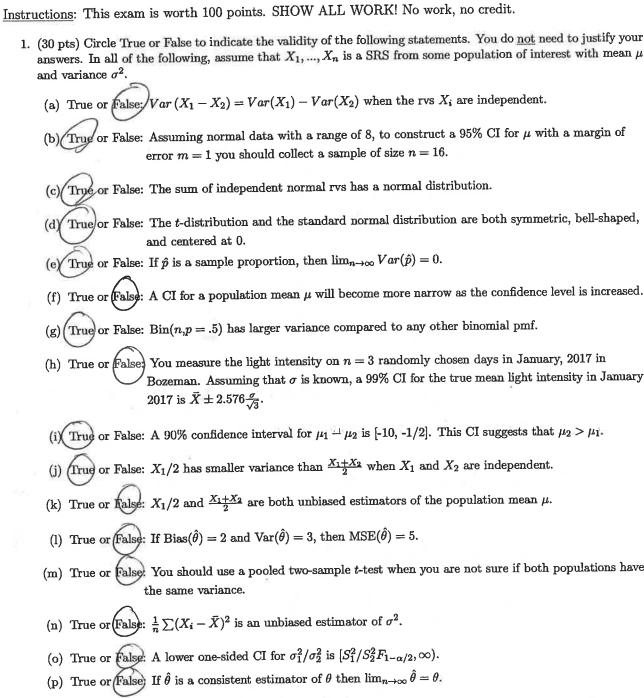
Exam 1

STAT422

February 17, 2017



2. (9 pts) List the THREE desirable properties that we have discussed in class of a point estimator $\hat{\theta}$ for some parameter θ .

1. unbiased

2. Small or minimum vaniance

3. consistency

- 3. Suppose that $X_1, X_2, ..., X_n$ are a SRS from $EXP(\beta)$.
 - (a) (12 pts) Derive the distribution of $U = \frac{\sum X_i}{\beta}$.

$$m_{x}(t) = (1-\beta t)^{-1}$$

By independence of Xi's,

mexilt) = mx,(t) x mx,(t) x ... x mx, (t).

Because Xi's one identically EXP(B)

 $M_{\geq X_{1}}(t) = (1-\beta t) \times (1-\beta t) \times \dots \times (1-\beta t)^{-1}$ $= (1-\beta t)^{-n}$

Because $m_{cx}(t) = m_{x}(ct)$ for any constant c_{y} $m_{zxy_{\beta}}(t) = (1 - \beta \frac{t}{\beta})^{-n} = (1 - t)^{-n}$

This is the right for $GAM(n, 1) \sim U$.

(b) (8 pts) Show that $U = \sum_{B} X_i$ is a pivotal quantity for $E(X_i) = \beta$.

1. U is function of data (via EXi) and of B.

2. U has a dist that is independent of B. (By #3a)

oo U is a pirotal grantity.

(c) (12 pts) Use the pivotal quantity $U = \frac{\sum X_i}{\beta}$ to construct a two-sided $100(1 - \alpha)\%$ CI for $E(X_i) = \beta$. Clearly define each factor in the confidence limits.

$$P(8) = 1-\alpha$$

$$P(8) = 4/2 \leq \frac{2}{\beta} \leq \frac{3}{3} \leq \frac{3}{3}$$

(d) (6 pts) Starting with the result in #3c, generate a two-sided $100(1-\alpha)\%$ confidence interval for $Var(X_i)$. Justify each step in your derivation.

Because
$$P\left(\frac{2}{X_{\alpha/2}} \leq \beta \leq \frac{2}{X_{1-\alpha/2}}\right) = 1-\alpha$$

then $P\left(\left(\frac{2}{X_{\alpha/2}}\right)^{2} \leq \beta^{2} \leq \left(\frac{2}{X_{1-\alpha/2}}\right)^{2}\right) = 1-\alpha$

when $Var\left(X_{1}\right) = \beta^{2}$.

o o $\left[\left(\frac{2}{X_{1/2}}\right)^{2}\right] \left[\frac{2}{X_{1-\alpha/2}}\right]^{2}$

o o $\left[\left(\frac{2}{X_{1/2}}\right)^{2}\right] \left[\frac{2}{X_{1-\alpha/2}}\right]^{2}$

o o $\left[\left(\frac{2}{X_{1/2}}\right)^{2}\right] \left[\frac{2}{X_{1-\alpha/2}}\right]^{2}$

o o $\left(\frac{2}{X_{1/2}}\right)^{2} = \beta^{2}$.

4. (8 pts) State the Central Limit Theorem. List all assumptions, and give a proper conclusion.

5. (12 pts) Let $T \sim t(\nu)$, prove that $T^2 \sim F(1,\nu)$. Justify each step of your proof.

By definition,

$$T = \frac{2}{\sqrt{W_{\nu}}}$$
 where $2 \sim N(0,1)$
 $\sqrt{W_{\nu}}$ and $W \sim \mathcal{Y}^{2}(\nu)$.

of
$$T^2 = \frac{4/1}{W/\nu} = ratio of independent $V^2 rvs$.
 $= F \sim F(1, \nu)$ by definition.$$