Exam 2
MATH 221-2

March 31, 2014 Chapters 1-4

1. (28 pts, 2 pts cach) Circle T or F indicating whether each of the following statements are True
or False. You do not need to justify your answers.

(a) F Far any matrix A, C4 and N{AT) are orthogonal vector spaces.
F If dim(A(4)) = 1, then Az = 0 has an infinite number of solutions.
. |
(c@ F A= 1w v .. v, | thenspan(v,,vs,..,v,)=C,.
[ l

(d) T If Ais a7 x 8 matrix then A™! is a 8 x 7 matrix.
(e@ F If two non-zere vectors 4 and v are orthogonal, then ¢ and v are linearly
independent.

() T @ FFor a 2 x 3 matrix A, if the general solution to Az =bisz = [ i } + 2z { ;1 }

(= is a scalar), then there are non-zero solutions to ATy = 0.
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(h T @ IfA=1 0 1 0| then Az = b has an infinite number of solutions for any
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(i)@ F Any set of n linearly independent vectors in R" is a basis for 7.
T If V = span{v;,vq, ..., v, ) then vy, vq,...,v, are a basis for V.
kK T | F If the columns of A are linearly independent, then there is always at least 1

solution to Az = b.
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(l@ 10 HAsadx2matrixand Az = | 1 | has only one solution then A’(A) = {0}.
. —1
(m)@ F If Ais a 10 x 5 matrix, then rank(A) = 10 — dim(N(AT)).
1 1
(n@ F If N(A) = span 1 .then | 0 | € R,
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2. {4 pts) Perform the following matrix-vector multiplication: Az = g0 10 21 =7
2 1 2 3
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3. LetAz(2 4 0).

(a) (16 pts) Solve the system of linear equations

T + 2y + 3z = 4
¢ + 4y = 2

SHOW YOUR WORK.
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(b} {5 pts) Based on the work you did in #3a, give a basis for Ca. Justify your answer.
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{c) (5 pts) Based on your answer to #3a, give a basis for N (A). Justify your answer.
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{d) {5 pts) Based on your answer to #3a, is [ 9 J € C47 Explain why your answer is correct.
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e) (5 pts) For any non-zero b € R? that one might choose, ehplam why finding only 1 solution
g g

to Az = b is impossible. :
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(f) (5 pts) For any b € R? that one might « chOose explain why finding no solutlons ﬁo Az =bis

impossible.
To F3b e Shoned m Cp= R ha iyl be R

mvot !aa I CR 3 So 'A()_{ = ﬂ,_ ﬂ‘ D \')QG Sbl ’l’wnﬁ
l':w’ Oi’“la, IQ_.

{g) (5 pts) Based on your answers to #3e-3f, for any b ¢ ‘RQ how many solutlons will there

always be for Az = b7 Explain.
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4. (12 pts) This is a 3-part question. Answer all 3 parts to get full credit: (i) What is a homogeneous
solution of a matrix A? (i) How do homogeneous solutions of A relate to the N(A)? (i) Why

are homogeneous solutions important when solving Az = b?
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5. (10 pts) For any m x n matrix A, prove that N(A) is a vector space. Explicitly state the conditions
that you are checking, and justify each step in your proof. ‘
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