Exam 1

MATH 221-02 February 20, 2015

Chapters 1, 2, and 5

1. (28 pts) Circle **T** or **F** below indicating whether the following statements are True or False. You do <u>not</u> need to justify your answers for this problem.

(a)	Т	\mathbf{F}	$\begin{bmatrix} 1 & 2 & 3 \\ 4 & 5 & 6 \\ 7 & 8 & 9 \end{bmatrix} \begin{bmatrix} 1 \\ -2 \\ 1 \end{bmatrix} = \begin{bmatrix} 0 \\ 0 \\ 0 \end{bmatrix}.$
(b)	\mathbf{T}	\mathbf{F}	Let $\boldsymbol{u} = \begin{bmatrix} 1 & 2 & 3 \end{bmatrix}$ and $\boldsymbol{v} = \begin{bmatrix} 3 & 6 & 9 \end{bmatrix}$. All linear combinations $a\boldsymbol{u} + b \boldsymbol{v}$ (a and b are
			scalars) form a plane in three dimensions.
(c)	\mathbf{T}	\mathbf{F}	Let \boldsymbol{u} and \boldsymbol{v} be $n \times 1$ vectors. If $\boldsymbol{u} \cdot \boldsymbol{v} = 1$ then the angle between \boldsymbol{u} and \boldsymbol{v}
			is between 0 and 90 degrees.
(d)	\mathbf{T}	\mathbf{F}	If \boldsymbol{u} and \boldsymbol{v} are $n \times 1$ vectors, then $\boldsymbol{u} \cdot \boldsymbol{v} \leq \boldsymbol{u} \boldsymbol{v} $.
(e)	\mathbf{T}	\mathbf{F}	If \boldsymbol{u} and \boldsymbol{v} are $n \times 1$ vectors, then $ \boldsymbol{u} + \boldsymbol{v} \le \boldsymbol{u} + \boldsymbol{v} $.
(f)	\mathbf{T}	\mathbf{F}	Let S be a 3×3 matrix with columns s_1 , s_2 , and s_3 . Then the linear
			combination $\mathbf{s}_1 - \mathbf{s}_2 + 5\mathbf{s}_3$ is equal to the matrix vector product $S \begin{bmatrix} 1 \\ -1 \\ 5 \end{bmatrix}$.
(g)	Т	\mathbf{F}	$\begin{bmatrix} 0 & 1 & 0 \\ 1 & 0 & 0 \\ 0 & 0 & 1 \end{bmatrix}^{-1} = \begin{bmatrix} 0 & 1 & 0 \\ 1 & 0 & 0 \\ 0 & 0 & 1 \end{bmatrix}.$
(h)	\mathbf{T}	\mathbf{F}	You find that an $n \times n$ matrix A has no solutions to $A \boldsymbol{x} = \boldsymbol{b}$ for
			one RHS b . Then $A\mathbf{x} = \mathbf{c}$ has no solutions for any other RHS \mathbf{c} .
(i)	\mathbf{T}	\mathbf{F}	$(A^{-1}B^{-1})^{-1} = AB.$
(j)	\mathbf{T}	\mathbf{F}	If A and B are $n \times n$ matrices then $(A - B)^2 = A^2 - 2AB + B^2$.
(k)	\mathbf{T}	\mathbf{F}	If A and B are $n \times n$ matrices, and $det(A) \neq 0$ and $det(B) \neq 0$, then the matrix
			C = AB is invertible.
(l)	\mathbf{T}	\mathbf{F}	If $det(A) = 5$, then $det(10A) = 50$.
(m)	\mathbf{T}	\mathbf{F}	If A is an $m \times n$ matrix, then $A^T A$ is symmetric.
(n)	\mathbf{T}	\mathbf{F}	If A is invertible and symmetric, then A^{-1} is symmetric.

^{2. (8} pts) Prove that $\boldsymbol{u} \cdot \boldsymbol{v} = ||\boldsymbol{u}|| ||\boldsymbol{v}|| \cos(\theta)$ where θ is the angle between \boldsymbol{u} and \boldsymbol{v} . Justify each step in your proof.

3. (14 pts) In each of the following, circle an appropriate statement from the options <u>statement1/statement2</u>. You do not need to justify your answers.

Assume that A is $n \times n$ and that the matrix system $A\boldsymbol{x} = \boldsymbol{b}$ has one solution.

- (a) A is singular/nonsingular.
- (b) A is invertible/(not invertible).
- (c) $A\mathbf{x} = \mathbf{b}$ has/(does not have) non-zero homogeneous (nullspace) solutions.
- (d) det(A) is/(is not) equal to zero.
- (e) \boldsymbol{b} is/(is not) a linear combination of the columns of A.
- (f) The columns of A are linearly dependent/independent.
- (g) When performing Gauss-Elimination to put the augmented matrix into row echelon form (assuming there are no row switches), there are/(are not) n non-zero pivot(s).
- 4. (6 pts) Fill in the blanks with the <u>number of solutions</u>. You do not need to justify your answers.

(a) The system $A\mathbf{x} = \mathbf{b}$ with augmented matrix $\begin{pmatrix} 1 & -1 & 2 & | & 0 \\ 0 & 10 & 1 & | & 1 \\ 0 & 10 & 1 & | & 1 \end{pmatrix}$ has _______ solution(s). (b) The system $A\mathbf{x} = \mathbf{b}$ with augmented matrix $\begin{pmatrix} 1 & -1 & 2 & | & 0 \\ 0 & 0 & 2 & | & 1 \\ 0 & 7 & 0 & | & 0 \end{pmatrix}$ has _______ solution(s). 5. (8 pts) The system $A\mathbf{x} = \mathbf{b}$ has augmented matrix $\begin{pmatrix} 1 & 6 & 3 & | & 0 \\ 0 & 1 & 1 & | & 1 \\ 0 & 0 & 0 & | & 0 \end{pmatrix}$.

(a) Find the solution(s) to the system $A\mathbf{x} = \mathbf{b}$. Identify any free variables if there are any. SHOW YOUR WORK!

(b) Write the solution(s) as a <u>particular solution</u> plus a <u>homogeneous</u> (or nullspace) solution, carefully identifying each.

- 6. Xavier is x years old. Yolande is y years old. Xavier is twice as old as Yolande; and their ages add to 33.
 - (a) (4 pts) Write out the linear system $A\mathbf{x} = \mathbf{b}$ that must be solved in order to find x and y. Carefully identify A, \mathbf{x} and \mathbf{b} in your answer.

(b) (8 pts) Give the augmented matrix then use Gauss Elimination to put the augmented matrix into row echelon form and solve for x and y. SHOW YOUR WORK!

(c) (4 pts) Write the RHS \boldsymbol{b} as a linear combination of the columns of the coefficient matrix A.

7. Let
$$A = \begin{pmatrix} 1 & 0 & 1 \\ 2 & 1 & 2 \\ 0 & 0 & 1 \end{pmatrix}$$
.

(a) (8 pts) Without actually trying to find the inverse of A, show that it is invertible. SHOW YOUR WORK and explain why your work proves invertibility.

(b) (12 pts) Find A^{-1} . SHOW YOUR WORK!