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1.  (2 pts) If p ~ Beta(α,β), then the density is 
11 )1(    pcp where c is a constant that does not depend 

on p.  The log transformed density is )1log()1()log()1()log()( ppcpl   .  The first 

derivative is )1/()1(/)1()( pppl
dp
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p is a critical point.  

For α>1 and β>1, 
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p is the maximum.  If both α<1 and β<1, then in fact 
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p  is a minimum!  If 

only one of α<1 or β<1, then 
2

1









p  could be a maximum or a minimum possibly occurring 

outside of the sample space 0 ≤ p ≤ 1 for p. 

 

2.  (3 pts) 

a. The pdf for a single geometric observation y is 
1)1()|(  ypppyf .  Thus, the likelihood 

is 
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b. The prior is a Uniform distribution on [0,1]. 

 

c. The posterior is 
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which is proportional to Beta(α* = n + 1, β* = 1 nyi ). 

d. The mean of the posterior is .
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e. The MAP estimator is the maximizer of Beta(α* = n + 1, β* = 1 nyi ).  By Problem #1 

above,  
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 which is the same as the MLE for p (Exercise 9.97b). 

 

3.  (2 pts)  

a. Since n=10 and   3055iy , then #2c shows that the posterior is Beta(α* =  11, β* = 3046). 

 b. By #2d, .0036.0
3057
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 c.  By #2e, .0033.0
3055
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 d. By Exercise 9.97b, the MLE is Yp /1ˆ  = 10/3055 = 0.0033  is the same as the MAP. 

 

 e. A 95% credible interval is [0.0018, 0.0060].  This was calculated using the R code 
 

> y=c(362,51, 200, 511, 211, 420, 299, 280, 398, 323) 

> sum(y) 

[1] 3055 

> n 

[1] 10 

> a = 0.05     

> qbeta(c(a/2,1-a/2),11,3046) 

[1] 0.001798173 0.006009527 

 

f. The evidence suggests that with probability .95, the true probability of machine failure on any 

given day is between 0.0017 and 0.0060. 

 

4.  (4 pts)  

a. For a Beta(α*, β*) distribution, the mean is α*/( α* + β*).   When α* =  iy + α  and β* = n -

 iy +β, then the mean is 
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b. Assuming that α and β are constants,  
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 c.  The bias is 
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α ≠ βp/(1-p).  
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Application of the General Weak Law of Large Numbers (i.e., the more general version of  

Theorem 9.1) cinches the proof. 

  



5. (2 pts) (Exercise 8.56 using a Bayesian analysis with a non-informative prior for p).

(a) The MLE is p̂MLE = 360
800 = 0.45. From the course notes, the posterior is

Beta(α? =
∑

yi + 1 = 361, β? = n−
∑

yi + 1 = 441),

and the Bayesian estimate is p̂B = α?

α?+β? =
∑

yi+1

n+2 = 361
802 = 0.4501.

(b) A 98% CI for p is 0.45± 2.326
√

.45(.55)
800 = [0.409, 0.491].

(c) A 98% credible interval for p is [B.01, B.99] = [0.4095, 0.4911] where Bq is the qth percentile
from a Beta(361, 441). The R code is

> qbeta(c(.01,.99),361,441)

[1] 0.4094955 0.4911195

(d) With probability 0.98, the true percentage of adults who say that movies are getting better
is between 41% and 49%.

(e) Since the credible interval is BELOW 0.5, then the evidence suggests that a minority of
adults say that movies are getting better.

6. (2 pts) Consider a SRS y1, ..., yn from N(µ, σ2) when σ2 is known, and assume an uninformative,
flat prior for µ.

(a) Since p(µ) ∝ 1, then

p(µ|y1, ..., yn) ∝ exp
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∝ N(ȳ, σ2/n).

(b) Since the normal posterior is uni-modal and symmetric, then µ̂B = µ̂MAP = ȳ. Problem #6
in HW5 showed that µ̂MLE = ȳ.

7. (5 pts) Let y1, ..., yn denote a SRS from a Poisson(λ) distribution (as in Exercise 16.11).

(a) If the prior is p(λ)=Gamma(α, β), then the posterior is

p(λ|y1, ..., yn) ∝
(
λ
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)
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(b) The posterior parameters are α? =
∑
yi + α, β? = 1

n+1/β = β
nβ+1 .

(c) The Bayesian mean of the posterior is λ̂B = α?β? =
β(
∑

yi+α)

nβ+1 = β(nȳ+α)
nβ+1 .

(d) In Exam 1, it was shown that λ̂MLE = ȳ.

(e) Assuming that α and β are fixed, then, by 7c, E(λ̂B) = β(nE(ȳ)+α)
nβ+1 = β(nλ+α)

nβ+1 .

(f) As long as αβ 6= λ, λ̂B is biased.

(g) By #10c, V ar(λ̂B) = n2β2V ar(ȳ)
(nβ+1)2

= nβ2λ
(nβ+1)2

.

(h) By #10g, V ar(λ̂B) = n2β2V ar(λ̂MLE)
(nβ+1)2

. Since n2β2

(nβ+1)2
< 1, then V ar(λ̂B) < V ar(λ̂MLE).

(i) From #10e, limn→∞E(λ̂B) = β(nλ+α)
nβ+1 = λ. From #10g, limn→∞ V ar(λ̂B) = nβ2λ

(nβ+1)2
= 0.

Application of the more general version of Theorem 9.1 shows that λ̂B is consistent for µ.
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