
Chapter 1: Drawing Statistical Conclusions

This chapter focuses on the concept of the Scope of Inference which depends on the study design.
Statistical inference, including hypothesis testing and constructing a confidence interval, requires
knowing the probability distribution of the relevant statistic (i.e., the sampling distribution).
The sampling distribution of a statistic depends on mechanisms under the control of the re-
searcher: random assignment of treatments in an experiment and/or random sampling
from a population of interest.

Scientific Method

Statistical procedures are part of the Scientific Method (steps 2-5 below) first espoused by
Sir Francis Bacon (1561-1626), who wrote to learn the secrets of nature involves collecting data
and carrying out experiments. The modern methodology:

1. Observe some phenomenon

2. State a hypothesis explaining the phenomenon

3. Collect data

4. Analyze the data

5. Test: do the data support the hypothesis?

6. Conclusion. If the test fails, go back to step 2.

If you encounter a “scientific claim” that you disagree with, scrutinize the steps of the scientific
method used. Statistics don’t lie, but liars do statistics. - Mark Twain.

Hypothesis Testing

The Six Steps in Hypothesis Testing can be inserted into steps 5 and 6 of the Scientific
method. Let’s number the six steps in hypothesis testing to emphasize this relationship:

5. Test: Do the data support the hypothesis explaining the phenomenon?

5.1 State H0 and Ha with respect to the parameter of interest.

5.2 Check the assumptions necessary so that the test is valid.

5.3 Compute the test statistic.

5.4 Compute the p-value.

5.5 Make a decision about H0.

6. Draw a conclusion.
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1.2 Statistical Inference and Study Design

Individuals or Cases or Units or Subjects: The objects from which data are collected.
Individuals may be people, places, animals, things, or time periods.

Variable: Any characteristic of an individual that can be measured.

Population: The entire group of individuals that we want information about. For example: all
grizzly bears in Yellowstone National Park; all G.E. light bulbs (made now and in the future);
all tosses with a weighted die

Sample: A part of the population from which data is collected. For example: 22 tagged grizzly
bears in Yellowstone National Park; 1 box of G.E. light bulbs; 100 tosses with a weighted die.

Inference: One collects data from a sample and uses the sample results to draw conclusions
about the population. Inference is necessary whenever it is unrealistic to perform a census (i.e.,
data from the entire population of interest). Your book states that an inference is a conclusion
that “patterns in the data” are present in some “broader context.” In other words, an inference
is a conclusion that the sample represents the population.

Statistical inference is an inference justified by a probability model.

Parameter: A numerical value calculated from a population of individuals.

Statistic: A numerical value calculated from a sample of individuals.

Some common population parameters and the statistics calculated from samples that estimate
them:

Statistics Parameters Description

x̄ µ mean
s σ standard deviation
s2 σ2 variance
π̂ π proportion

Sampling Distribution: The value of a statistic varies from sample-to-sample. In other words,
different samples will result in different values of a statistic. Since the value of a statistic varies
from sample-to sample, it is a variable! Therefore, it has a distribution! The distribution of a
statistic is called a Sampling Distribution. We will construct this sampling distribution for
the case studies in section 1.1.

How to Construct a Sampling Distribution (conceptually - this cannot be done in practice):

• Take all possible samples of size n from the population.

• Compute the value of the statistic for each sample.

• Display the sampling distribution of the statistic as a table, graph, or equation.
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1.2.1 Study Design: Observation and Experimentation

Observational Study: A study which observes individuals and measures variables, but does
not attempt to influence the responses.

• An observational study on individuals from a random sample allows one to generalize
conclusions about the sample to the population.

• An observational study cannot show cause-and-effect relationships because there is the
possibility that the response is affected by some variable(s) other than the ones being
measured. That is, confounding variables may be present. It ain’t what you don’t know
that gets you into trouble. It’s what you know for sure that just ain’t so. - Mark Twain

• In prospective observational studies, investigators choose a sample and collect new data
generated from that sample. That is, the investigators “look forward in time.”

• In retrospective observational studies, investigators “look backwards in time” and use
data that have already been collected. Retrospective studies are often criticized for having
more confounding and bias compared to prospective studies.

QUESTION: Prospective or Retrospective Observational Study?

1. A study that follows marijuana users in Colorado for 5 years.

2. A study of illegal immigrant activity last year in Arizona.

Experiment: A study in which treatment(s) are deliberately imposed on individuals in order
to observe their response. This is called a randomized trial in clinical settings.

• An experiment in which the treatments are randomly assigned to individuals can provide
evidence for a cause-and-effect relationship. Furthermore, if the individuals are from a
random sample, then one can generalize conclusions from the experiment to the population.

To recognize the difference between an Observational Study and an Experiment, ask yourself,
“Was there a treatment imposed on the individuals?” In an experiment, the researcher deter-
mines (randomly) which individuals receive which treatment. In an observational study, the
individuals have already self-chosen their groups.

QUESTION: Observational Study or Experiment?

1. A study of the birth weight of babies and the mother’s level of coffee con-
sumption.

2. A study of lab mice whose spinal cords have been severed.

3. A study of gender versus salary.

4. A study of grizzly bear attacks.

5. A study of the number of 1’s rolled on a weighted die.
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Confounding Variable: A variable that is related to the response variable and to the explana-
tory variable in such a way that makes it impossible to distinguish the effects of the confounding
variable on the response from the effects of the explanatory variable on the response.

EXAMPLES:

• In a study of gender differences in salary, it was found that female nurses (in a certain
hospital) have higher salaries, on average, than do male nurses. It also was found that
female nurses have a greater number of years of experience than do male nurses. Years of
experience is a confounding variable. It may be that the data give no clue as to whether
the salary difference is due to gender discrimination or due to years of experience.

• In a study investigating the association between the occurrence of low birth weight babies
and the mother’s level of coffee consumption, it was found that an increase in the mother’s
coffee consumption is associated with an increase in the risk of having a low birth weight
baby. It also was found that moms who smoke also consume large amounts of coffee and
moms who do not smoke consume no or small amounts of coffee. Smoking is a confound-
ing variable. Are the low birth weights due to the smoking or the coffee? CAN’T TELL!

IMPORTANT POINTS to remember:

• Time spent thinking and planning PRIOR to data collection is time well spent. You should
know what statistical analysis you are going to use BEFORE collecting your data. A well
thought out design can make statistical analysis and its interpretation easier.

• A statistical analysis cannot salvage a poorly designed study. Consulting statisticians
encounter this problem all too frequently:

To call in the statistician after the study is done may be no more than asking her to perform
a post-mortem examination: she may be able to say what the study died of. – R. A. Fisher.

1.2.2 Sampling

Sampling Plans: methods of selecting individuals from a population. We are interested in
sampling plans such that results from the sample can be used to make conclusions about the
population.

Biased Samples: Bias occurs when the sample tends to differ from the population in a sys-
tematic way. When this happens, results from the sample can not be used to make conclusions
about the population of interest.

1. Convenience Sample - An “easily available” sample of individuals which was convenient
for the researcher to collect. Individuals in the convenience sample may systematically
differ from the population and therefore may not represent the entire population.

2. Voluntary Response Sample - A sample of individuals who volunteer or are self selected
to participate. Individuals who volunteer may systematically differ from the population
and therefore may not represent the entire population.
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EXAMPLES:

• Phone surveys exclude (1) households without a phone, (2)individuals who do not pick up
their phone, and (3) individuals who refuse to participate and hang up

• Call-in polls on TV exclude (1) individuals without a TV, (2) individuals not watching
the program, and (3) individuals who do not care to participate

Random Sampling: A sample of individuals who have been chosen randomly from the pop-
ulation. Random samples tend to represent the population from which they are chosen since
randomization does not systematically favor some individuals in the population over others.

Since random samples are representative of the population of interest, then inference is valid.
In other words, results from a random sample can be generalized to make conclusions about the
population.

Simple Random Sample (SRS) - Each possible sample of size n has an equal chance of being
selected from the population.

How to Select a SRS:

• Put slips of paper in a hat, mix well, then choose n slips.

• Use a computer:

1. Create a sampling frame, a numbered list of all individuals in the population.

2. Use a random number generator to select individuals from the list.

IMPORTANT POINTS to remember:

• A biased sample is a biased sample, regardless of its size! Collecting more data in a biased
fashion will not correct the problem.

• A biased sample still contains information about a population, but this population is not
the one that a researcher is interested in! Information can still be gleaned from biased
samples, but one must be wary of the interpretation.

EXAMPLE:

– Drug trials using human volunteers

– Studies on animals which have been specifically bred for experiments

1.2.3 Determining the Scope of Inference

This semester, you will be writing a Scope of Inference statements in every statistical report.

To determine the appropriate scope of inference of a study, there are TWO questions to answer.

1. Were the individuals randomly assigned to groups? In other words, was the study a
randomized experiment or an observational study?

2. Were the individuals units randomly selected from some larger population? In other words,
are the data from a random sample?
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After answering the TWO questions, use this table to help you write the Scope of Inference.

Randomized Observational
Experiment Study

Random Cause-and-Effect Association
Sampling in population of interest in population of interest

Non-random Cause-and-Effect Association
Sampling in restricted population in restricted population

Table 1: Scope of inference depending on the sampling plan and study design. Compare with
Display 1.5 in your text.

• Write the Scope of Inference in the context of the specific problem rather than in
vague statistical generalities.

• It may be challenging to identify the “restricted population” to which inference can be
made. Many times, the restricted population is merely the sample itself.

• Cause-and-effect relationships may still be drawn from randomized experiments with-
out random sampling. There is just no justification that the relationship extends to a
larger population.

• An observational study with no random sampling is especially worrisome, since
inferring to a larger population is often the goal. However, it is not always possible (or
practical) to obtain a random sample from the larger population of interest. It is common
to pretend that the non-random sample is representative of the population, but this should
be accompanied by strong justification and even then the potential for bias cannot be
ruled out. The researcher must decide whether statistical inference based on assumed (but
technically incorrect) models is better than no statistical inference at all. The assumptions
and justification should be clearly reported with the work.

• When designing an experiment/study, the ideal scenario is to:

1. Randomly select units from population of interest

2. Randomly assign units to comparison (study) groups

Unfortunately, in many fields of science, these types of studies are rare and sometimes
impossible to conduct.

Chance Models and Statistical Inference

• Statistical analysis relates the available data to some broader context through uncertainty
using chance (or probability) models.

• The probability models are associated with the chance mechanisms used to select units from
a population (random sampling) OR to assign units to groups (randomized experiment).
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• The probability models allow the researcher to calculate statistical measures of uncertainty
to accompany inferential conclusions. This is the fundamental goal of statistics. If you do
not want a measure of uncertainty (i.e., an error bar) you do not need to do statistics.

1.3 Measuring Uncertainty in Randomized Experiments

IDEA: If there is no treatment effect then the labels indicating group membership are mean-
ingless and could have been randomly assigned. A method of evaluating a treatment
is to visualize hypothetical replications of a study under different random group
assignments.

Case study: 1.1.1 and 1.3.1 Motivation and Creativity - A Randomized ex-
periment

Do grading systems promote creativity in students? Do ranking systems and incentive awards
increase productivity among employees? Do rewards and praise stimulate children to learn? See
p. 2 of your text for the experiment reported in Amabile, T., 1985, Motivation and Creativ-
ity: Effects of Motivational Orientation on Creative Writers, Journal of Personality and Social
Psychology, 48(2), 393-399.

A common model of this study is write the response Y ∗ of a writer in the intrinsic group as

Y ∗ = µ∗ + ε

where µ∗ is the true mean score for the population of all intrinsic writers and ε is the error. The
response Y of a writer in the extrinsic group is

Y = µ+ ε

where µ is the true mean score for the population of all extrinsic writers and ε is the error.

Your book considers an additive treatment effect model: Let Y denote the score of an
individual in the extrinsically motivated group. This same subject would receive a score of

Y ∗ = Y + δ

if she had been in the intrinsically motivated group. The treatment effect δ is the unknown
parameter of interest,

δ = µ∗ − µ.

Note that this model assumes the same treatment effect for each individual. This is a key
assumption of the model.

SCIENTIFIC QUESTION OF INTEREST: Is there an effect of the instrinsic treat-
ment over the extrinsic treatment in the population of all experienced writers?

5.1 Null and Alternative Hypotheses: Translate question of interest hypotheses about the pa-
rameter δ in the additive treatment effects model:
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5.2 Check assumptions: Because random assignment was used in this study, we will proceed
with a randomization test. In other words, the probability model that we will assume for
the test statistic is a randomization distribution. Random assignment also helps ensure
that the overall response of the group is due to the intrinsic or extrinsic treatment and not
some confounding variable such as gender or writing experience or age.

5.3 A test statistic measures the plausibility of Ha relative to H0.

– How big (or small) is the test statistic as compared to what might have happened
under a different randomization if there were no effect of the treatment?

– For the additive treatment effects model: A suitable test statistic is the difference in
the sample averages of the scores.

Let Y 1 denote the average of the extrinsically motivated group and let Y 2 denote the
average of the intrinsically motivated group. If there is no treatment effect then the
difference Y 2 − Y 1 should be close to 0. We observed

Y 2 − Y 1 = 4.14

Is this “close to” or “far from” 0?

5.4 To calculate the p-value, we could perform a t-test. Instead, we consider the Randomization distribution
of the test statistic: all test statistic values for every possible outcome of randomly assign-
ing the units to intrinsic and extrinsic treatment groups.

The p-value in the context of a randomized experiment is the probability that the ran-
domization alone leads to a test statistic as extreme or more extreme than the observed
one.

Ways to obtain a p-value:

1. EXACT: Enumerate all possible regroupings of the data (create the randomization
distribution) and find the proportion of these that produce a test statistic as extreme
or more extreme than the observed one.

2. The total number of possibilities gets unmanageably large as the sample size increases.
Hence usually we APPROXIMATE the randomization distribution by simulating a
large number of randomizations and finding the proportion of these that produce a
test statistic as extreme or more extreme than the observed one.

3. MOST COMMON: Approximate the randomization distribution with a mathematical
curve based on assumptions about the distribution of the response and the form of
the test statistic. Eg. If we assume that the data are normally distributed and that
the additive model is correct, then the normal curve provides a good approximation
of the randomization distribution for the difference between averages (δ̂) (Chapter 2).

Here is the R code that approximates the randomization distribution of Ȳ2 − Ȳ1 in order
to find the p-value for testing the hypotheses in 5.1 for the creativity study:
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require(Sleuth3)

poetry.dat<-case0101

names(poetry.dat)

[1] "Score" "Treatment"

# How many possible randomizations are there?

choose(47,23)

[1] 1.612380e+13 # a reasonably large number

tapply(Score,Treatment,mean)

Extrinsic Intrinsic

15.73913 19.88333

# observed difference is 19.8833 - 17.73913 = 4.144203

# Draw 100000 randomizations

diff.mean<-numeric(100000) # storage vector

# generate 100000 random assignments and calculate difference in means

for(i in 1:100000)

{

grp<-sample(Treatment,47,replace=F)

diff.mean[i]<- mean(Score[grp=="Intrinsic"])- mean(Score[grp=="Extrinsic"])

}

# Graph the approximate randomization distribution

hist(diff.mean,prob=T) # a density histogram

abline(v=4.144203) # puts a vertical line at the observed difference

abline(v=-4.144203)

# Get the two-sided p-value

sum(abs(diff.mean)>=4.144203)/100000 # two-sided p-value

[1] 0.0055

In addition to calculating a p-value, we can also get a confidence interval (CI) from this
randomization distribution. We cannot use it directly because it is centered on the null
value of 0. But if we add the observed difference of 4.14 to each of the values the histogram
is moved 4.14 units to the right and is now centered on the observed value. An approximate
95% confidence interval can be easily generated by picking off the 2.5th and 97.5 quantiles.

quantile(diff.mean + 4.14, p=c(0.025,0.975))

2.5% 97.5%

1.166087 7.100689

5.5 Make a decision about H0. At a significance level of α = 0.05, because the p-value =
0.0055 < α, then we reject H0 in favor of Ha. Equivalently, because the 95% CI for δ does
not contain the value δ = 0 (under H0), then we reject H0 in favor of Ha.
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6. Conclusion. In the reports that you will submit this semester, you will split the conclusion
out into two sections:

Summary of Statistical Findings: This experiment provides evidence that receiving the
“intrinsic” rather than the “extrinsic” questionnaire caused students in this study to
score higher on poem creativity on the average (p-value = 0.005). The estimated
increase in score attributed to the “intrinsic” questionnaire is 4.1 points (95% CI: 1.3 to
7.0 points) on a 0-40 point scale.

Scope of Inference: Subjects were not randomly selected from the population of all creative
writers, although the subjects were randomized to the two treatment groups. Hence the
data suggest that the mean difference in creativity scores in these 47 subjects was caused
by the difference in the intrinsic and extrinsic motivational questionnaires. Extending
this conclusion to any larger population is problematic due to the non-random sam-
pling.

1.4 Measuring Uncertainty in Observational Studies

• In an observational study, there is no chance mechanism for group assignment. The inves-
tigator has no control over such assignment.

• But the investigator does have control over who is selected for study. We now use a
chance mechanism for sample selection (via random sampling). This again allows us to
formulate a probability model by connecting the distribution of the test statistic to the
chance mechanism.
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• IDEA: Visualize hypothetical replications of a study under different randomly se-
lected samples.

1.4.1 A simulation model for random sampling

• Use a chance mechanism to randomly select units from one or more populations.

• This approach requires that we know a lot about the population(s) including how to
sample.

• For comparing two populations:

1. Select a sample of n1 units from population 1 (with mean µ1 and standard deviation
σ1) such that all subsets of size n1 have the same chance of selection.

2. Select a sample of n2 units in the same manner from population 2 (with mean µ2 and
standard deviation σ2) independent of those from population 1. (the sample drawn
from population 1 should not influence how the sample from population 2 is drawn.)

3. Calculate a statistic from the sample from population 1 and also from the sample
from population 2 (e.g., Ȳ1 and Ȳ2 if we want to estimate µ1 and µ2).

4. Repeat steps 1-3 many times.

5. Construct an approximation to the sampling distribution of the statistic that com-
pares the two populations (e.g., Ȳ2 − Ȳ1 if we want to estimate µ2 − µ1). Confidence
intervals and p-values are based on this aproximate sampling distribution.

EXAMPLE: We will generate a set of 30 random observations from a normal distribution
with a mean of 0 and a standard deviation of 2 and another set of 30 observations from a
normal distribution with a mean of 3 and a standard deviation of 5.

diff.mean<-numeric(100000) # storage vector

for(i in 1:100000)

{

# rnorm is the R function that samples from a normal distribution

set1 = rnorm(30, mean=1, sd=2) # RS1 from Population 1

set2 = rnorm(30, mean=1.5, sd=5) # RS2 from Population 2

mean1 = mean(set1) # Statistic from RS1

mean2 = mean(set2) # Statistic from RS2

diff.mean[i]=mean2 - mean1

}

# Measure of center of sampling distribution

mean(diff.mean)

## [1] 0.5000842
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# Measure of spread of sampling distribution

sd(diff.mean)

## [1] 0.9842521

# Theoretical results:

# True mean of sampling distribution

1.5 - 1

## [1] 0.5

# True SD of sampling distribution

sqrt((2/sqrt(30))^2 + (5/sqrt(30))^2)

## [1] 0.9831921

# Graph the approximate sampling distribution

hist(diff.mean,prob=T) # a density histogram
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1.4.2 Non-random sampling - A permutation distribution

Case study: 1.1.2 and 1.4.2 Sex Discrimination in Employment - an Observa-
tional Study

Did a bank discriminantly pay higher starting salaries to men than to women? See p. 4 of your
text: Ȳmen − Ȳwomen = $818.

• Is it an experiment or observational study?

• Were people selected via random sampling?

• Based on our answers where does a chance mechanism come into the picture?

• Inference is based on a pretend probability model. We can pretend that the employer
assigned the set of starting salaries to employees at random. We then compare the observed
salary difference between males and females to what we would expect if the salaries were
handed out at random.

– Hypothesis tests are conducted (i.e., p-values are calculated) and confidence intervals
are found just as we did in section 1.3 for randomized experiments. Because we are
only pretending that this is an appropriate model, the sampling distribution of the test
statistic in the observational study scenario is called a Permutation distribution
(not a randomization distribution).

– Draw a picture of the permutation distribution for the sex discrimination study.

– How is a permutation distribution different from a randomization distribution?

– What is the proper scope of inference for the sex discrimination case study?
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1.5.1 Graphical Methods

Below is an example that shows you how to produce the following graphs in R:

• Histograms

• Stem-and-Leaf Diagrams

• Box plots

• Scatter plots

EXAMPLE: We will generate a set of 30 random observations from a normal distribution with
a mean of 0 and a standard deviation of 2 and another set of 30 observations from a normal
distribution with a mean of 3 and a standard deviation of 2.

# rnorm is the R function that samples from a normal distribution

set1 = rnorm(30, mean=0, sd=2)

set2 = rnorm(30, mean=3, sd=2)

1. Stem-and-leaf plot of the first set of 30 observations.

stem(set1)

##

## The decimal point is at the |

##

## -4 | 3

## -3 | 91

## -2 | 66520

## -1 | 653

## -0 | 75521111

## 0 | 668

## 1 | 03367

## 2 | 148

2. Make side-by-side boxplots of the two sets of observations. Label the parts of the boxplot
by hand.

boxplot(set1,set2, col=c(3,4), main="Side-by-side boxplots")

# side-by-side boxplots

# col determines colors

# main specifies a main title or label for the plot

# if you want to see all the options and get details

# of how boxplot works type ?boxplot
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3. Make histograms of your two sets of data.

par(mfrow=c(2,1))

# splits plot area into 2 rows and 1 column, i.e 2

# plots in the same panel.

hist(set1, col=3, nclass=10, prob=T, main="Set 1 Histogram")

hist(set2, col=4, nclass=5, prob=T, main="Set 2 Histogram")

# nclass specifies the number of class intervals

# prob=T (TRUE) tells R to create a density

# histogram, i.e. the total area under the histogram is equal to 1.
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Look at the distribution of the two data sets you simulated carefully. They may not look
normally distributed even though the samples came from a normal distribution.

4. Put a histogram and a box plot together on the same plot for the first set of data.

dev.new() # - opens a new plot window instead of writing over the previous one

par(mfrow=c(2,1))

hist(set1, col=3, nclass=6, prob=T, main="Set 1 Histogram")

boxplot(set1, col=3, horizontal = TRUE)

# horizontal=TRUE tells R to create a horizontal boxplot

5. Make a scatter plot with the first set of data on the x-axis and the second set on the y-axis.

#Scatterplot

dev.new()

plot(set1, set2,pch=18,col=2,main="Scatter plot", xlab="Set 1 data",

ylab="Set 2 data")

# xlab and ylab specify x and y axis labels.

# pch is for print character and tells R to use little diamonds

# the default print character is an open circle
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