Exam 2

MATH 221-2

March 31, 2014

Chapters 1-4

- 1. (28 pts, 2 pts each) Circle **T** or **F** indicating whether each of the following statements are True or False. You do not need to justify your answers.
 - For any matrix A, C_A and $\mathcal{N}(A^T)$ are orthogonal vector spaces. \mathbf{F} (a) **T** If dim $(\mathcal{N}(A)) = 1$, then $A\mathbf{x} = \mathbf{0}$ has an infinite number of solutions. (b) **T** \mathbf{F} If $A = \begin{bmatrix} | & | & | \\ \boldsymbol{v}_1 & \boldsymbol{v}_2 & \dots & \boldsymbol{v}_n \\ | & | & | & | \end{bmatrix}$ then $\operatorname{span}(\boldsymbol{v}_1, \boldsymbol{v}_2, \dots, \boldsymbol{v}_n) = \mathcal{C}_A.$ \mathbf{F} (c) **T** If A is a 7×8 matrix then A^{-1} is a 8×7 matrix. \mathbf{F} (d) **T** \mathbf{F} (e) **T** If two non-zero vectors \boldsymbol{u} and \boldsymbol{v} are orthogonal, then \boldsymbol{u} and \boldsymbol{v} are linearly independent. For a 2 × 3 matrix A, if the general solution to $A\boldsymbol{x} = \boldsymbol{b}$ is $\boldsymbol{x} = \begin{bmatrix} 1 \\ 1 \end{bmatrix} + z \begin{bmatrix} -1 \\ 2 \end{bmatrix}$ (f) **T** \mathbf{F} (z is a scalar), then there are non-zero solutions to $A^T \boldsymbol{y} = \boldsymbol{0}$. If $A = \begin{bmatrix} -1 & 1 & 3 \\ 0 & 0 & 0 \\ 2 & 1 & -6 \end{bmatrix}$ then dim $(\mathcal{C}_A) = 2$. If $A = \begin{bmatrix} -1 & 1 & 1 \\ 0 & 1 & 0 \\ 2 & 1 & 2 \end{bmatrix}$ then $A\mathbf{x} = \mathbf{b}$ has an infinite number of solutions for any \mathbf{F} (g) **T** \mathbf{F} (h) **T** $\boldsymbol{b} \in \mathcal{C}_A$. (i) **T** \mathbf{F} Any set of *n* linearly independent vectors in \Re^n is a basis for \Re^n . If $\mathcal{V} = \operatorname{span}(\boldsymbol{v}_1, \boldsymbol{v}_2, ..., \boldsymbol{v}_n)$ then $\boldsymbol{v}_1, \boldsymbol{v}_2, ..., \boldsymbol{v}_n$ are a basis for \mathcal{V} . (j) **T** \mathbf{F} If the columns of A are linearly independent, then there is always at least 1 (k) **T** \mathbf{F} solution to $A\boldsymbol{x} = \boldsymbol{b}$. If A is a 3×2 matrix and $A\boldsymbol{x} = \begin{bmatrix} -1\\ 1\\ -1 \end{bmatrix}$ has only one solution then $\mathcal{N}(A) = \{\boldsymbol{0}\}.$ (1) \mathbf{T} \mathbf{F} If A is a 10×5 matrix, then rank $(A) = 10 - \dim(\mathcal{N}(A^T))$. (m) **T** \mathbf{F} If $\mathcal{N}(A) = \operatorname{span}\left(\begin{vmatrix} 1 \\ 1 \\ 1 \end{vmatrix} \right)$, then $\begin{vmatrix} 1 \\ 0 \\ -1 \end{vmatrix} \in \mathcal{R}_A$. \mathbf{F} (n) **T**

2. (4 pts) Perform the following matrix-vector multiplication: $A\boldsymbol{x} = \begin{bmatrix} -1 & 1 & 1 \\ 0 & 1 & 0 \\ 2 & 1 & 2 \end{bmatrix} \begin{bmatrix} 1 \\ 2 \\ 3 \end{bmatrix} = ?$

- 3. Let $A = \begin{pmatrix} 1 & 2 & 3 \\ 2 & 4 & 0 \end{pmatrix}$.
 - (a) (16 pts) Solve the system of linear equations $\left(16 \text{ pts} \right) \left(16$

SHOW YOUR WORK.

(b) (5 pts) Based on the work you did in #3a, give a basis for C_A . Justify your answer.

(c) (5 pts) Based on your answer to #3a, give a basis for $\mathcal{N}(A)$. Justify your answer.

(d) (5 pts) Based on your answer to #3a, is $\begin{bmatrix} 4\\2 \end{bmatrix} \in C_A$? Explain why your answer is correct.

(e) (5 pts) For any non-zero $\boldsymbol{b} \in \Re^2$ that one might choose, explain why finding only 1 solution to $A\boldsymbol{x} = \boldsymbol{b}$ is impossible.

(f) (5 pts) For any $\boldsymbol{b} \in \Re^2$ that one might choose, explain why finding no solutions to $A\boldsymbol{x} = \boldsymbol{b}$ is impossible.

(g) (5 pts) Based on your answers to #3e-3f, for any $b \in \Re^2$, how many solutions will there always be for $A\mathbf{x} = \mathbf{b}$? Explain.

4. (12 pts) This is a 3-part question. Answer all 3 parts to get full credit: (i) What is a homogeneous solution of a matrix A? (ii) How do homogeneous solutions of A relate to the $\mathcal{N}(A)$? (iii) Why are homogeneous solutions important when solving $A\mathbf{x} = \mathbf{b}$?

5. (10 pts) For any $m \times n$ matrix A, prove that $\mathcal{N}(A)$ is a vector space. Explicitly state the conditions that you are checking, and justify each step in your proof.