Homework #7

Due: March 31, 2017

Vladimir Putin (1952 - present), current Russian President (he really said this?):

- History proves that all dictatorships, all authoritarian forms of government are transient. Only democratic systems are not transient. Whatever the shortcomings, mankind has not devised anything superior.
- 1. Consider the posterior $p(p|y_1, ..., y_n) = \text{Beta}(\alpha^*, \beta^*)$ for $\alpha > 1$ and $\beta > 1$. Show that the MAP estimator is $\hat{p}_{MAP} = \frac{\alpha^* 1}{\alpha^* + \beta^* 2}$. Be sure to perform either the 1st or 2nd derivative test. EXTRA CREDIT: Show (a) that if either $\alpha < 1$ or $\beta < 1$, then $\frac{\alpha^* 1}{\alpha^* + \beta^* 2}$ may actually be a minimum; (b) if both $\alpha < 1$ and $\beta < 1$, then $\frac{\alpha^* 1}{\alpha^* + \beta^* 2}$ minimizes the posterior and is not the MAP.
- 2. Consider a random sample $y_1, ..., y_n \sim \text{Geometric}(p)$ distribution as in Exercise 9.97. Assuming a noninformative prior for p, do the following:
 - (a) Give the likelihood $p(y_1, ..., y_n | p)$.
 - (b) Give the prior p(p).
 - (c) Find the posterior $p(p|y_1, ..., y_n)$.
 - (d) Find the estimator \hat{p}_B , the mean of the posterior.
 - (e) Find the MAP estimator \hat{p}_{MAP} .
- 3. On each day, a machine is used produce plastic crappets. The probability of machine failure on any given day is p. You will use your analysis from #2 to complete this problem. Data was collected from 10 randomly chosen crappet machines, and the number of days to failure was recorded for each machine:

 $\{y_i\} = \{362, 51, 200, 511, 211, 420, 299, 280, 398, 323\}.$

Assuming an un-informative prior for p:

- (a) Give the posterior $p(p|y_1, ..., y_{10})$.
- (b) Give the estimator \hat{p}_B for p.
- (c) Give the MAP estimator \hat{p}_{MAP} for p.
- (d) Give the MLE of p.
- (e) Give a 95% credible interval for p. Use R code as given in the examples in the course notes.
- (f) Give a proper conclusion in terms of the problem.
- 4. Consider the likelihood $p(y_1, ..., y_n | p)$ for a SRS of Bernoulli data, and a prior $p(p) = \text{Beta}(\alpha, \beta)$. We showed in class that the posterior is $p(p|y_1, ..., y_n) = \text{Beta}(\alpha^* = \sum y_i + \alpha, \beta^* = n - \sum y_i + \beta)$.
 - (a) Show that the mean of the posterior is $\hat{p}_B = \frac{\sum y_i + \alpha}{n + \alpha + \beta}$.
 - (b) Find $E(\hat{p}_B)$.
 - (c) Is \hat{p}_B biased?
 - (d) Find $Var(\hat{p}_B)$.

- (e) Which is larger, $Var(\hat{p}_B)$ or $Var(\hat{p}_{MLE})$, where \hat{p}_{MLE} is the MVUE for p?
- (f) Show that \hat{p}_B is consistent for p.
- 5. Do exercise 8.56 using the Bayesian analysis from #4. Assume that the data are a SRS from a Bernoulli distribution, and use a non-informative prior for p.
 - (a) Give \hat{p}_{MLE} , the MLE for p (use previous results, you do not need to derive it), and give the Bayesian estimate \hat{p}_B
 - (b) Give the 98% CI for p.
 - (c) Give a 98% credible interval for p. Use R or some other software package.
 - (d) Interpret the credible interval in #5c in terms of the problem.
 - (e) Do the evidence suggest that either a majority or minority of adults say that movies are getting better?
- 6. Consider a SRS $y_1, ..., y_n$ from $N(\mu, \sigma^2)$ when σ^2 is known, and assume an uninformative, flat prior for μ .
 - (a) Show that $p(\mu|y_1, ..., y_n) = N(\bar{y}, \sigma^2/n)$.
 - (b) Give the estimators $\hat{\mu}_B$, $\hat{\mu}_{MAP}$ and $\hat{\mu}_{MLE}$.
- 7. Let $y_1, ..., y_n$ denote a SRS from a Poisson(λ) distribution (as in Exercise 16.11).
 - (a) Show that $p(\lambda)$ =Gamma (α, β) is a conjugate prior. That is, show that $p(\lambda|y_1, ..., y_n)$ =Gamma (α^*, β^*) for some α^* and β^* .
 - (b) Give the posterior parameters α^* and β^* .
 - (c) Give the estimator $\hat{\lambda}_B$.
 - (d) Use previous results to give the estimator $\hat{\lambda}_{MLE}$.
 - (e) Find $E(\hat{\lambda}_B)$.
 - (f) Is $\hat{\lambda}_B$ biased?
 - (g) Find $Var(\hat{\lambda}_B)$.
 - (h) Which is larger, $Var(\hat{\lambda}_B)$ or $Var(\hat{\lambda}_{MLE})$?
 - (i) Show that $\hat{\lambda}_B$ is consistent for λ . Use the Generalized Weak Law of Large Numbers (similar to Theorem 9.1): If $\hat{\theta}_n$ is an estimator of θ with $\lim_{n\to\infty} E(\hat{\theta}_n) = \theta$ and $\lim_{n\to\infty} Var(\hat{\theta}_n) = 0$, then $\hat{\theta}_n$ is consistent for θ , i.e. $\hat{\theta}_n$ converges in probability to θ .