

Exam 2

Chapters 1-5

1. (19 pts, 1 pt each) Circle T or F indicating whether each of the following statements are True or False. You do not need to justify your answers.

A 3 dimensional vector space must contain the 3×1 zero vector 0.

The set of vectors $\begin{bmatrix} b_1 & b_2 & b_3 \end{bmatrix}$ in \mathbb{R}^3 with $b_1 = b_2$ is a vector space.

If A is a randomly generated 10×13 matrix, then it is almost certain that A has 13 pivots.

If $x \in N(A)$, then Ax = 0.

If $x \in N(A)$, then Ax = 0.

The rank of a matrix is the number of columns minus the number of free variables.

The subspace of \mathbb{R}^2 spanned by all vectors with positive components is the positive quadrant of \mathbb{R}^2 .

The vector c is in $C(A^T)$ if $A^Ty = c$ has a solution.

If Ax = b has a solution and if $A^Ty = 0$, then $b \cdot y = 0$.

For any matrix A, C(A) and $N(A^T)$ are orthogonal vector spaces.

If x and y are orthogonal, then $x \cdot y = 1$.

If $A = \begin{bmatrix} & & & & & \\ v_1 & v_2 & \dots & v_n \\ & & & & \end{bmatrix}$ then $\{v_1, v_2, \dots, v_n\}$ is a basis for C(A).

F

If A is a 15×14 matrix then A^{-1} is a 14×15 matrix.

If A is a 3×3 matrix and $\dim(C(A)) = 3$ then A is invertible.

If the columns of A are linearly independent, then there is only one least squares solution to Ax = b.

If
$$A = \begin{bmatrix} 1 & 1 & 1 \\ 0 & 0 & 0 \\ -1 & 1 & -1 \end{bmatrix}$$
 then $\dim(C(A)) = 2$.

Any set of n linearly independent vectors in \mathbb{R}^n is a basis for \mathbb{R}^n .

If the columns of A are linearly independent, then there is always at least 1 solution to Ax = b.

If A is a 3×2 matrix and $Ax = \begin{bmatrix} 5 \\ 1 \\ 3 \end{bmatrix}$ has only one solution then $N(A) = \{0\}$.

2. (12 pts) Let
$$A = \begin{bmatrix} 1 & 0 \\ 0 & 0 \\ 0 & 1 \end{bmatrix}$$
. Find the least squares solution to $Ax = \begin{bmatrix} 3 \\ 2 \\ 1 \end{bmatrix}$. SHOW YOUR

$$A^{T}A \times = A^{T}b \iff \begin{bmatrix} 1 & 0 & 0 \\ 0 & 0 & 1 \end{bmatrix} \begin{bmatrix} 1 & 0 \\ 0 & 0 \end{bmatrix} \begin{bmatrix} 1 & 0 \\ 0 & 0 \end{bmatrix} \begin{bmatrix} 1 & 0 \\ 2 & 1 \end{bmatrix}$$

$$\implies \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix} \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix} \begin{bmatrix} 1 & 0 \\ 2 & 1 \end{bmatrix}$$

$$\implies \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix} \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix} \begin{bmatrix} 1 & 0 \\ 2 & 1 \end{bmatrix}$$

3. (a) (8 pts) Let
$$A = \begin{bmatrix} 1 & 2 & 3 & 7 \\ 1 & 2 & 3 & -1 \\ 0 & 0 & 0 & 1 \\ 1 & 2 & 3 & 91 \end{bmatrix}$$
. Show that A is not invertible (using whatever method of your choice). Show your work.

(b) (6 pts) Based on your answer to (a), for any RHS $b \in C(A)$, how many solutions do you expect to Ax = b? Explain.

4. Let
$$A \Rightarrow \begin{pmatrix} 1 & 3 & 1 \\ 2 & 6 & 6 \end{pmatrix}$$
.

(a) (13 pts) Solve the system of linear equations

1

$$x + 3y + z = 1$$

 $2x + 6y + 6z = 10$

Write the complete solution as a particular plus a null (or homogeneous) solution. SHOW YOUR WORK.

(b) (6 pts) Based on the work you did in #4a, give a basis for
$$C(A)$$
. Justify your answer.

ref (A) has pinstes in columns
$$1 \neq 3$$
.

C(A) = span ((2), (6)).

(c) (6 pts) Based on your answer to #4a, give a basis for N(A). Justify your answer.

the basis for N(A) is given by
$$X_n$$
:
$$N(A) = Span\left(\begin{bmatrix} -3\\ 6 \end{bmatrix}\right).$$

(d) (6 pts) Based on your answer to #4a, is $\begin{bmatrix} 1 \\ 10 \end{bmatrix} \in C(A)$? Explain why your answer is correct.
Yes, because we were able to solve
(e) (6 pts) For any non-zero $b \in \mathbb{R}^2$ that one might choose, explain why finding only 1 solution to $Ax = b$ is impossible.
Eccuse N(A) is 1-dimensional always generates an infinite # if solutions via Xn as in #4a.
always generates an infinite # 15
(f) (6 pts) For any $b \in \mathbb{R}^2$ that one might choose, explain why finding no solutions to $Ax = b$ is impossible.
Because C(A) = IP2 by #46, all
Because C(A) = IP2 by #4b, all RHS be IP2 have a solution to
5. (12 pts) For any $m \times n$ matrix A , prove that $N(A)$ is a vector space. Explicitly state the conditions that you are checking, and justify each step in your proof. Closure wrt addition Lat u , $v \in N(A)$. Is $v \in N(A)$.
Consider: A (u+x) = Ay + Ay by distributive prop
= 0 + 0 because 4, YEN(A)
MI) Closure with Scalar multiplication. Let MENIA). Is EYENL
Consider A(cu) = c Au by associativity
Consider $A(cu) = cAu$ by associativity because $u \in W(A)$.
= Q
CUENTA).