c(2,n)

indata <- t(yzdata)

#
# Jackknifing Pearson’s correlation coefficient
#
corr <- function(yz,indata) { cor(indata[yz,1],indata[yz,2]) }

# Pearson’s correlation coefficient r
sampcorr <- cor(indata[1:n,1],indata[1:n,2])
sampcorr

# Jackknife Pearson’s correlation coefficient
jacklaw <- jackknife(1:n,corr,indata)
jacklaw

# Bias-corrected jackknife estimate
corrjack = sampcorr - jacklaw$jack.bias
corrjack

R output for Jackknifing the law school data

> # Pearson’s correlation coefficient r
[1] 0.7763745
>
> # Jackknife Pearson’s correlation coefficient
$jack.se
[1] 0.1425186

$jack.bias
[1] -0.006473623

$jack.values
[1] 0.8929471 0.7799687 0.8181007 0.7637068 0.7845360 0.7857184 0.7549984
[8] 0.7361618 0.7403509 0.7760968 0.7517391 0.7670413 0.7313197 0.7761231

[15] 0.7798725

> # Bias-corrected jackknife estimate
[1] 0.7828481

48



3.4 Jackknifing Bioequivalence

• The following example was taken from Efron and Tibshirani (1993). It involves ratio
estimation.

• In this study, 8 subjects wore medical patches that release a hormone into the blood stream.
Each subject had blood levels of the hormone measured after wearing 3 different patches:
(1) a patch containing no hormone (placebo), (2) a patch containing hormones manufac-
tured at the old site (oldpatch), and (3) a patch containing hormones manufactured at the
new site (newpatch).

• Two differences were calculated;

z = oldpatch − placebo y = newpatch − oldpatch

• The goal of the study was to establish bioequivalence. The patches manufactured at the
new site needed to be approved by the US Food and Drug Administration (FDA). This
required showing that they were bioequivalent to patches manufactured at the old site.

• The goal is to establish that patches manufactured at the new and old site “match”
(bioequivalent).

• The following table summarizes the experimental data:

subject placebo oldpatch newpatch z y
1 9243 17649 16449 8406 −1200
2 9671 12013 14614 2342 2601
3 11792 19979 17274 8187 −2705
4 13357 21816 23798 8459 1982
5 9055 13850 12560 4795 −1290
6 6290 9806 10157 3516 351
7 12412 17208 16570 4796 −638
8 18806 29044 26325 10238 −2719

z = y =
6342 −452.3

• Statistically, the FDA criterion for bioequivalence is

|E(newpatch)− E(oldpatch)|
E(oldpatch)− E(placebo)

≤ .20

That is, the FDA wants the patches from the new site match the patches from the old site
within 20% of the amount of hormone added to the blood stream by patches from the old
site compared to placebo levels.

• Let the parameter θ be the ratio θ =
E(newpatch)− E(oldpatch)

E(oldpatch)− E(placebo)

• The estimate of θ is
θ̂ = y/z = −452.3/6342

• Now we just use jackknife estimation to calculate the eight θ̂(i) replications, take their

mean to get θ̂(·), and calculate the bias and standard errors using θ̂, θ̂(i), and θ̂(·).
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R code for jackknifing the bioequivlence data

# Jackknifing bioequivalence

library(bootstrap)
n = 8; # the number of design points

xx= c( 9243, 9671, 11792, 13357, 9055, 6290, 12412, 18806)
zz= c(17649, 12013, 19979, 21816, 13850, 9806, 17208, 29044)
yy= c(16449, 14614, 17274, 23798, 12560, 10157, 16570, 26325)

z = zz-xx
y = yy-zz
indata <- as.matrix(cbind(y,z))

# Sample bioequivalence
sampbioeq = mean(y)/mean(z)
sampbioeq

# Define the bioequivalence function

bioeq <- function(yz,indata) { mean(indata[yz,1])/mean(indata[yz,2]) }

# Jackknife the bioequivalence

jackbioeq <- jackknife(1:n,bioeq,indata)
jackbioeq

# Bias-corrected jackknife estimate
bioeqjack = sampbioeq - jackbioeq$jack.bias
bioeqjack

R output for jackknifing the bioequivlence data

> # Sample bioequivalence
[1] -0.0713061
>
> # Jackknife the bioequivalence
$jack.se
[1] 0.1055278

$jack.bias
[1] 0.008002488

$jack.values
[1] -0.05711856 -0.12849970 -0.02145610 -0.13245033 -0.05067038 -0.08404803
[7] -0.06486298 -0.02219698

> # Bias-corrected jackknife estimate
[1] -0.07930858
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3.5 Limitations of the Jackknife

• The jackknife method of estimation can fail if the statistic θ̂ is not smooth. Smoothness
implies that relatively small changes to data values will cause only a small change in the
statistic.

• The sample median is an example of a statistic that is not smooth.

• For example, look at the Manly (2007) data. The ordered values are

0.01 0.10 0.11 0.18 0.27 0.39 0.50 0.61 0.67 0.69
0.72 0.82 1.13 1.20 1.21 1.25 1.70 1.84 3.56 3.93

Note that there are only 2 different jackknife estimate values.

– 1/2 of the jackknife estimates = 0.72 (based deleting each of the first 10 values).

– 1/2 of the jackknife estimates = 0.69 (based deleting each of the last 10 values) has
a value of 0.72.

• Therefore, the jackknife is not a good estimation method for estimating percentiles (such
as the median), or when using any other non-smooth estimator.

• This will not be the case using the bootstrap method of estimation.

• An alternate the jackknife method of deleting one observation at a time is to delete d
observations at a time (d ≥ 2). This is known as the delete-d jackknife.

• Because we are deleting d, there will be
(
n
d

)
jackknife samples of size n− d and therefore(

n
d

)
jackknife replications, and the estimate of the standard error is(

n− d
d
(
n
d

) ∑(θ̂(i) − θ̂(·))2
)1/2

where the summation is take over all
(
n
d

)
subsets of points.

• One reason to use the delete-d jackknife is to handle cases of non-smooth estimators.

• In practice, if n is large and d is chosen such that
√
n < d < n, then the problems of

non-smoothness are removed.
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