
Chapter 7 - Sampling Distributions

1 Introduction

What is statistics? It consist of three major areas:

• Data Collection: sampling plans and experimental designs

• Descriptive Statistics: numerical and graphical summaries of the data collected from a
sample

• Inferential Statistics: estimation, confidence intervals and hypothesis testing of parameters
of interest

Statistical procedures are part (steps 2-5 below) of the Scientific Method first espoused by
Sir Francis Bacon (1561-1626), who wrote “to learn the secrets of nature involves collecting data
and carrying out experiments.” The modern methodology:

1. Observe some phenomenon

2. State a hypothesis explaining the phenomenon

3. Collect data

4. Test: Does the data support the hypothesis?

5. Conclusion. If the test fails, go back to step 2.

If you encounter a “scientific claim” that you disagree with, scrutinize the steps of the scientific
method used. “Statistics don’t lie, but liars do statistics.” - Mark Twain.

What is mathematical statistics?: The study of the theoretical foundation of statistics.

What is a statistic? Let X1, X2, . . . , Xn be a set of observable random variables (such as a
random sample of n individuals from a population of interest). A statistic T is a function

T = T (X1, X2, . . . , Xn)

applied to X1, X2, . . . , Xn.

POPULATION vs. SAMPLE:

Population: The entire group of individuals (subjects or units), that can be
either existent or conceptual, that we want information about.

Sample: A part of the population from which data is collected.
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PARAMETER vs. STATISTIC:

Parameter: A numerical value calculated from all individuals in the population.

• Population mean: µ =

{ ∑
x xP (x) if x is discrete∫∞

−∞ xf(x)dx if x is continuous

• Population variance: σ2 =

{ ∑
x(x− µ)2P (x) if x is discrete∫∞

−∞(x− µ)2f(x)dx if x is continuous

• Population proportion: p is the true proportion of 1′s in the population.

• Population median: ϕ.5 is the (not necessarily unique) value such that
P (X ≤ ϕ.5) ≥ .5 and P (X ≥ ϕ.5) ≥ .5.

Statistic: A numerical value calculated from a sample X1, ..., Xn.

• Sample mean: X = T (X1, X2, . . . , Xn) =
1
n

∑n
i=1 Xi

• Sample variance: S2 = T (X1, X2, . . . , Xn) =
1

n−1

∑n
i=1(Xi − X̄)2

• Sample proportion: p̂ = T (X1, X2, . . . , Xn) =
number of 1′s

n
is the proportion

of 1’s in the sample

• Sample median:

ϕ̂.5 = T (X1, X2, . . . , Xn) =

{
the middle value if n is odd
the average of the two middle values if n is even

.

2 Sampling Distributions

The value of a statistic varies from sample to sample. In other words, different samples will result
in different values of a statistic. Therefore, a statistic is a random variable with a distribution!

Sampling Distribution: The distribution of statistic values from all possible samples of size
n. Brute force way to construct a sampling distribution:

• Take all possible samples of size n from the population.

• Compute the value of the statistic for each sample.

• Display the distribution of statistic values as a table, graph, or equation.

2.1 Sampling Distribution of X

One common population parameter of interest is the population mean µ. In inferential statistics,
it is common to use the statistic X to estimate µ. Thus, the sampling distribution of X is of
interest.

Mean and Variance

For any sample size n and a SRS X1, X2, ..., Xn from any population distribution with
mean µx and variance σ2

x:
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• E(X) = µx̄ = µx and E(
∑n

i=1Xi) = nµx

• Var(X) = σ2
x̄ = σ2

x/n and Var(
∑n

i=1Xi) = nσ2
x

This result was proved in Example 5.27 using Theorem 5.12: Let ai for i = 1, 2, . . . , k
be constants and let Xi for i = 1, 2, . . . , k be random variables. Then

• E

(
k∑

i=1

aiXi

)
=

k∑
i=1

aiE(Xi) (independence not required) and

• Var
(∑k

i=1 aiXi

)
=
∑k

i=1 a
2
i Var(Xi) if X1, X2, . . . , Xk are mutually independent.

Sampling Distribution when the data are normal

For any sample size n and a SRS X1, X2, ..., Xn from a normal population distribution
N(µx, σ

2
x) (Theorem 7.1):

• X ∼ N(µx, σ
2
x/n)

•
∑n

i=1Xi ∼ N(nµx, nσ
2
x)

Examples:

Suppose that adult male cholesterol levels are distributed as N(210mg/dL, (37mg/dL)2).

1. Give an interval centered at the mean µ which captures the middle 95% of all
cholesterol values.

2. Give the sampling distribution of X, the sample mean of cholesterol values taken
from SRSs of size n = 10.

3. Give an interval centered at the mean µ which captures the middle 95% of all sample
mean cholesterol values taken from SRSs of size n = 10.

Sampling Distribution for large sample sizes

For a LARGE sample size n and a SRS X1, X2, ..., Xn from any population distribution
with mean µx and variance σ2

x < ∞, the approximate sampling distributions are:

X ∼̇ N

(
µx,

σ2
x

n

)
and

n∑
i=1

Xi ∼̇ N
(
nµx, nσ

2
x

)
.
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This last result follows from the celebrated Central Limit Theorem, stated in your
book as Theorem 7.4:

Let X1, X2, . . . , Xn be a SRS from a distribution with mean µx and variance σ2
x < ∞.

Then the distribution of

Un =
X − µx

σx/
√
n

converges to N(0, 1) as n → ∞.

We will prove this theorem later.

Important Examples:

1. Bernoulli trials.

Let X =

{
1 if with probability p =
0 if with probability(1− p) =

Then
X ∼ Bern(p) = Bin(n = 1, p).

(a) Draw a picture of the pdf of X.

(b) Find E(X) and V ar(X).

(c) Suppose a SRS X1, X2, ..., X40 was collected. Give the approximate sampling
distribution of X (normally denoted by p̂ = X, which indicates that X is a
sample proportion).

2. Normal approximation to the Binomial (section 7.5)

In the previous example we considered the rv X ∼ Bern(p) = Bin(n = 1, p). Suppose
that a SRS X1, X2, . . . , Xn has been collected with n > 1.

(a) Give the distribution of Y =
∑

iXi, so that Y is the number of successes out of
n trials (which is a discrete distribution you learned about in chapter 3).

(b) Draw a picture of the pdf of Y =
∑

i Xi.
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(c) Give E(Y ) and V ar(Y ).

(d) In the Example #1c the Central Limit Theorem showed that for any sample size
n, when X ∼ Bern(p), then

p̂ = X ∼̇ N( , ).

(e) In addition to means X, the Central Limit Theorem also gives the approximate
sampling distribution of a sum

∑
Xi. Use the Central Limit Theorem to give

the approximate sampling distribution of Y =
∑

i Xi.

(f) If the true proportion of supporters of healthcare reform in the Montana
population is p = .53, then out of a SRS of Montanans of size n = 1000, whats
the probability that less then 500 will pledge support?

2.2 Sampling Distribution of S2

One common population parameter of interest is the population variance σ2. In inferential
statistics, it is common to use the statistic S2 to estimate σ2. Thus, the sampling distribution
of S2 is of interest.

χ2 distribution: The sum of squares of independent standard normal variables is distributed
as a χ2 random random variable. More formally (Theorem 7.2):

• If Z1, ..., Zν are independent and distributed as N(0, 1), then
ν∑

i=1

Z2
i ∼ χ2(ν).

χ2(ν) is called the chi-square distribution with ν degrees of freedom.

• For any sample size n and a SRS X1, X2, ..., Xn from a normal distribution N(µx, σ
2
x),

n∑
i=1

(
Xi − µx

σx

)2

∼ χ2(n).
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• Use Table 6 on p. 850 of the textbook for probability calculations.

Mean and Variance

If C ∼ χ2(ν), then

• E(C) = ν

• Var(C) = 2ν.

For any sample size n > 1 and a SRS X1, X2, ..., Xn from any population distribution with
mean µx and variance σ2

x,

• E(S2) = σ2
x

• Var(S2) = 2σ4
x

n−1
.

Sampling distribution when the data are normal

For any sample size n > 1 and a SRS X1, X2, ..., Xn from a normal distribution N(µx, σ
2
x)

(Theorem 7.3):
(n− 1)S2

σ2
x

∼ χ2(n− 1)

2.3 Sampling Distribution of X−µ
S/

√
n

In inferential statistics, the test statistic X−µ
S/

√
n
is often used to determine how many standard

errors (s/
√
n) the sample mean X is from a hypothesized value of µ. Thus, the sampling

distribution of X−µ
S/

√
n
is of interest.

t distribution (Definition 7.2): If Z ∼ N(0, 1), W ∼ χ2(ν), and Z and W are independent,
then:

T =
Z√
W/ν

∼ t(ν).

t(ν) is called the t distribution with ν degrees of freedom.

Mean and Variance

If T ∼ t(ν), then

• E(T ) = 0 for ν > 1

• Var(T ) = ν
ν−2

for ν > 2

Sampling distribution when the data are normal

For any sample size n > 1 and a SRS X1, X2, ..., Xn from N(µ, σ2), then

• X and S2 are independent
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• And now by Theorems 7.1 and 7.3 and Definition 7.2

T =

√
n(X − µ)/σ√

(n−1)S2/σ2

n−1

=
X − µ

S/
√
n

∼ t(n− 1).

Sampling Distribution for large sample sizes

For a LARGE sample size n and a SRS X1, X2, ..., Xn from any population distribution
with mean µx and variance σ2

x < ∞:

T =
X − µx

S/
√
n

∼̇ t(n− 1).

Some useful facts:

• The pdf of T is given by

f(t) =
Γ(ν+1

2
)

Γ(ν
2
)

1√
νπ

(
1 +

t2

ν

)−(ν+1)/2

• The t distributions are symmetric about 0 and is bell-shaped like the normal N(0, 1)
distribution but with thicker tails.

• As ν → ∞, the t(ν) distribution approaches the standard normal distribution.

• Use Table 5 on page 849 for probability calculations.

Examples:
Suppose that adult male cholesterol levels are distributed as N(210mg/dL, σ2).

1. Give the sampling distribution of X−µ
S/

√
n
, where the statistics X and S2 are calculated from

a SRS of size n = 10.

2. If S2 = 36.52, give an interval centered at the mean µ which captures the middle 95% of
all sample mean cholesterol values taken from SRSs of size n = 10.
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2.4 Sampling Distribution of S2
1/σ

2
1

S2
2/σ

2
2

In inferential statistics, it is often of interest to compare the variances σ2
1 and σ2

2 from two
populations, and determine if they are different. Based on two SRSs, one of size n1 with sample

variance S2
1 and the other of size n2 with sample variance S2

2 , the statistic
S2
1/σ

2
1

S2
2/σ

2
2
is often used.

Thus, the sampling distribution of
S2
1/σ

2
1

S2
2/σ

2
2
is of interest.

F distribution (Definition 7.3): If W1 ∼ χ2(ν1) and W2 ∼ χ2(ν2) are independent, then:

F =
W1/ν1
W2/ν2

∼ F (ν1, ν2).

F (ν1, ν2) is called the F distribution with ν1 numerator degrees of freedom and ν2
denominator degrees of freedom.

Mean and Variance

If F ∼ F (ν1, ν2), then

• E(F ) = ν2
ν2−2

for ν2 > 2

• Var(F ) =
2ν22 (ν1+ν2−2)

ν1(ν2−2)2(ν2−4)
for ν2 > 4

Sampling Distribution when the data are normal

If X1, X2, ..., Xn1 are a SRS from N(µ1, σ
2
1) and if Y1, X2, ..., Xn2 are an independent SRS

from N(µ2, σ
2
2), then

W1 =
(n1 − 1)S2

1

σ2
1

∼ χ2(n1 − 1) and W2 =
(n2 − 1)S2

2

σ2
2

∼ χ2(n2 − 1)

are independent, and so

F =
W1/(n1 − 1)

W2/(n2 − 1)
=

S2
1/σ

2
1

S2
2/σ

2
2

∼ F (n1 − 1, n2 − 1).

Some useful facts:

• If X ∼ F (ν1, ν2), then the pdf of X is

f(x) =
Γ
(
ν1+ν2

2

)
Γ
(
ν1
2

)
Γ
(
ν2
2

) (ν1
ν2

)ν1/2

x(ν1/2)−1

(
1 +

ν1
ν2
x

)−(ν1+ν2)/2

.

• Use Table 7 on p. 852 for probability calculations.

Example:
Is the variance of female reaction times different than the variance of male reaction times?

Jason Paulak at the University of Cincinnati ran a web based reaction experiment to answer
this question. n1 = 398 females participated, with X1 = 517 ms and S1 = 899 ms. n2 = 469
males participated, with X2 = 383.2 ms and S2 = 335.7 ms.

8



• Give the sampling distribution of F =
S2
1/σ

2
1

S2
2/σ

2
2
.

• If the two population variances are indeed the same, σ2
1 = σ2

2, then what is the probability
of observing a ratio of sample variances that we did, or larger?
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3 Proof of the Central Limit Theorem

Central Limit Theorem
Let X1, X2, . . . , Xn be a SRS from a distribution with mean µx and variance σ2

x < ∞. Then

lim
n→∞

Un = lim
n→∞

X − µx

σx/
√
n

= U ∼ N(0, 1).

Proof (section 7.4): The proof relies on moment generating functions (mgf) from section 3.9 of
your textbook. We saw that every rv, as well as having a unique pmf or pdf, also has a unique
mgf (Theorem 7.5), written as M(t). This notation for the mgf reinforces the fact that it is a
function of a real number t in some neighborhood of t = 0. The mgf for a continuous rv Y is
defined by

M(t) = E(etY ) =

∫ ∞

−∞
etyf(y)dy,

where f(y) is the pdf of Y . To prove the Central Limit Theorem:

1. Use Taylor series to find the mgf of Zi =
Xi−µ

σ
.

2. Find the mgf of Un = X−µx

σx/
√
n
.

3. Show that as n → ∞, the mgf of Un converges to et
2/2.

4. Recall that the mgf of a standard normal rv is et
2/2. Thus, by Theorem 7.5, the

distribution of U = limn→∞ Un is a standard normal!

Here we go:

1. Let Zi =
Xi−µ

σ
. This is where we need the finite variance assumption: if σ2 is infinite, then

Zi is not well defined!

(a) Show that EZ = 0, V ar(Z) = E(Z2) = 1. Hint: This is easy since Z is a linear
function of X.
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(b) Show that MZ(0) = 1, d
dt
MZ(0) = 0, and d2

dt2
MZ(0) = 1.

(c) Use Taylor’s Theorem (and the results from (b)) to expand MZ(t) about t = 0 to

show that MZ(
t√
n
) = 1+ (t/

√
n)2

2!
+R( t√

n
), where R( t√

n
) is a remainder of cubic terms

of t√
n
and higher.

(d) Show that the remainder limn→∞
R( t√

n
)

(t/
√
n)2

= n limn→∞ R( t√
n
) = 0.
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2. By definition

Un =
X − µx

σx/
√
n

=

√
n

n

(∑
iXi − nµx

σx

)
=

1√
n

∑
i

Zi,

which shows that the mgf of Un when X1, ..., Xn is a simple random sample is

MUn(t) = Πn
i=1MZi

(
t√
n
) =

(
MZ(

t√
n
)

)n

(by Theorem 6.2 and Exercise 3.158).

3. Show that limn→∞ MUn(t) = e
t2

2 . Hint: Substitute in the Taylor series approximation
for MZ(

t√
n
); use the fact that limn→∞

(
1 + an

n

)n
= elimn→∞ an ; use the fact that

limn→∞
R( t√

n
)

(t/
√
n)2

= n limn→∞ R( t√
n
) = 0.

4. Recall that if U ∼ N(0, 1), then MU(t) = et
2/2 from section 3.9 of your textbook. To prove

this, multiply the two exponentials in the integral, then complete the square to show that
E(etU) = et

2 1√
2π

∫∞
−∞ e−

1
2
(u−t)2du. Now observe that 1√

2π
e−

1
2
(u−t)2 is the pdf of a N(t, 1) rv.
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