
M 274 An introduction to Complex Numbers.

1 Solving equations

Throughout the calculus sequence we have limited our discussion to real valued solutions to equations.
We know the equation x2 − 1 = 0 has distinct real roots x = 1 and x = −1. The equation (x− 1)2 = 0
has a repeated real root of x = 1. However, the equation x2 + 1 = 0 has no real-valued roots.

It will turn out that solutions to the equation x2 + 1 = 0, although not real-valued, will be very
important to the development of this subject and in many other applications. To that end, we make
the following definition.

Definition 1.1. Define i by i2 := −1 and choose i =
√
−1. We will call i the imaginary unit.

With this expanded version of what we mean by a solution to an equation we can solve equations
that previously had no solution. For example,

x2 + 1 = 0

x2 = −1

x = ±
√
−1

x = ±i.

Similarly, we can apply the quadratic formula to solve the equation x2 + 3x+ 3 = 0 as follows

x =
−3±

√
9− 12

2

=
−3±

√
−3

2

=
−3± i

√
3

2
.

Although we could stop at this point and make use of the algebraic mechanics of i to help us solve
differential equations, there are some useful and beautiful results that we will consider in the following
sections.

2 Algebra of Complex Numbers

Definition 2.1. A complex number z is a a number of the form z = a + ib where a, b ∈ R. In this
case we write z ∈ C. The modulus or magnitude is

|z| =
√
a2 + b2,

the conjugate is
z̄ = a− ib,

the real part is
Re (z) = a ∈ R,

and the imaginary part is
Im (z) = b ∈ R.

It is important to note that Im (z) is a real number, i.e., Im(z) = b 6= ib. Additionally, two complex
numbers z and w are equal if and only if Re (z) = Re (w) and Im (z) = Im (w). In particular, a complex
number z is equal to zero if and only if Re (z) = Im (z) = 0. It is traditional to use x for a generic real
variable and z to represent a generic complex variable.
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Basic Operations.
Let z = a+ ib and w = c+ id.
Addition is defined by adding the real parts and the imaginary parts,

z + w = (a+ ib) + (c+ id) = (a+ c) + i(b+ d).

Multiplication is performed by using the standard distribution process, grouping, and i2 = −1, so

zw = (a+ ib)(c+ id) = ac+ iad+ ibc+ i2bd = (ac− bd) + i(ad+ bc).

With this in mind, multiplication by the complex conjugate has the curious and very useful property of
always giving a real value,

zz̄ = (a+ ib)(a− ib) = a2 + b2 ∈ R.
Division by a complex number is a little tricky to think about, but the preceding result points us in
the correct direction. Multiplying the numerator and denominator by the complex conjugate of the
denominator will convert the denominator into a real value,

z

w
=
zw̄

ww̄
.

Example. It is useful to to see an example of this last result,

1

−1 + i
=

1

−1 + i
· −1− i
−1− i

=
−1− i

(−1)2 − (i2)
=
−1− i

2
=
−1

2
− i1

2
. (1)

3 Polar Representation

Since complex numbers are composed from two real numbers, it is appropriate to think of them graph-
ically in a plane. The horizontal axis representing the real axis, the vertical representing the imaginary
axis.

z = a+ ib

a = Re(z)

b = Im(z)

θ = arg zr =
|z| =
√ a

2 + b
2

Figure 1: The complex number z = a+ ib.

In 172 we saw that we could view points in a plane using polar coordinates. We do the same in the
complex plane with

z = a+ ib = r(cos θ + i sin θ). (2)

As before, r =
√
a2 + b2 = |z|, i.e., the distance from the pole. We define the argument of z to be the

angle θ between the real axis and the segment connecting the pole to z, and write

arg z = θ.

Although the polar representation is helpful, it becomes even more useful when we introduce Euler’s
Formula. Specifically, for any real number θ we make the following definition

eiθ := cos θ + i sin θ.

A natural question arises, does it make sense to use exponential language? Two important properties
of the exponential for us are,
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1. exey = ex+y, and

2. y = eat is the unique solution to the initial value problem y′ = ay, y(0) = 1.

Do these properties hold if we allow the exponents to be of the form iθ? It turns out they do, but are
worth looking at closely.

1. The first is a application of the addition laws for sine and cosine. Specifically,

sin(θ + φ) = sin θ cosφ+ cos θ sinφ, and

cos(θ + φ) = cos θ cosφ− sin θ sinφ.

With these in mind we proceed as follows,

eiθeiφ = (cos θ + i sin θ)(cosφ+ i sinφ)

= cos θ cosφ− sin θ sinφ+ i(sin θ cosφ+ cos θ sinφ)

= cos(θ + φ) + i sin(θ + φ)

= ei(θ+φ).

(3)

2. In this case we are interested in if z = eiθ satisfies the initial value problem z′ = iz, z(0) = 1.
Before we can provide an answer, we need to understand how to differentiate a complex valued
function f(t) : R → C. For f(t) = u(t) + iv(t) where u(t) and v(t) are real valued the derivative
works as you would expect, differentiate each real valued function u(t) and v(t) with i a constant.
Specifically,

f ′(t) = u′(t) + iv′(t).

One last algebraic note before we show z = eiθ is the unique solution to the initial value problem,
since i2 = −1 dividing by i gives

i =
−1

i
.

We use this below to show z = eiθ satisfies the differential equation z′ = iz as follows,

z′ =
d

dθ
eiθ

=
d

dθ
(cos θ + i sin θ)

= − sin θ + i cos θ

= i

(
cos θ − 1

i
sin θ

)
= i(cos θ + i sin θ)

= ieiθ

= iz.

Showing z = eiθ satisfies the initial data z(0) = 1 is a trivial trigonometry exercise (assuming we
all know the value of cos 0 and sin 0, which we do, right?),

z(0) = ei0

= cos 0 + i sin 0

= 1.

Exercise for the interested reader. Assuming that Taylor series work with complex numbers
the same as they do for real numbers (they do), find the Taylor series representation for eiθ and show
that it can be regrouped into the series representation for cos θ + i sin θ. Hint, write out the first few
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terms, collect all real valued terms into one series and all imaginary into the other. The Appendix in
the text details this argument as well.

Using Euler’s formula we can express the polar form in (2) as

z = reiθ.

This combined with the result in (3) gives us a very nice way to view multiplication in the complex
plane,

z1z2 = r1e
iθ1r2e

iθ2 = r1r2e
i(θ1+θ2).

In other words, we multiply the lengths, i.e., the moduli, and add the arguments. In particular, since
i = eiπ/2 has modulus 1, multiplying any complex number by i just rotates it counterclockwise 90◦ in
the complex plane.

4 Three Applications

Often by converting a problem into the complex plane we can simplify the computations. Three examples
of this type of argument follow.

Example 1. Prove1 the identity sin(α+ β) = sinα cosβ + cosα sinβ.

sin(α+ β) = Im
(
ei(α+β)

)
= Im

(
eiαeiβ

)
= Im ((cosα+ i sinα)(cosβ + i sinβ))

= sinα cosβ + cosα sinβ

Example 2. Prove A cos θ +B sin θ = C cos (θ − φ) where C =
√
A2 +B2 and tanφ = B/A.

z = A+ iB

z̄ = A− iB

A = Re(z)

B = Im(z)

−B = Im(z̄)

φ

−φ

Figure 2: Example 2

Let u = cos θ + i sin θ and z = A+ iB so that z̄ = A− iB. The product uz̄ is easy to compute,

uz̄ = (cos θ + i sin θ)(A− iB)

= (A cos θ +B sin θ) + i(A sin θ −B cos θ).
(4)

1The attentive reader will note that we used this identity to show eiαeiβ = ei(α+β) in (3). It is circular to write this
’proof.’ However, there will likely come a day when you forget the addition law for sine and having a convenient way to
compute may come in handy.
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Now, consider the exponential form of each; u = eiθ and z̄ = Cei(−φ). We again consider the product,

uz̄ = eiθCei(−φ)

= Cei(θ−φ)

= C(cos (θ − φ) + i sin (θ − φ)).

(5)

Equating the real parts of (4) and (5) gives the desired result,

A cos θ +B sin θ = C cos (θ − φ).

Example 3. In 172 we computed the integral

∫
e−x cosx dx using integration by parts twice. With

the machinery we now have available we can consider a related complex valued integral and then take
the real part. Since cosx = Re(eix), we can integrate as follows∫

e−x cosx dx = Re

∫
e−xeix dx

= Re

∫
e(−1+i)x dx

= Re

(
1

−1 + i
e(−1+i)x + C

)
It is worth pausing briefly to note the integration was about as simple as it gets. However, we need to
figure out what dividing by (−1 + i) means. Luckily we already did in (1). Additionally, we have to
compute the real part, which can take some work. So, to finish we have,∫

e−x cosx dx = Re

(
−1− i

2
e−xeix

)
+ c

= Re

(
e−x

2
(−1− i)(cosx+ i sinx)

)
+ c

= Re

(
e−x

2
(− cos(x) + sinx+ i(stuff we don’t care about))

)
+ c

=
e−x

2
(− cos(x) + sinx) + c.

One final note, the C in the first part is complex valued, when we take the real part we have a real
valued constant c in the lower part.
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5 Homework

1. Solve the following equations. Your solutions may be complex.

(a) (x+ 1)2 − 4 = 0

(b) (x− 1)2 + 4 = 0

(c) x2 + 2x+ 2 = 0

(d) x2 + 4x+ 7 = 0

2. Perform the indicated operation; express your solution in the form a+ ib with a, b ∈ R.

(a) (2− 5i)− (3 + 4i)

(b)
3 + i

4− 2i

(c) Solve (2 + i)z = 2.

3. Evaluate.

(a) eiπ + 1

(b) Re
(
(2− 3i)e2πi/3

)
4. For α, β, v1, v2 ∈ R evaluate.

(a) Re
(
e(α+iβ)t

)
(b) Im

(
e(α+iβ)t

)
(c) Re

(
e(α+iβ)t(v1 + iv2)

)
(d) Im

(
e(α+iβ)t(v1 + iv2)

)
5. Let z(t) = u(t) + iv(t) be a solution to

ay′′ + by′ + cy = 0 (6)

with a, b, c, u(t), v(t) ∈ R. Show u(t) and v(t) are real-valued solutions to (6).

6. Verify the identity cos(θ + φ) = cos θ cosφ− sin θ sinφ.

7. For s a positive constant, evaluate the integral∫
e−st sin(bt) dt.

Hint: sin(bt) = Im(eibt).
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6 Solutions

1. (a) x = 1 or x = −3

(b) x = 1± 2i

(c) x = −1± i
(d) x = −2± i

√
3

2. (a) −1− 9i

(b)
1 + i

2
=

1

2
+ i

1

2

(c) z =
4− 2i

5
=

4

5
− i2

5
.

3. (a) eiπ + 1 = 0. This is known as Euler’s Identity and is often argued to be one of the most
beautiful equations in mathematics.

(b)
3
√

3

2
− 1

4. (a) eαt cosβt

(b) eαt sinβt

(c) eαt (v1 cosβt− v2 sinβt)

(d) eαt (v1 sinβt+ v2 cosβt)

5. By assumption, z(t) = u(t) + iv(t) is a solution to (6) so

az′′ + bz′ + cz = 0,

a(u′′ + iv′′) + b(u′ + iv′) + c(u+ iv) = 0,

(au′′ + bu′ + cu) + i(av′′ + bv′ + cv) = 0.

Since a complex number is zero if and only if the real and imaginary parts are zero we have

au′′ + bu′ + cu = 0 and av′′ + bv′ + cv = 0.

Hence, both u(t) and v(t) are real-valued solutions of (6).

6. Verify the identity cos(θ + φ) = cos θ cosφ− sin θ sinφ.

cos(θ + φ) = Re(ei(θ+φ))

= Re
(
eiθeiφ

)
= Re ((cos θ + i sin θ)(cosφ+ i sinφ))

= cos θ cosφ− sin θ sinφ

7. For s a positive constant,∫
e−st sin(bt) dt = − e−st

s2 + b2
(b cos (bt) + s sin (bt)) + c.
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