

## Final Exam 3

MATH 221-02 May 1, 2014



1. (21 pts) Circle T or F indicating whether each of the following statements are True or False. You do not need to justify your answer.

- (a) T F If  $\vec{u} \cdot \vec{w} = 0$ , then  $\vec{u}$  and  $\vec{w}$  are parallel.
- (b) T If A, B and C are square matrices and if A = BC, then  $\det(A) = \det(B) \det(C)$ .

(c) T F The matrix  $\begin{bmatrix} -1 & -4 & 0 \\ 2 & 3 & 3 \\ 0 & 2 & 0 \end{bmatrix}$  is invertible.

- (d) T  $\begin{bmatrix} 3 & 3 \\ -1 & -1 \end{bmatrix}^{-1} = \begin{bmatrix} 1 & 2 \\ -1 & -3 \end{bmatrix}.$
- (e) T F If  $A = \begin{bmatrix} 1 & 0 \\ 1 & -2 \\ 1 & 0 \end{bmatrix}$ , then  $\mathcal{N}(A) \neq \{0\}$ .
- (f)  $\Gamma$  For any matrix A,  $\dim(\mathcal{R}_A) = \dim(\mathcal{C}_A)$ .
- (g) T (F) If A and B are invertible then  $(AB)^{-1} = A^{-1}B^{-1}$ .
- (h) T  $(\vec{F})$  If A is square and det(A) = 0, then Ax = b has no solutions.
- (i) T (F) If B is a  $700 \times 500$  matrix, then  $B^{-1}$  is a  $700 \times 500$  matrix.
- (j) (T) F If  $A\vec{x} = \vec{0}$  and  $\vec{x} \neq \vec{0}$  then A is not invertible.
- (k) T If A is square and Ax = b has only one solution, then A is invertible.
- (I) T When solving Ax = b, the number of free variables is equal to  $\dim(\mathcal{N}(A))$ .
- (m) T F The vector  $\begin{bmatrix} 1 \\ -1 \end{bmatrix}$  is in the nullspace of  $\begin{bmatrix} 1 & 2 \\ 1 & 2 \end{bmatrix}$ .
- (n) T F The vector  $\begin{bmatrix} 1 \\ 0 \end{bmatrix}$  is an eigenvector of  $\begin{bmatrix} 1 & -1 \\ -1 & 1 \end{bmatrix}$ .
- (of T) F Every square matrix has at least one eigenvalue and eigenvector.
- (p)(T) F If A is symmetric then A is diagonalizable.
- (q) (T) F The matrix  $A^T A$  is diagonlizable.
- (r) T F If A is invertible then A is diagonalizable.
- (s) T F If  $\lambda = 0$  is an eigenvalue of A, then the linearly independent eigenvectors associated with  $\lambda = 0$  are a basis for  $\mathcal{N}(A)$ .
- (t) The geometric multiplicity of an eigenvalue  $\lambda$  of A is dim( $\mathcal{N}(A \lambda I)$ ).
- (u) T (F) If  $A\vec{u} = 5\vec{u}$  and  $A\vec{v} = -5\vec{v}$  then  $\vec{u} + \vec{v}$  is an eigenvector of A.

| 2. (12 pts) In each of the following, circle an appropriate statement from the options statement1/statement2.  You do not need to justify your answers.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Assume that A is $n \times n$ and that the matrix system $Ax = b$ has no solutions.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
| (a) rank (A) is $\mu$ s not equal to $n$ .                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| (b) A is invertible/(not invertible)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| (c) $Ax = b$ is consistent (inconsistent.)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| (d) det(A)(is) (is not) equal to zero.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| (e) $b$ is/(is not) a linear combination of the columns of $A$ .                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| (f) The columns of A are linearly dependent independent.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
| (g) $Ax = b$ has /((does not have)) exactly one least squares solution.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
| (h) When performing Gauss-Elimination to put the matrix A into row echelon form, there are (are not) zero pivot(s).                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
| (i) A has (does not have) a zero eigenvalue.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| (j) $A(has)$ (does not have) non-zero homogeneous solutions.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| (k) $\mathcal{N}(A)$ is (is not) equal to $\{0\}$ .                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
| (1) $\mathcal{N}(A^T)$ is/(is not) equal to $\{0\}$ .                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| 3. (1) pts) Solve the system of ODEs $\dot{x} = x + 2y$ . SHOW YOUR WORK! Hint: In general, the                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| solution can be written as $c_1e^{\lambda_1t}p_1 + c_2e^{\lambda_2t}p_2$ ; or if appropriate, write solution as                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| $c_1 e^{lpha t} \left( a \cos(eta t) - b \sin(eta t)  ight) + c_2 e^{lpha t} \left( a \cos(eta t) + b \sin(eta t)  ight).$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| Also, the quadratic formula might be handy: $\frac{-b \pm \sqrt{b^2 - 4ac}}{2a}$ .                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| Need to find eigenvalues first: solve<br>det (A- ) =0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
| $det(A-\lambda I)=0$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| where $A = \begin{pmatrix} 1 & 2 \\ -2 & 1 \end{pmatrix}_{q} qiving$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| $\det \left( \frac{1-x}{2} \right) = \left( \frac{1-x}{2} \right)^{2} + 4 = x^{2} - 2x + 5 = 0$ $\det \left( \frac{1-x}{2} \right) = \left( \frac{1-x}{2} \right)^{2} + 4 = x^{2} - 2x + 5 = 0$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| $\frac{det}{e} \left( \frac{-2}{-2} \right) - \frac{1}{-1} $ $\frac{1+2i}{2} = \frac{1+2i}{2} = $ |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| So d = 1, B = 2.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |

. Next, the exercetors; solve (A-)I)p=0, which has a generated matrix  $0 = \begin{vmatrix} -2i & 2 & 0 \\ -2 & -2i & 0 \end{vmatrix}$  $\begin{bmatrix} 1-(1+2i) & 2 \\ -2 & 1-(1+2i) \end{bmatrix}$ R2 + CR, + R2 gives: letting P2 be tree gives solutions  $P = \begin{bmatrix} -\frac{2}{2}iP^{2} \\ P^{2} \end{bmatrix} = \begin{bmatrix} -ip^{2} \\ P^{2} \end{bmatrix} = P^{2} \begin{bmatrix} (0) + (-1)i \\ P^{2} \end{bmatrix}$   $So \quad Q = \begin{pmatrix} 0 \\ 1 \end{pmatrix}, \quad b = \begin{pmatrix} -1 \\ 0 \end{pmatrix}. \quad Plussing into parallal.$  $\begin{pmatrix} \times (k) \\ y(k) \end{pmatrix} = e^{t} \left[ C_{1} \left( \begin{pmatrix} 0 \\ 1 \end{pmatrix} \cos 2t - \begin{pmatrix} -1 \\ 0 \end{pmatrix} \sin 2t \right) + C_{2} \left( \begin{pmatrix} 0 \\ 1 \end{pmatrix} \cos 2t + \begin{pmatrix} -1 \\ 0 \end{pmatrix} \sin 2t \right) \right]$ 

4. (2 pts) The qualitative behavior of this system is (choose one of A-E):

A. an exponentially increasing function; B. an exponentially decreasing function;

C. an oscillation with decreasing amplitude; D an oscillation with increasing amplitude;

E. An oscillation with constant amplitude.

5. (14) you are solving a system of 5 equations with 3 unknowns. You write out the system as  $A\vec{x} = \vec{b}$ . You apply Gauss elimination to the coefficient matrix A and get the following reduced row echelon form,

$$\operatorname{rref}(A) = \begin{bmatrix} 1 & 0 & 0 \\ 0 & 0 & 1 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \end{bmatrix}.$$

Complete the following statements (you do not need to justify your answers):

- (a) (1 pt) The dimension of the domain of A is \_\_\_\_\_\_\_
- (b) (1 pt)  $\dim(C_A) =$ \_\_\_\_\_\_.
- (c) (1 pt)  $\dim(\mathcal{R}_A) = \underline{\hspace{1cm}}$
- (d) (1 pt)  $\dim(\mathcal{N}(A)) =$ \_\_\_\_\_\_.
- (e) (1 pt)  $\dim(\mathcal{N}(A^T)) =$
- (f) (2 pts) If b is in  $C_A$  then the number of solutions to the system Ax = b is
- (g) (2 pts) If b is <u>not</u> in  $C_A$  then the number of solutions to Ax = b is \_\_\_\_\_\_.
- (h) (2 pts) Give a basis for  $\mathcal{R}_A$ .

It's the rows with non-zero pivots:

$$\left(\begin{array}{c} 1\\0\\0\\\end{array}\right) \left(\begin{array}{c}0\\0\\1\\\end{array}\right).$$

(i) (4 pts) Give a basis for  $\mathcal{N}(A)$ .

It's the vector I to RA: (6)

Or find it explicitly argumented matrix for Ax = 0
in ref:

$$\begin{pmatrix} 1 & 0 & 0 \\ 0 & 0 & 1 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \end{pmatrix} \Rightarrow X = \begin{pmatrix} 0 \\ \chi_L \\ 0 \end{pmatrix} = \chi_L \begin{pmatrix} 0 \\ 1 \\ 0 \end{pmatrix}.$$

6. (10 points) The  $5 \times 5$  matrix A has the characteristic equation  $\rho_A(\lambda) = (\lambda - 3)^2(\lambda + 4)^3$ . (2 points each) The eigenvalues of A are (order them  $\lambda_1 < \lambda_2$ ) (a)  $\lambda_1 = \frac{1}{2}$ ,

and (b)  $\lambda_2 = \underline{\hspace{1cm}}$ . Their algebraic multiplicities are (c)  $\underline{\hspace{1cm}}$  and

(d)  $\mathcal{L}_{-}$ , respectively. A is diagonalizable if the geometric multiplicity of  $\lambda_1$ 

is (e)  $\leq$  and the geometric multiplicity of  $\lambda_2$  is (f)  $\leq$ .

7. You collect data on Bozeman water usage in the years 2011, 2012 and 2013 from the facilities that provide our awesome drinking water. The covariance matrix for these 3 variables (i.e., water usage in each of the years 2011, 2012 and 2013) is

$$A = \left[ \begin{array}{ccc} 1 & 0 & 0 \\ 0 & 2 & 0 \\ 0 & 0 & 10 \end{array} \right].$$

Recall that the 1st row and column of C correspond to the 1st variable, in this case 2011 water usage; the 2nd row and column correspond to the 2nd variable, 2012 water usage; and the 3rd row and column correspond to the 3rd variable, 2013 water usage.

(a) (6 pts) Give the eigenvalues of A. SHOW YOUR WORK!

 $P_A = \det(A - \lambda I) = (1 - \lambda)(2 - \lambda)(10 - \lambda)$ The roots of pA are the eigenvalues,  $\lambda = 1, 2, 10$ 

(b) (6 pts) Give the single "best" variable (i.e., the eigenvector that corresponds to the first principle component) that describes the water usage in 2011, 2012, 2013. SHOW YOUR WORK!

The 1st PC is eigenvector corresponding to  $\lambda = 10$ ,

found via solving (A - 10T) p = 0. The augmented matrix is:  $\begin{pmatrix} -9 & 0 & 0 & 0 \\ 0 & -8 & 0 & 0 \end{pmatrix} = P = \begin{pmatrix} 0 \\ 0 \end{pmatrix} = P_3 \begin{pmatrix} 0 \\ 0 \end{pmatrix}$ of the best variable is  $\begin{pmatrix} 0 \\ 0 \end{pmatrix}$ , i.e, their 2013 data.

(c) (3 pts) What proportion of the variability on the water usage data from 2011-2013 is explained by the "best variable" you found in #7b. SHOW YOUR WORK!

10 10

(25)

8. A biologist with Montana Fish and Wildlife wants to estimate the number of elk that visit Colby Creek in the Bridger Mountains. When monitoring the drainage for one 24 hour period,  $y_1 = 5$  elk are observed. When monitoring over a 24 hour period a few weeks later,  $y_2 = 2$  elk are observed. And when monitoring another time,  $y_3 = 10$  elk are observed. The biologist wants to fit the "best constant" to the data; that is, he wants to fit the model

$$y = c$$

(a) (3 pts) What is the equation Ax = b to be used to find c? Be sure to identify A, x, and b.



(b) (6 pts) Find the least squares solution to Ax = b. SHOW YOUR WORK!

The least granes solution is
$$X_{1s} = (A^{T}A)^{-1}A^{T}b.$$

$$= \left[ \left( \begin{array}{c} 1 \\ 1 \end{array} \right) \left( \begin{array}{c} 1 \\ 1 \end{array} \right) \left( \begin{array}{c} 2 \\ 2 \end{array} \right)$$

$$=3^{-1}(5+2+10)$$

$$= 17/3$$