

Exam 1

STAT422

February 18, 2011

<u>Instructions</u>: This exam is worth 100 points. SHOW ALL WORK! No work, no credit.

(22 pts) Circle True or False to indicate the validity of the following statements. You do not need to justify your answer. In all of the following, assume that X₁,..., X_n is a SRS from some population of interest with mean μ and variance σ².
 (a) True or False: E(∑_{i=1}ⁿ X_i) = ∑_{i=1}ⁿ E(X_i) only when the data X_i are independent.
 (b) True or False: Var(X₁ + 2X₂) = Var(X₁) + 2Var(X₂) only when the data X_i are independent.
 (c) True or False: The sum of χ² rvs has a χ² distribution when the rvs are independent.
 (d) True or False: If S² is the sample variance, then lim_{n→∞} Var(S²) = 0.
 (e) True or False: For the normal distribution N(μ, σ²), X̄ is the MVUE for μ.
 (f) True or False: Using p = .5 maximizes the variance of a binomial random variable.
 (h) True or False: A t statistic with n degrees of freedom is defined as t = Z̄_{\overline{U}} where Z ~ N(0,1) and U ~ X²(n).
 (i) True or False: The MOM estimator for E(X³) is \(\frac{1}{n}(\sum_{i=1}^n X_i)^3\).
 (j) True or False: You measured the temperature on 5 randomly chosen days in January, 2011 in Bozeman. Assuming the data are normal, a 95% CI for the true mean January

temperature is $\bar{X} \pm 1.96 \frac{S}{\sqrt{n}}$. (k) True or False: A 95% confidence interval for $\mu_1 - \mu_2$ is [-6, -1]. Thus, with 95% confidence, $\mu_2 > \mu_1$.

2. (6 pts) State the Central Limit Theorem. Be sure to state all assumptions, and give a proper conclusion.

See theorem 7.4 for the correct answer to this problem.

3. (6 pts) State the Weak Law of Large Numbers. Be sure to state all assumptions, and give a proper conclusion.

Given X,, ..., Xn i.i.d. with EXi=ph and VXi=or < 00

X -> ph

i.e. X is consistent for pr.

- 4. (22 pts) On February 5, 2011, the Bozeman Daily Chronicle reported that out of 224 bison captured while attempting to exit Yellowstone National Park, 76 tested positive for brucellosis, a disease which causes animals to abort their young.
 - (a) (2 pts) Use an unbiased estimator to give an estimate of the true proportion of bison who have brucellosis.

$$\hat{P} = \frac{76}{224} = 0.34$$

(b) (6 pts) Give a 95% CI for the true proportion of Yellowstone bison who have brucellosis.

$$\hat{p} = 2_{0.025} \hat{p} (1-\hat{p}) = 0.34 \pm 1.96 \sqrt{\frac{16}{224}(1-\frac{16}{224})} = [0.277, 0.401]$$

(c) (4 pts) Give a conclusion of this confidence interval in terms of the problem.

We are 95% confident that the true percentage if bison exiting the park that have brucellosis in between 28% and 40%.

(d) (4 pts) The Chronicle reported that "about half of the Park's bison carry the disease." Does your 95% CI refute this claim. Why or why not?

Yes, because the CI does not contain 0.5 (or 5020).

(e) (6 pts) What TWO things must you assume about the sample of bison in order for your conclusions in 4c and 4d to be valid? Do these two assumptions appear to be satisfied? Explain.

the bison used to calculate the CI must be a RS (so data one i.i.d.) of all bison that exit the park. This is extremely unlikely - YNP can only capture bison that use routes monitored by YNP.

- 5. (18 pts) Suppose that X_1, X_2 are a SRS from $N(\mu, \sigma^2)$.
 - (a) Give the distribution of $\frac{(Y_1-Y_2)^2}{2\sigma^2}$, and explain why your answer is correct. (*Hint:* What is the distribution of (Y_1-Y_2) ?)

 $Y_1 - Y_2$ is informal because Y_1 and Y_2 are normal. $E(Y_1 - Y_2) = EY_1 - EY_2 = \mu - \mu = 0$. $V(Y_1 - Y_2) = VY_1 + VY_2 = \sigma^2 + \sigma^2 = 2\sigma^2$ because $V(Y_1 - Y_2) = VY_1 + VY_2 = \sigma^2 + \sigma^2 = 2\sigma^2$

Now standardizing: $(Y_1-Y_2)/(2\sigma^2)$.

(b) Show that $\frac{(Y_1-Y_2)^2}{2\sigma^2}$ is a pivotal quantity for σ^2 .

Need: $(Y_1 - Y_2)^2/2\sigma^2$ to be (1) function of data: YES! (2) Have a known diet. IL σ^2 : YES, σ^2 (1).

(c) Apply the pivotal method to $\frac{(Y_1 - Y_2)^2}{2\sigma^2}$ to construct a CI for σ^2 .

$$P\left(\frac{a}{2} \leq \frac{(Y_1 - Y_2)^2}{2\sigma^2} \leq b\right) = 1 - x$$

$$\Rightarrow P\left(\frac{(Y_1 - Y_2)^2}{2b} \leq \sigma^2 \leq \frac{(Y_1 - Y_2)^2}{2a}\right) = 1 - \alpha$$

2/2 /2/2 X2/2

(a) (8 pts) Prove that $\sum_i X_i$ is sufficient for β . Justify each step in your proof.
the exponential likelihood is L(B) = # = = xi/B
because a SP2S
Factoring L(B) = B'e BEX: 1 = Ex: is sufficient gc B, Ex: h(x) for B.
3cB, xxi) h(x)
(b) (4 pts) Find the MVUE for β . Specify which theorem justifies your answer. $ \vec{X} = \{\vec{x} \mid \vec{x} \} = \{\vec{x} \mid \vec{x} \} = \{\vec{x} \mid \vec{x} \} = \{\vec{x} \mid \vec{x} \mid \vec{x} \} = \{\vec{x} \mid \vec{x} \mid \vec{x} \} = \{\vec{x} \mid \vec{x} \mid \vec{x} \mid \vec{x} \} = \{\vec{x} \mid \vec{x} \mid \vec{x} \mid \vec{x} \mid \vec{x} \} = \{\vec{x} \mid \vec{x} \mid \vec{x} \mid \vec{x} \mid \vec{x} \mid \vec{x} \mid \vec{x} \} = \{\vec{x} \mid \vec{x} $
By Row Backingle, \overline{X} is MNE. 7. (14 pts) Suppose that $X_1,, X_n$ are a SRS from a Poisson distribution with parameter λ .
(a) (10 pts) Find the MLE of λ . Be sure to show that the statistic you find is a maximum.
The Poisson likelihood is L(X) = TT X = 1/y:!

6. (12 pts) Let $X_1, ..., X_n$ be a SRS from an exponential distribution with parameter β .

The Poisson likelinood is $L(\lambda) = T \lambda e^{-\lambda}/yi!$ in $L(\lambda) = \sum yi \ln(\lambda) - n\lambda - \sum \log(yi) = \sum e^{-n\lambda}/Tyi!$ in $L(\lambda) = \sum yi \ln(\lambda) - n\lambda$. Setting to O shows $\lambda = Y$.

Is a critical point. $\frac{d^2}{d\lambda^2} \ln L(\lambda) = -\sum yi < D$ because each $yi \ge D$.

in $L(\lambda) = \sum yi / 2nd$ derivative fact.

(b) (4 pts) Find the MLE for $\lambda^2 + \lambda$. Justify your answer.