
Project 4 Solutions 
(19 pts) 

 
1. (3 pts)  
a. To show that 2σ̂ is unbiased for σ2, note that Y1 – Y2 ~ N(0, 2σ2).  Standardizing Y1 – Y2 shows 
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b. To determine consistency, use the fact that the χ2(1) rv has V( 2
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V( 2σ̂ ) = 2σ4.  Note that V( 2σ̂ ) = 2σ4 is constant for all n which shows that 
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Strictly speaking, this means that we cannot apply the General Weak Law of Large Numbers 
(Theorem 9.1).  In fact, 2

2σ̂  is not a consistent estimator for σ2 (or any other value). 
 
2. (9.20, 2 pts)  Since E(Y) = np and V(Y) = np(1 - p), we have that E(Y/n) = p and V(Y/n) = 1/n2 
V(Y) = p(1 - p)/n.  Thus, Y/n is consistent by the General Weak Law of Large Numbers (Theorem 
9.1) since it is unbiased and its variance goes to 0 with n. 
 
3. (9.24, 3 pts)   
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, which goes to zero as n goes to 

infinity.  By General Weak Law of Large Numbers (Theorem 9.1), as n → ∞, Wn 
converges in probability to 1)( =nWE . 
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undefined which you could argue does not allow you to apply the Weak Law of Large Numbers 
and stop there.  In your book’s statement of the Weak Law of Large Numbers (in Example 9.2), 
the only assumption they state is that VY must be finite.  So another approach to this problem 
(that you were not expected to do) is to show that VY is infinite (that is, undefined).  For the sake 
of completeness, I will check this.  First rewrite VY = E(Y2) – (EY)2.   The first term is
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which is an indeterminate form, so a little more work is required.  I did this by rewriting  VY =  
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 then applying L’Hopital’s Rule (differentiate the numerator and 

denominator) to the second factor: VY =
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 This shows that 

the Weak Law of Large Numbers does not apply since finite variance is required. 
 
5. (Exercise 9.36, 2pts)  Let X1, X2, …, Xn be a sequence of Bernoulli trials with success 

probability p with ∑=
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limiting standard normal distribution.  Exercise 9.20 showed that np̂  is consistent for p.  Since 
)ˆ1(ˆ nn pp −  is a continuous function of np̂ , Theorem 9.2 shows that )ˆ1(ˆ nn pp −  is consistent for 
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Theorem (or the weaker form in Theorem 9.3), 

n
pp
pp

W
U

nn

n

n

n

)ˆ1(ˆ
ˆ

−

−
=  converges in distribution to a 

standard normal variable. 
 
 
6. (9.38, 3 pts)  For a SRS taken from a normal distribution, the likelihood function is given by 
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a. When σ2 is known, Y  is sufficient for μ by the Factorization Theorem 9.4 since the 
likelihood L(y|μ) can be factored into two functions g x h with 
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b. When μ is known, ∑=
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2)( µ is sufficient for σ2 by Factorization Theorem 9.4 
since the likelihood L(y|σ2) can be factored into two functions g x h with 















σ

µ−
−σ=σµ−
∑∑ =−

= 2
1

2
2/22

1
2

2

)(
exp)(),)((

n

i inn

i i

y
yg  and h(y) = 2/)2( n−π . 

c. See Example 9.8. 
 

7. (9.42, 1pt)  The likelihood function is L(y|p) = nynnnyny
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By Factorization Theorem 9.4, Y  is sufficient for p since the likelihood L(y|p) factors into two 
functions g x h with =),( pyg nynn pp −− )1(  and h(y) = 1.  
 
8. (9.56, 2 pts))  In Exercise 9.38b, it was shown that ∑=
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212 )(ˆ  is unbiased and a function of the sufficient statistic, it is the 
MVUE of σ2.  Note that 1/n is the multiplier out front and NOT 1/(n-1) since µ is known. 
 
9. (1 pt) Problem #6 in this HW showed that Y sufficient for p.  Because 1/p is an invertible 
function of p,  Y is also sufficient for 1/p.  Since E(Y ) = E(Y), and E(Y) = 1/p when Y ~ GEO(p), 
then we have that Y  is unbiased and sufficient for 1/p.  Rao-Blackwell now shows that Y  is the 
MVUE for 1/p. 
  
 
 
 
 


