
HW 6 Solutions (26 pts)
1. (4 pts, 2 for correct CI, 2 for correct 1-sided test)

We found (in HW #5) that an ANOVA fit to the Incomes across the 5 education levels did not satisfy
the constant variance assumption. One way to address this is to log10 transform the incomes. A
residual plot is shown in the Appendix that suggests that this assumption is not violated with the
log10-transformed incomes across education groups. Based on this ANOVA, the data suggest that there
is some difference in the mean log10 transformed incomes based on education level (F = 62.9, p-value <
2.2×10−16). In other words, the data suggest that there is some difference in the median incomes based
on education level (F = 62.9, p-value < 2.2×10−16)

Assuming that the researchers planned before the study was conducted to test that the median income
level for workers with a high school education is less than the median income of workers with a
bachelor’s degree, a follow-up t-test was performed with degrees of freedom equal to DFE = 2579 from
the ANOVA, and with MSE = 0.1632. Hence, the evidence suggests that the median education level of
folks with a bachelor’s degree was larger than the the median income level for folks with a high school
education (t = 10.44, p-value < 0.0001). A 95% CI for the difference (Bachelor’s - HS) in the log10
transformed incomes is [0.20, 0.29]. Back transforming this CI gives a 95% CI for the ratio in medians,
[100.20, 100.29] = [1.59, 1.97]. Therefore, we are 95% confident that the median income for folks with
a bachelor’s degree is 59% to 97% larger than the median income for folks with only a high school
education. See R-code and R-output in the Appendix.

2. (10 pts total) The log10 transformed incomes were also analyzed by a permutation test using the
variance of the mean log10 transformed incomes as the test statistic to test whether there was any
difference in median incomes across the 5 educational levels.

(a) (4 pts) The assumptions of a permutation test of these data are:

• Same shape One assumption of this permutation test is that the groups have the same
shape (but not necessarily normal) and hence also the same variance! Hence, we must apply
the permutation test to the log10 transformed incomes which do not appear to violate the
assumption of constant variance appear to have constant variance across the groups as indicated
by the residual vs. fits plot in the Appendix.

• Independence within groups: As these data were obtained from a random sample of individuals
in the National Longitudinal Youth Study each individual is independent of the others.

• Independence between groups: Similarly, because of the random sample of individuals the
independence between educational levels does not seem to be violated. As one person cannot
be sampled multiple times (in different groups).

(b) (3 pts) Results There are few different test statistics that you can use (SSG, MSG, variance of
the means, F ) with the permutation test. Here, the variance of the means is used as the test
statistic. The approximate permutation distribution of the variance of the means test statistic
over 10, 000 simulations is shown in Figure 1 in the Appendix.

(c) (1 pt)

p-value: The variance in means for the actual data set is 0.032 - this is the test statistic. There
was not a single permuted data set that attained or exceeded this value; hence, p-value < 1

10000 .

(d) (2 pts) Compare ANOVA and PERMANOVA As reported in #1 above, based on a (parametric)
ANOVA of these same data, the data suggest that there is some difference in the median incomes
based on education level (F = 62.9, p-value < 2.2×10−16). The PERMANOVA performed here
also shows a tiny p-value; hence, from the PERMANOVA, we also conclude that the data suggest
that there is some difference in the median incomes based on education level (variance in means =
0.032, p-value < 2.2×10−16).
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3. (2 pts) Kruskal-Wallis non-parametric ANOVA was applied to incomes and also to log10-transformed
incomes (see Appendix) to test whether the median income is different for the educational levels. We get
exactly the same test statistic value (χ2 = 349.5) and p-value (< 2.2 × 10−16) because Kruskal-Wallis
analyzes the ranks of the data and log transforms do not re-order the data or the ranks. Hence, the
ranks of the incomes and the ranks of log10-transformed incomes are the same. These results lead to a
p-value that is indistinguishable from that generated by ANOVA and PERMANOVA.

4. (10 pts total) Three experiments were performed at MSU’s Center for Biofilm Engineering in January,
February and October of 2017. In each experiment, a biofilm that represents those found in chronic
wounds was grown on three different surfaces for a total of n = 9 biofilms. The density of bacteria in
the biofilm was recorded as number of bacteria per cm2. It is important to grow up a similar biofilm
in multiple experiments so that any results regarding topical antibiotics or anti-microbials are with
respect to the same bio-challenge.

(a) (1 pt) Displaying these data using an individual value plot (Figure 2) is preferable to a boxplot
because there are only ni = 3 data per experiment! A boxplot uses a five number summary to
generate the plot, why would you ever use a five number summary of less than 5 data points!

(b) (1 pt) It would be appropriate to present a 95% CI of the true mean log10-transformed densities
using a 1-sample t-CI with 8 df if the n = 9 biofilms were independent and not clustered by
experiments. A random effects ANOVA accounts for the clustering of the biofilm samples in each
experiment. This model assumes that these three experiments are representative of all possible
experiments and uses the results of these experiments to estimate the distribution of all possible
experiments. The random effects ANOVA uses only I − 1 = 2 degrees of freedom to build a 95%
CI for these data (as for problem #4f below).

(c) (2 pts) A random effects ANOVA was fit to these data with a random effect for experiment. Three
assumptions need to be checked, Normality of the residuals, constant variance, and independence
across Dates. Independence across dates is met if experiments performed on different days are
independent of one another. Residual plots (Figure 3) do not suggest that the Normality assumption
is violated because the points in the normal probability plot are fairly close to the line. Due to
the small sample size of this study, we cannot utilize the Central Limit Theorem which gives
us Normality of the sampling distribution of the mean. The Residual vs. Fitted plot, however,
suggests that the constant variance assumption across experiments may be violated because of the
larger spread in residuals for the two dates with higher bacterial densities compared to the single
date with a slightly smaller bacterial density.

(d) (1 pt) The log10-transformed densities that were produced from the same experiment are not
independent. The correlation among these biofilm log10 densities is estimated to be r =

0.015163
0.015163+0.006933 = 0.686.

(e) (1 pt) The proportion of variance (out of the total variance) due to experiment-to-experiment
sources is r = 0.686.

(f) (3 pts, 1 for the CI, 2 for the interpretation) A 95% CI for the true mean log10-transformed
densities of the chronic wound biofilms is [6.4, 7.1]. We are 95% confident that the true mean
log10-density of biofilm in these chronic wound experiments is between 6.4 and 7.1.

(g) (1 pt) Back transforming we get [106.4, 107.1] = [2.7 × 106, 1.2 × 107]. We are 95% confident that
the true median density of the chronic wound biofilms is between 2.7 × 106 and 1.2 × 107 bacteria
per cm2.
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Appendix

Housekeeping

source("http://www.math.montana.edu/parker/courses/STAT411/diagANOVA.r") # residual plots
library(Sleuth3) # to get datasets
library(ggplot2) # to use qplot() in #3
library(lme4) # to use lmer() in #4

## Loading required package: Matrix

Problem 1

# Import the data
library(Sleuth3)
d = ex0525
d$Educ = factor(as.character(d$Educ),levels = c("<12","12","13-15","16",">16"))
summary(d)

## Subject Educ Income2005
## Min. : 2 <12 : 136 Min. : 63
## 1st Qu.: 1586 12 :1020 1st Qu.: 23000
## Median : 3108 13-15: 648 Median : 38231
## Mean : 3494 16 : 406 Mean : 49417
## 3rd Qu.: 4636 >16 : 374 3rd Qu.: 61000
## Max. :12140 Max. :703637
# Conduct ANOVA on log-transformed data
m = lm(log10(Income2005) ~ Educ,data=d)
diagANOVA(m) # Assess the residuals
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anova(m) # ANOVA table

## Analysis of Variance Table
##
## Response: log10(Income2005)
## Df Sum Sq Mean Sq F value Pr(>F)
## Educ 4 41.05 10.2630 62.87 < 2.2e-16 ***
## Residuals 2579 421.00 0.1632
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
DFE = 2579
MSE = 0.1632

# Get means and sample sizes
Mean = tapply(log10(d$Income2005), d$Educ, mean)
SD = tapply(log10(d$Income2005), d$Educ, sd)
N = tapply(log10(d$Income2005), d$Educ, length)
data.frame(Mean,SD,N)

## Mean SD N
## <12 4.299229 0.4338084 136
## 12 4.441623 0.3708812 1020
## 13-15 4.512845 0.4033802 648
## 16 4.689115 0.4160997 406
## >16 4.732899 0.4632146 374
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# Perform the follow-up t-test
# Test-stat
(4.689115 - 4.441623)/sqrt(0.1632*(1/1020 + 1/406))

## [1] 10.44009
# Upper one-sided p-value
1-pt(10.44,DFE)

## [1] 0
# 2-sided 95% confidence interval
(4.689115 - 4.441623) + c(-1,1)*qt(.975,DFE)*sqrt(0.1632*(1/1020 + 1/406))

## [1] 0.2010074 0.2939766
10^((4.689115 - 4.441623) + c(-1,1)*qt(.975,DFE)*sqrt(0.1632*(1/1020 + 1/406)))

## [1] 1.588574 1.967780

Problem 2

var.test.stat=var(tapply(log10(d$Income2005),d$Educ,mean))
var.test.stat

## [1] 0.03192832
num_sim = 10000 # Draw num_sim randomizations
var.mean<-numeric(num_sim) # storage vector

# generate num_sim random assignments and calculate the variance in means
for(i in 1:num_sim)

{
grp<-sample(d$Educ,2584,replace=FALSE)
Mean.sim = tapply(log10(d$Income2005),grp,mean)
var.mean[i]<- var(Mean.sim)
}

# Get the p-value wrt var.test.stat
sum(var.mean>=var.test.stat)/num_sim

## [1] 0
hist(var.mean,prob=T,main="Hist. of Var(means)",

xlab="Var(means)") # a density histogram
abline(v=var.test.stat,lwd=3) # puts a vertical line at the observed variance
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Figure 1: Simulation results: an approximation to the permutation distribution for the test statistic equal to
the variance of the means.
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Problem 3

kruskal.test(log10(Income2005) ~ Educ,data=d)

##
## Kruskal-Wallis rank sum test
##
## data: log10(Income2005) by Educ
## Kruskal-Wallis chi-squared = 349.45, df = 4, p-value < 2.2e-16
kruskal.test(Income2005 ~ Educ,data=d)

##
## Kruskal-Wallis rank sum test
##
## data: Income2005 by Educ
## Kruskal-Wallis chi-squared = 349.45, df = 4, p-value < 2.2e-16
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Figure 2: An individual value plot of log-transformed bacterial biofilm densities across 3 experiments.

Problem 4

b = read.csv("http://www.math.montana.edu/parker/courses/STAT411/HW6_biofilmdata.csv")

qplot(b$experiment,log10(b$Number),xlab="Date of experiment",ylab="log10(bacterial density)")

m.bio = lmer(log10(Number) ~ (1|experiment),data=b)
summary(m.bio)

## Linear mixed model fit by REML ['lmerMod']
## Formula: log10(Number) ~ (1 | experiment)
## Data: b
##
## REML criterion at convergence: -10.8
##
## Scaled residuals:
## Min 1Q Median 3Q Max
## -1.15224 -0.86187 0.06062 0.67340 1.37469
##
## Random effects:
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## Groups Name Variance Std.Dev.
## experiment (Intercept) 0.015163 0.12314
## Residual 0.006933 0.08326
## Number of obs: 9, groups: experiment, 3
##
## Fixed effects:
## Estimate Std. Error t value
## (Intercept) 6.76658 0.07632 88.66
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Figure 3: Residal plots for the random effects ANOVA fit to the biofilm data

diagANOVA(m.bio)

# Correlation
0.015163/(0.015163 + 0.006933)

## [1] 0.6862328
# 95% CI for true mean log density
6.76658 + c(-1,1)*qt(.975,2)*0.07632

## [1] 6.438202 7.094958
# 95% CI for true median density
10^(6.76658 + c(-1,1)*qt(.975,2)*0.07632)

## [1] 2742847 12443956
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