

Quiz 3 MATH 221-2

February 4, 2015

Sections 2.1-2.2

Consider the system of linear equations (# 5 in section 2.2)

$$3x + 2y = 10$$
$$6x + 4y = 20$$

1. Write out the augmented matrix for this system.

2. Apply Gauss Elimination to put the augmented matrix into row echelon form. Show your work.

$$R_{2}A - 2R_{1} + R_{2}$$

$$\begin{bmatrix} 3 & 2 & 10 \\ 0 & 0 & 0 \end{bmatrix}$$
Then $3x = 10 - 2y$

$$x = \frac{10}{3} - \frac{2}{3}y$$

$$0 = 0$$
Let y be free

3. How many solutions are there? If there is/are solution(s), give it. If not, explain.

There are an infinite number solutions of the form
$$X = \begin{bmatrix} 12 & -2 & 3 \\ 3 & 4 \end{bmatrix}$$
.

4. Draw the "row picture" (#26 in section 2.1).

$$X = \begin{bmatrix} 10/3 - 2/3 \\ y \end{bmatrix} = \begin{bmatrix} 10/3 \\ 3 \end{bmatrix} + y \begin{bmatrix} -2/3 \\ 1 \end{bmatrix}$$

$$\frac{x_0}{3} + \frac{x_0}{3} + \frac{x_0}{3} = \frac{x_0}{3} + \frac{x_0}{3} = \frac{x_0}{3} + \frac{x_0}{3} = \frac{x_0}{$$

6. Based on your answers to 3 and 5, write the RHS vector $\mathbf{b} = \begin{pmatrix} 10 \\ 20 \end{pmatrix}$ as a linear combination of the columns of the coefficient matrix A.

$$\begin{bmatrix} 10 \\ 26 \end{bmatrix} = x \begin{bmatrix} 3 \\ 6 \end{bmatrix} + y \begin{bmatrix} 2 \\ 4 \end{bmatrix} = 19/3 \begin{bmatrix} 3 \\ 6 \end{bmatrix} + 0 \begin{bmatrix} 2 \\ 4 \end{bmatrix}.$$

7. Draw the "column picture" (#26 in section 2.1).

8. Describe geometrically (line or plane) all linear combinations of the columns of the coefficient matrix A (#1 in section 1).

9. Is the coefficient matrix A singular and non-invertible or non-singular and invertible? Explain why your answer is correct.