0.

nen

t is

ctor

the

try:

tors

Problem Set 1.2

Calculate the dot products $u \cdot v$ and $u \cdot w$ and $u \cdot (v + w)$ and $w \cdot v$:

$$u = \begin{bmatrix} -.6 \\ .8 \end{bmatrix}$$
 $v = \begin{bmatrix} 3 \\ 4 \end{bmatrix}$ $w = \begin{bmatrix} 8 \\ 6 \end{bmatrix}$.

- Compute the lengths ||u|| and ||v|| and ||w|| of those vectors. Check the Schwarz inequalities $|u \cdot v| \le ||u|| ||v||$ and $||v \cdot w| \le ||v|| ||w||$.
- Find unit vectors in the directions of v and w in Problem 1, and the cosine of the angle θ . Choose vectors a, b, c that make 0° , 90° , and 180° angles with w.
- For any unit vectors v and w, find the dot products (actual numbers) of
 - (a) v and -v (b) v + w and v w (c) v 2w and v + 2w
- Find unit vectors u_1 and u_2 in the directions of v = (3, 1) and w = (2, 1, 2). Find unit vectors U_1 and U_2 that are perpendicular to u_1 and u_2 .
- **6** (a) Describe every vector $\mathbf{w} = (w_1, w_2)$ that is perpendicular to $\mathbf{v} = (2, -1)$.
 - (b) The vectors that are perpendicular to V = (1, 1, 1) lie on a _____.
 - (c) The vectors that are perpendicular to (1, 1, 1) and (1, 2, 3) lie on a _____.
- 7 Find the angle θ (from its cosine) between these pairs of vectors:

(a)
$$v = \begin{bmatrix} 1 \\ \sqrt{3} \end{bmatrix}$$
 and $w = \begin{bmatrix} 1 \\ 0 \end{bmatrix}$ (b) $v = \begin{bmatrix} 2 \\ 2 \\ -1 \end{bmatrix}$ and $w = \begin{bmatrix} 2 \\ -1 \\ 2 \end{bmatrix}$

(c)
$$v = \begin{bmatrix} 1 \\ \sqrt{3} \end{bmatrix}$$
 and $w = \begin{bmatrix} -1 \\ \sqrt{3} \end{bmatrix}$ (d) $v = \begin{bmatrix} 3 \\ 1 \end{bmatrix}$ and $w = \begin{bmatrix} -1 \\ -2 \end{bmatrix}$.

- 8 True or false (give a reason if true or a counterexample if false):
 - (a) If u is perpendicular (in three dimensions) to v and w, those vectors v and w are parallel.
- (b) If u is perpendicular to v and w, then u is perpendicular to v + 2w.
 - (c) If u and v are perpendicular unit vectors then $||u v|| = \sqrt{2}$.
- The slopes of the arrows from (0,0) to (v_1, v_2) and (w_1, w_2) are v_2/v_1 and w_2/w_1 . Suppose the product v_2w_2/v_1w_1 of those slopes is -1. Show that $v \cdot w = 0$ and the vectors are perpendicular.
- Draw arrows from (0,0) to the points v = (1,2) and w = (-2,1). Multiply their slopes. That answer is a signal that $v \cdot w = 0$ and the arrows are _____.
- 11 If $v \cdot w$ is negative, what does this say about the angle between v and w? Draw a 3-dimensional vector v (an arrow), and show where to find all w's with $v \cdot w < 0$.

- With v = (1, 1) and w = (1, 5) choose a number c so that w cv is perpendicular to v. Then find the formula that gives this number c for any nonzero v and w. (Note: cv is the "projection" of w onto v.)
- 13 Find two vectors v and w that are perpendicular to (1,0,1) and to each other.
- 14 Find nonzero vectors u, v, w that are perpendicular to (1, 1, 1, 1) and to each other.
- The geometric mean of x=2 and y=8 is $\sqrt{xy}=4$. The arithmetic mean is larger: $\frac{1}{2}(x+y)=$ _____. This would come in Example 6 from the Schwarz inequality for $v=(\sqrt{2},\sqrt{8})$ and $w=(\sqrt{8},\sqrt{2})$. Find $\cos\theta$ for this v and w.
- How long is the vector v = (1, 1, ..., 1) in 9 dimensions? Find a unit vector u in the same direction as v and a unit vector w that is perpendicular to v.
- What are the cosines of the angles α , β , θ between the vector (1, 0, -1) and the unit vectors i, j, k along the axes? Check the formula $\cos^2 \alpha + \cos^2 \beta + \cos^2 \theta = 1$.

Problems 18-31 lead to the main facts about lengths and angles in triangles.

The parallelogram with sides v = (4, 2) and w = (-1, 2) is a rectangle. Check the Pythagoras formula $a^2 + b^2 = c^2$ which is for **right triangles only**:

$$(\text{length of } v)^2 + (\text{length of } w)^2 = (\text{length of } v + w)^2.$$

19 (Rules for dot products) These equations are simple but useful:

(1)
$$\mathbf{v} \cdot \mathbf{w} = \mathbf{w} \cdot \mathbf{v}$$
 (2) $\mathbf{u} \cdot (\mathbf{v} + \mathbf{w}) = \mathbf{u} \cdot \mathbf{v} + \mathbf{u} \cdot \mathbf{w}$ (3) $(c\mathbf{v}) \cdot \mathbf{w} = c(\mathbf{v} \cdot \mathbf{w})$
Use (2) with $\mathbf{u} = \mathbf{v} + \mathbf{w}$ to prove $\|\mathbf{v} + \mathbf{w}\|^2 = \mathbf{v} \cdot \mathbf{v} + 2\mathbf{v} \cdot \mathbf{w} + \mathbf{w} \cdot \mathbf{w}$.

20 The "Law of Cosines" comes from $(v - w) \cdot (v - w) = v \cdot v - 2v \cdot w + w \cdot w$:

Cosine Law
$$\|v - w\|^2 = \|v\|^2 - 2\|v\| \|w\| \cos \theta + \|w\|^2$$
.

If $\theta < 90^{\circ}$ show that $||v||^2 + ||w||^2$ is larger than $||v - w||^2$ (the third side).

21 The *triangle inequality* says: (length of v + w) \leq (length of v) + (length of w). Problem 19 found $||v + w||^2 = ||v||^2 + 2v \cdot w + ||w||^2$. Use the Schwarz inequality $v \cdot w \leq ||v|| ||w||$ to show that ||side 3|| can not exceed ||side 1|| + ||side 2||:

Triangle
$$\|v+w\|^2 \le (\|v\|+\|w\|)^2$$
 or $\|v+w\| \le \|v\|+\|w\|$.

- 22 The Schwarz inequality $|v \cdot w| \le ||v|| ||w||$ by algebra instead of trigonometry:
 - (a) Multiply out both sides of $(v_1w_1 + v_2w_2)^2 \le (v_1^2 + v_2^2)(w_1^2 + w_2^2)$.
 - (b) Show that the difference between those two sides equals $(v_1w_2 v_2w_1)^2$. This cannot be negative since it is a square—so the inequality is true.

ular w.

er.

dity

u in

unit 1.

the

). alitt

 $(v_1)^2$

 $\begin{array}{c|c} w = (w_1, w_2) \\ \hline w \\ \hline \theta \\ \hline \end{array}$

- 23 The figure shows that $\cos \alpha = v_1/\|v\|$ and $\sin \alpha = v_2/\|v\|$. Similarly $\cos \beta$ is _____ and $\sin \beta$ is ____. The angle θ is $\beta \alpha$. Substitute into the trigonometry formula $\cos \beta \cos \alpha + \sin \beta \sin \alpha$ for $\cos(\beta \alpha)$ to find $\cos \theta = v \cdot w/\|v\| \|w\|$.
- One-line proof of the Schwarz inequality $|u \cdot U| \le 1$ for unit vectors:

$$|\mathbf{u} \cdot \mathbf{U}| \le |u_1| |U_1| + |u_2| |U_2| \le \frac{u_1^2 + U_1^2}{2} + \frac{u_2^2 + U_2^2}{2} = \frac{1+1}{2} = 1.$$

Put $(u_1, u_2) = (.6, .8)$ and $(U_1, U_2) = (.8, .6)$ in that whole line and find $\cos \theta$.

- **25** Why is $|\cos \theta|$ never greater than 1 in the first place?
- **26** If v = (1, 2) draw all vectors w = (x, y) in the xy plane with $v \cdot w = x + 2y = 5$. Which is the shortest w?
- (Recommended) If ||v|| = 5 and ||w|| = 3, what are the smallest and largest values of ||v w||? What are the smallest and largest values of $v \cdot w$?

Challenge Problems

- Can three vectors in the xy plane have $\mathbf{u} \cdot \mathbf{v} < 0$ and $\mathbf{v} \cdot \mathbf{w} < 0$ and $\mathbf{u} \cdot \mathbf{w} < 0$?

 I don't know how many vectors in xyz space can have all negative dot products. (Four of those vectors in the plane would certainly be impossible ...).
- 29 Pick any numbers that add to x + y + z = 0. Find the angle between your vector v = (x, y, z) and the vector w = (z, x, y). Challenge question: Explain why $v \cdot w / \|v\| \|w\|$ is always $-\frac{1}{2}$.
- 30 How could you prove $\sqrt[3]{xyz} \le \frac{1}{3}(x+y+z)$ (geometric mean \le arithmetic mean)?
- 31 Find four perpendicular unit vectors with all components equal to $\frac{1}{2}$ or $-\frac{1}{2}$.
- Using v = randn(3, 1) in MATLAB, create a random unit vector $\mathbf{u} = \mathbf{v}/\|\mathbf{v}\|$. Using V = randn(3, 30) create 30 more random unit vectors U_j . What is the average size of the dot products $|\mathbf{u} \cdot U_j|$? In calculus, the average $\int_0^{\pi} |\cos \theta| d\theta/\pi = 2/\pi$.