
Solutions Project 5 

15 points for undergrads, 16 points for grads 

 

1. (Exercise 9.70, 1pt)  MOM estimates the first population moment EY with the first sample 

moment .Y   Since EY = λ for a POI(λ) rv, the MOM estimator of λ is .ˆ Y  

 

2. (Exercise 9.74, 2pts)  

a. First, calculate EY = dyyy 
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factored into a function that only depends on Y and θ because, e.g., 
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in the likelihood.  Therefore, the MOM estimator is not a sufficient statistic for θ. 
 

3. (Exercise 9.80, 3pts) 

a. In class we found that the MLE for λ was .ˆ Y  

b. Because EYYE  = λ then E( ̂ ) = λ.  Because nVYYV /  and VY = λ then V( ̂ ) = 

λ/n. 

c. Since ̂  is unbiased and has a variance V( ̂ ) = λ/n  that goes to 0 as n goes to infinity, 

then ̂  is consistent for λ. 

d. By the invariance property of MLEs, the MLE for P(Y = 0)=exp(-λ) is exp(– ̂ ). 
 

4. (2 pts) For iid EXP(θ) rvs, the likelihood is 𝐿(𝜃) = 𝑓(𝑦1, … , 𝑦𝑛|𝜃) =
1

𝜃𝑛 𝑒∑ 𝑦𝑖/𝜃.  The log likelihood is 

ln L(𝜃) = −𝑛 ln 𝜃 − ∑ 𝑦𝑖/𝜃 so 
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�̅�2 < 0.  By the second derivative test Ŷ is the MLE for θ. 

 

5.   (Exercise 9.81, 1pt)  By #4, the MLE is ̂  = .Y   By the invariance property of MLEs, the 

MLE of VY = θ2 is .2Y  
 

6.  (2 pts) See Example 9.15 on page 478 of your textbook, which shows that Ŷ is a critical point. 

Your book omits the second derivative test, which is easy: 
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 is always negative.  

That is, )(L is a concave function.  Thus, Ŷ is the MLE. 

 



7. (Exercise 9.96, 2 pts) From Example 9.15, the MLE for σ2 was found to be (S’)2 =
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(a) By the invariance property of MLEs, the MLE for 𝜎 = √𝜎2 is 
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(b) Since Var(S2) = 2 σ4/(n-1), then by the invariance property of MLEs, the MLE is  

2 (S’)4/(n-1). 
 

8. (Exercise 9.97, 1 pt) 

a. MOM estimates the first population moment EY with the first sample moment .Y Since 

pEY /1 , then the MOM estimator for p is ./1ˆ Yp   

 

b. We did this in class.  The likelihood function is 
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Differentiating, we have )()(ln
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we obtain the MLE ,/1ˆ Yp   which is the same as the MOM estimator found in part a.  The 2nd 

derivative is )()(ln
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d which shows that ,/1ˆ Yp   is a maximizer.
 

 

 

9. (1 pt)  

If Y ~ Geometric(p), then (from the back of the book), Var(Y) = t(p) = (1-p)/p2.  Problem #8b 

(Exercise 9.97b) showed that the MLE for p is Yp /1ˆ  .  Thus, by the invariance property of 

MLEs, the MLE of Var(Y) = t(p) = (1-p)/p2 is YYYYYt  22 )/11()/1( . 

 

10.  (Exercise 9.94, 1pt, required for grad students, EXTRA CREDIT otherwise) 

Let β = t(θ) so that θ = )(1 t .  If the likelihood is maximized at ̂ , then L( ̂ ) ≥ L(θ) for 

all θ.  Define ̂  = t( ̂ ) and denote the likelihood as a function of β as L1(β) = L( )(1 t ).  

Then, for any β, 
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So, the MLE of β is ̂  and so the MLE of t(θ) is t( ̂ ). 

  


