Exam 2

MATH 221-2

March 31, 2014

Chapters 1-4

1. (28 pts, 2 pts each) Circle T or F indicating whether each of the following statements are True or False. You do not need to justify your answers.

(a) T F For any matrix A, C

For any matrix A, C_A and $\mathcal{N}(A^T)$ are orthogonal vector spaces.

If $\dim(\mathcal{N}(A)) = 1$, then Ax = 0 has an infinite number of solutions.

c T

If $A = \begin{bmatrix} & & & & | \\ v_1 & v_2 & ... & v_n \\ & & & | & \end{bmatrix}$ then $\operatorname{span}(v_1, v_2, ..., v_n) = \mathcal{C}_A$.

(d) T F

If A is a 7×8 matrix then A^{-1} is a 8×7 matrix.

(e)(T) F

If two non-zero vectors u and v are orthogonal, then u and v are linearly independent.

(f) T **F**

For a 2×3 matrix A, if the general solution to Ax = b is $x = \begin{bmatrix} 1 \\ 1 \end{bmatrix} + z \begin{bmatrix} -1 \\ 2 \end{bmatrix}$

(z is a scalar), then there are non-zero solutions to $A^Ty = 0$.

(g(T) I

If $A = \begin{bmatrix} -1 & 1 & 3 \\ 0 & 0 & 0 \\ 2 & 1 & -6 \end{bmatrix}$ then $\dim(\mathcal{C}_A) = 2$.

(h) T **F**

If $A = \begin{bmatrix} -1 & 1 & 1 \\ 0 & 1 & 0 \\ 2 & 1 & 2 \end{bmatrix}$ then Ax = b has an infinite number of solutions for any

 $b \in C_A$.

(i)**T**

Any set of n linearly independent vectors in \mathbb{R}^n is a basis for \mathbb{R}^n .

(j) T (

If $\mathcal{V} = \operatorname{span}(v_1, v_2, ..., v_n)$ then $v_1, v_2, ..., v_n$ are a basis for \mathcal{V} .

(k) T

If the columns of A are linearly independent, then there is always at least 1 solution to Ax = b.

(l)(T)

If A is a 3×2 matrix and $Ax = \begin{bmatrix} -1 \\ 1 \\ -1 \end{bmatrix}$ has only one solution then $\mathcal{N}(A) = \{0\}$.

(m) $\left(\mathbf{T} \right)$

If A is a 10×5 matrix, then $rank(A) = 10 - dim(\mathcal{N}(A^T))$.

(n/T) I

If $\mathcal{N}(A) = \mathrm{span}\left(\left[\begin{array}{c}1\\1\\1\end{array}\right]\right)$, then $\left[\begin{array}{c}1\\0\\-1\end{array}\right] \in \mathcal{R}_A$.

2. (4 pts) Perform the following matrix-vector multiplication: $Ax = \begin{bmatrix} -1 & 1 & 1 \\ 0 & 1 & 0 \\ 2 & 1 & 2 \end{bmatrix} \begin{bmatrix} 1 \\ 2 \\ 3 \end{bmatrix} = ?$

$$A_{\times} = \begin{pmatrix} -1 + 2 + 3 \\ 0 + 2 + 0 \\ 2 + 2 + 6 \end{pmatrix} = \begin{pmatrix} 4 \\ 2 \\ 10 \end{pmatrix}.$$

3. Let
$$A = \begin{pmatrix} 1 & 2 & 3 \\ 2 & 4 & 0 \end{pmatrix}$$
.

(a) (16 pts) Solve the system of linear equations

SHOW YOUR WORK.

the argmented matrix is $\begin{pmatrix} 1 & 2 & 3 & 4 \\ 2 & 4 & 0 & 2 \end{pmatrix}$

 $R_2 \leftarrow R_2 - 2R_1$ $\begin{pmatrix} 1 & 2 & 3 & 4 \\ 0 & 0 & -6 & -6 \end{pmatrix}$

thus -62 = 16 = 1 [2 = 1]

Since there is no pirot for g, let be free

Now solving for x via the 1st row shows that: x + 2y + 3z = 4 = $0 \times = -2y - 3z + 4$ $1 \times = 1 - 2y$

(b) (5 pts) Based on the work you did in #3a, give a basis for C_A . Justify your answer.

Since pivots are is 1st and 3rd columns, then lot of third columns of A form a basis for CA.

that is

$$C_A = span \left(\left(\frac{1}{2} \right), \left(\frac{3}{6} \right) \right)$$

4. (12 pts) This is a 3-part question. Answer all 3 parts to get full credit: (i) What is a homogeneous solution of a matrix A ? (ii) How do homogeneous solutions of A relate to the $\mathcal{N}(A)$? (iii) Why are homogeneous solutions important when solving $Ax = b$?
(i) If X is a homogenous solution, then AX = 0
(i) N(A) contains all homogeneous solutions.
(ii) Homogeneous solutions are important because
if they exist then when solving $Ax = 6$, we will expect to get either of or ∞ number of solutions.
we will expect to get either o or a
number of solutions.
5. (10 pts) For any $m \times n$ matrix A, prove that $\mathcal{N}(A)$ is a vector space. Explicitly state the conditions that you are checking, and justify each step in your proof.
We must check (MI) (closure urt scalar multiplication
We must check (M1) (closure wrt scalar multiplication and (A1) (closure wrt vector addlebby)
To check (MD), let y & N(A) and d & R. Since
$A(du) = \alpha Au = \alpha \Omega = \Omega$
because a because is a scalar $An = D$
then dy & N(A).
To check (AI), let y, y \(N(A). Smee.
$A(\underline{n}+\underline{v}) = A\underline{n} + A\underline{v} = \underline{0} + \underline{0} = \underline{0}$
distributive because property Au = Av =0
property Au = Av = 0

then u + Y & N(A).