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Polynomial accelerated solutions to a

LARGE Gaussian model for imaging biofilms:

in theory and finite precision

Albert E. Parker, Betsey Pitts, Lindsey Lorenz, and Philip S. Stewart∗

November 20, 2017

Abstract

Three dimensional confocal scanning laser microscope images offer dramatic visualiza-
tions of the action of living biofilms before and after interventions. Here we use confocal
microscopy to study the effect of a treatment over time that causes a biofilm to swell and
contract due to osmotic pressure changes. From these data, our goal is to reconstruct biofilm
surfaces, to estimate the effect of the treatment on the biofilm’s volume, and to quantify the
related uncertainties. We formulate the associated massive linear Bayesian inverse problem
and then solve it using iterative samplers from large multivariate Gaussians that exploit
well-established polynomial acceleration techniques from numerical linear algebra. Because
of a general equivalence with linear solvers, these polynomial accelerated iterative sam-
plers have known convergence rates, stopping criteria, and perform well in finite precision.
An explicit algorithm is provided, for the first time, for an iterative sampler that is acceler-
ated by the synergistic implementation of preconditioned conjugate gradient and Chebyshev
polynomials.

Key words: Gibbs sampling, Bayesian Methods, finite precision, Computationally Intensive
Methods

1 Introduction

Microbial biofilms are ubiquitous in nature. They form on our teeth, on rocks in creek bottoms,

in pipes on oil drilling rigs, and inside intravenous catheters. They are everywhere there is

∗All authors are affiliated with the Center for Biofilm Engineering, Montana State University, Bozeman,
Montana, 59715. Al Parker is Assistant Research Professor, Department of Mathematical Sciences (E-mail:
parker@math.montana.edu). Betsey Pitts is Microscopy Manager (E-mail: betsey p@erc.montana.edu). Lindsey
Lorenz is Microbiology Technician (E-mail: lindsey.lorenz@erc.montana.edu). Phil Stewart is Professor, De-
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water and a carbon source (Hall-Stoodley et al., 2004). A bacterial biofilm is a community of

bacteria aggregated together in a gel-like matrix of extracellular polymers. This appears to be

the preferred growth mode for bacteria because it confers several advantages to the individual

bacteria that compose the biofilm, including increased tolerance against antimicrobial treatments

(Stewart, 2015).

The venerable approach to quantifying bacterial abundances is to put a sample of bacteria

onto agar in a petri dish and then count colony forming units that become visible to the naked

eye as the bacteria grow exponentially on the agar. This approach is still used by researchers,

government agencies, and standard setting organizations (e.g., ASTM International) to quantify

bacterial populations found in many different environments. Incredible advances in technology

now allow more in-depth analyses to be performed. Molecular techniques identify bacterial

phylogenies, mass spectrometry reveals how bacteria communicate and conduct warfare, and

microscopy allows fantastic visualizations of individual cells interacting with each other and

their surroundings.

Confocal scanning laser microscopy allows 3D images to be constructed of dynamic living

biofilms over time at resolutions smaller than 1µm. Confocal microscopes (CM) capture a set of

planar “slices” or images, parallel to, and at different distances from, the bottom of the biofilm

where it is attached to a surface. The 3D image is generated by stacking the 2D slices. The laser

illuminates bacteria that have either been stained, or genetically modified, to fluoresce when

excited by the laser. In this paper we analyze a sequence of CM images over time (i.e., a video,

see Supplementary Material) of a green fluorescing Staphylococcus aureus biofilm grown under

controlled conditions in an engineered system. S. aureus is a common human pathogen that is

notorious for its potential for evolution into an antibiotic-invulnerable methicillin resistant strain

(MRSA).

At each spatial location corresponding to a pixel in the image, the CM records the intensity

of the biofilm’s fluorescence as an 8-bit integer (i.e., a value between 0 and 255). In our example,

the horizontal (xy) field of view for each planar slice is 620µm× 620µm with a vertical (z) range

of 112µm. The 3D pixelation is 512×512×17 pixels with a 512×512 pixel representation for each

planar slice (i.e., the physical representation of an xy pixel is 1.2µm); and there are 17 planar

slices stacked together with 7µm between each pair of z-slices. Each z-slice is identified with an
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Figure 1: Cross-sectional views (i.e., pixels in the xz dimensions) of fluorescent S. aureus biofilms using

3 different imaging techniques. The attachment surface is along the bottom (z = 0) in each panel and

the bulk fluid interface is at the top. Illumination in all 3 panels is from above (the bulk fluid side).

A: A CM image of a biofilm that shows the typical attenuation of fluorescence intensity with increasing

depth into the biofilm. B: A cryosection of a biofilm grown in an independent experiment under the

same conditions as in (A) showing that these biofilms are typically solid, with microcolonies that are

at least 100µm thick. Imaging of this cryosection was done on an upright epifluorescent microscope.

C: An image of another biofilm from the same experiment as (B), collected using Optical Coherence

Tomography (OCT). OCT uses interferometry rather than fluorescence to form an image. The biofilm

is shown to be solid with this method.
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integer value between z = 1 (where the biofilm is attached to a surface) and z = 17 (the z-slice

at the very top of the image). In the video that we analyze, approximately four 512× 512× 17

images are captured each minute over 45 minutes. During the course of the video one can see the

effect of a salt water treatment on the biofilm. The biofilm goes through a series of contraction

and swelling events due to osmotic pressure changes after multiple applications and removals of

the treatment. Here we present a Bayesian analysis of 10 minutes of the video (40 frames) that

captures the response of the biofilm as the salt water is removed and then applied again.

CM images are commonly analyzed using tools available in the software packages Imaris

or COMSTAT (Heydorn et al., 2000). To quantify biofilm characteristics (without uncertainty

quantification), these packages typically perform calculations on bright pixels (Lewandowski and

Beyenal, 2014). For example, to estimate a biofilm volume as we do here, Imaris simply counts

bright pixels. Such an approach is reasonable if the biofilm being imaged is thin - that is, less

than 100µm. We have found that when imaging thicker biofilms with a CM, the light attenuates

markedly as it passes through the top layers of the biofilm so that the bacteria in the interior

of the biofilm do not fluoresce at all (Figure 1A). Independent analyses suggest that the biofilm

contains viable bacteria all the way through (Figures 1B-C). For the thick biofilm featured in

Figure 1A, simply counting bright pixels would clearly produce a biased volume estimate.

We apply a polynomial accelerated iterative sampler to the problem of constructing biofilm

surfaces and quantifying biofilm volumes and the associated uncertainties from a video of 3D CM

images. This inverse problem is cast within a linear Bayesian framework with a Gaussian like-

lihood. After sampling variance parameters, we apply the methods of preconditioned conjugate

gradients (PCG) and Chebyshev polynomials to iteratively sample from a multivariate Gaussian

in order to garner information about the posterior density of the biofilm surface from which

characteristics such as volume can be inferred. For this biofilm imaging problem it is too com-

putationally and memory intensive to sample by either the conventional Cholesky factorization

or conventional componentwise-wise iterative Gibbs sampling.

The rest of this paper is structured as follows. In Section 2 we present the linear Bayesian

inverse problem that we solve. In Section 3 we review recent polynomial methods for iteratively

sampling from Gaussians that have been derived from numerical linear algebra. This review

includes: conditions for convergence; convergence rates; and the performance of these samplers
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in finite precision. These previous results are built upon in section 4 to present an explicit algo-

rithm, for the first time, for the synergistic implementation of a PCG sampler and a Chebyshev

sampler that capitalizes on the strengths and overcomes some of the weaknesses when PCG

and Chebyshev samplers are used alone. In section 5, image analysis results are presented. We

conclude in Section 6 with a discussion and future directions.

2 Inverse Problem for quantifying 3D images of biofilms

We consider a linear model of the biofilm’s surface given CM images of thick biofilms such

as presented in Figure 1A (as suggested, e.g., in Sheppard and Shotton (1997)). Each image

represents the biofilm in a 620µm × 620µm field of view on a 512 × 512 pixelated lattice. To

represent the biofilm’s surface from CM data, first the data is thresholded so that pixels with an

intensity value less than 50 are set to 0, and other pixels are set to 1. The biofilm’s surface (or

thickness) at the ith pixel location in the 512× 512 lattice is set by first identifying the set of z

values for which there are adjacent planar z-slices with non-zero pixels in the thresholded data.

The thickness is then set to the largest value of z in this identified set. Surface representations of

two images from the video are shown in Figure 2. The results of this edge detection scheme agree

well with a Sobel edge detector implementation but is seven times faster (in Matlab). Given a

surface representation, y, of a biofilm over the 512× 521 lattice, we estimate the volume of the

biofilm by summing the components of y.

The linear statistical model that we apply to the surface profile is:

y = Fθ + ε.

The random vector y is a representation of the biofilm surface calculated from the CM image; θ

is the true biofilm surface that we want to estimate; the matrix F implements possible blurring

of the surface due to the point spread function of the CM; and ε ∼ N(0,Σy). Based on the above

specification, the likelihood is π(y|θ,Σy) = N(Fθ,Σy). We introduce our prior assumption that

the surface changes smoothly by assuming π(θ) = N(0, 1
λW

−1) where λ is an unknown precision

parameter (i.e., a regularizer (Bardsley, 2012)) that controls the level of smoothing of the surface.

The 5122×5122 unscaled prior precision matrix W is the Laplacian considered by Higdon (2006)
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and Rue and Held (2005),

[W ]ij = 10−4δij +















ni if i = j

−1 if i 6= j and ||si − sj ||2 ≤ 1

0 otherwise

.

The locations {si} are on the 512× 512 lattice over the 2D domain 620µm× 620µm. The scalar

ni is the number of points in the lattice that neighbour si (4 in the interior), i.e., that have

distance 1.2µm (1 pixel) from si. This specification presumes that the biofilm surface at each

location, conditioned on the surface at the closest locations in the lattice, is independent of the

rest of the surface (Geman and Geman, 1984; Higdon, 2006; Rue and Held, 2005). We have

investigated neighborhood sizes as large as 5 for a small subset of the imaging data, with no

discernable effect on the volumes that we report here. Increasing the neighborhood size makes

the computations even more expensive due to the decrease in the sparsity of the precision matrix

of the posterior (see section 4.3).

The distribution of θ given everything else is the multivariate Gaussian

π(θ|y,Σy, λ,W ) = N
(

A−1FTΣ−1
y y,A−1

)

(1)

with precision matrix A = FTΣ−1
y F + λW (Calvetti and Somersalo, 2007; Higdon, 2006). This

shows how to apply the sampler presented here to any linear model with arbitrary and fixed F ,

Σy, λ and W . Our goal, is to find estimates of θ, Σy and λ given data y, the process F , and the

unscaled precision W . We make some simplifying assumptions that are appropriate for these

data: Σy = σ2I, the errors when measuring the surface at each location in the lattice are iid

with unknown variance σ2; and F = I, there is no blurring of the surface due to the point spread

function because adjacent pixel locations in space are far from each other (1.2µm) compared

to the 200nm xy resolution of the CM (Sheppard and Shotton, 1997). Non-trivial F might be

required, for example, when using the higher pixel resolution capabilities of the CM that we use

when imaging biofilms that are not dynamically changing over time, or when interpolating the

biofilm surface at spatial resolutions finer than the pixel resolution of collected CM data. Diffuse

Gamma hyperpriors for each of 1/σ2 and λ (using the parameterization π(λ) ∝ λα−1e−βλ with

α = 1 and β = 10−4), that we assume are independent, complete the Bayesian specification.
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[7.011, 7.034]× 106µm3 [5.236, 5.251]× 106µm3

Figure 2: Biofilm surfaces for two images (frames 31 and 35) captured just over a minute apart by the

CM. The coloring scheme provides better visualization of surface, with red indicating higher features

and blue indicating lower features on the surface of the biofilm. Axes are in pixels, where each xy

pixel corresponds to 1.2µm, and each vertical pixel corresponds to 7µm. Under each image is a 99%

credible interval for the corresponding biofilm’s volume. The drop in the biofilm’s thickness, and the

corresponding drop in volume, at frame 35 is due to application of the salt water treatment after frame

31.

Our goal is to estimate the posterior

π(θ, σ2, λ|y) ∝ π(y|θ, σ2, λ)π(θ)π(σ2 , λ). (2)

We use the mean of the posterior as the Bayesian estimate θ̂ of the biofilm surface θ. Uncertainty

of this estimate is quantified by constructing a Markov chain of samples from the posterior (2).

We use the conditional (Gibbs) sampling approach used by Higdon (2006) and Bardsley (2012)

to draw samples (θ, σ2, λ) from the posterior. Given the specification above, the distribution of

1/σ2 and λ conditioned on everything else is a product of Gamma distributions (Higdon, 2006).

With the assumptions made earlier regarding F and Σy, the distribution of θ conditioned on

everything else (1) simplifies to a 5122 dimensional Gaussian

π(θ|y, σ2, λ) = N

(

1

σ2
A−1y,A−1

)

(3)

with precision matrix A = 1
σ2 I + λW .

To draw samples from (2), we first sample from the conditional Gammas for 1/σ2 and λ.
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Given these precision parameter values, the second step is to sample from (3). The Gaussian in

(3) is massive. Therefore, conventional sampling techniques that utilize the Cholesky factoriza-

tion are too expensive to apply. Instead, we apply an iterative PCG-Chebyshev sampler, derived

from the PCG and Chebyshev iterative optimizers, to generate Gaussian samples.

3 Iteratively sampling the massive multivariate Gaussian

3.1 Iterative sampling and linear solving

The Cholesky factorization is the conventional way to produce samples from a multivariate

Gaussian and is also the preferred method for solving moderately sized linear systems (Rue

and Held, 2005). For large linear systems, iterative solvers are the methods of choice due to

their inexpensive cost per iteration and small computer memory requirements. For very large

dimensional multivariate Gaussians of the form N(A−1b, A−1) given an n × n SPD precision

matrix A and fixed vector b, the well-known component-wise Gibbs sampler (Gelman et al.,

1995; Gilks et al., 1996) is one of the few general iterative samplers available that samples each

component of a random vector conditioned on the current state of the other components. At

the kth iteration, one sweep of this Gibbs sampler may be written in matrix form as

θk+1 = M−1Nθk +M−1ck (4)

where ck
iid∼ N(b,MT +N), M = L+D, N = −LT , L is the strictly lower triangular part of A,

and D is the diagonal of A. Note that MT +N = D. Repeating this sweep indefinitely produces

iterates {θk} that converge in distribution to N(A−1b, A−1) as long as A is SPD (Adler, 1981;

Amit and Grenander, 1991).

Perhaps it is not so well known that the forward component sweep Gibbs sampler is essentially

identical to the Gauss-Seidel iterative method that solves Ax = b for x given an n× n matrix A

and fixed vector b (Adler, 1981; Amit and Grenander, 1991). At the kth iteration, one sweep of

the Gauss-Seidel linear solver may be written in matrix form as

xk+1 = M−1Nxk +M−1b (5)

Repeating this sweep indefinitely produces iterates {xk} that converge to A−1b as long as A is

SPD.
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Remarkably, the only difference between the sampler iteration (4) and the solver iteration (5)

is the introduction of a random vector ck instead of a fixed right hand side b! This equivalency in

form shows that both the forward component sweep Gibbs sampler from a multivariate Gaussian

and the Gauss-Seidel linear solver are equivalent in the sense that both utilize the same iteration

operator M−1N and also converge under the same conditions (A is SPD) with the same conver-

gence rate (Roberts and Sahu, 1997; Young, 1971). Extensions of this Gibbs sampler (Barone

and Frigessi, 1990; Roberts and Sahu, 1997), equivalent to the successive-over-relaxation (SOR)

linear solver and the symmetric-SOR (SSOR) linear solver (Axelsson, 1996; Golub and Van Loan,

1989; Saad, 2003), were the state-of-the-art for iterative samplers until only recently. SOR and

SSOR were used as linear solvers in the 1950’s and are now considered rather slow (Saad and van

der Vorst, 2000). These solvers and samplers are referred to as stationary methods by numerical

analysts because the same operator is applied to the current state at each iteration to generate

the next state. Today, stationary iterative solvers are used as pre-conditioners at best, while CG

polynomial methods (Hestenes and Stiefel, 1952) are the current state-of-the-art because they

can solve a linear system in a finite number of steps (Saad and van der Vorst, 2000). Iterative

samplers, on the other hand, have lagged behind. There has been a recent push to adapt more

sophisticated iterative linear solvers to the job of sampling.

The prescription for the sampler in (4) and for the linear solver in (5) emphasizes that there

is a general equivalence between sampling and solving. The first step is to identify matrices M

and N such that A = M − N is a matrix splitting of the precision matrix A. Fox and Parker

(2017) applied this matrix splitting formalism from numerical analysis to show how to convert

any solver of Ax = b of the form

xk+1 = (1 − αk)x
k−1 + αkx

k + αkτkM
−1(b −Axk) (6)

(as described, e.g., in Golub and Van Loan (1989); Axelsson (1996)) into an iterative sampler of

a multivariate Gaussian N(A−1b, A−1),

θk+1 = (1 − αk)θ
k−1 + αkθ

k + αkτkM
−1(ck −Aθk). (7)

The parameters αk and τk in both (6) and (7) are updated according to the specific linear solver

method. For example, the assignment αk = τk = 1 corresponds to the stationary solver (5)

and sampler (4). As was the case when comparing (5) and (4), the solver (6) utilizes a fixed
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vector b while the sampler (7) uses a random vector ck; in this case, ck ∼ N(b, akM
T + bkN)

where ak and bk are functions of αk and τk (Fox and Parker, 2017). The key when implementing

either the solver or the sampler is to pick a splitting for which it is inexpensive to perform the

operations by M−1 (e.g., when M is triangular); for the sampler, it is also crucial to be able to

inexpensively sample from ck ∼ N(b, akM
T + bkN).

This similarity in form assures that these solvers and samplers have the same conditions for

convergence.

Lemma 1 (Fox and Parker, 2017, Theorem 5) Let A be SPD and A = M − N be any matrix

splitting. The linear solver (6) with a set of parameters {αk}, {τk} that are independent of {xk}
converges to A−1b (i.e., xk → A−1b) if and only if the sampler (7) converges, θk

D→ N(µ =

A−1b, A−1).

After k iterations of the solver (6), a kth order polynomial pk is generated that reduces the

solver’s error, ||xk+1 −A−1b||, according to

(xk+1 −A−1b) = pk[I −M−1N ](x0 −A−1b)

(Axelsson, 1996). The notation p[·] indicates the (possibly matrix) argument to the polynomial,

and the notation pk[·](v − w) (for vectors or matrixes v and w) indicates (possibly matrix)

multiplication of pk[·] and (v−w). To ease notation, we set Pk := pk[I −M−1N ]. For example,

the assignment αk = τk = 1 in (6) and (7), that correspond to the stationary solver and sampler

in (5) and (4) respectively, yields the polynomial pk[λ] = (1−λ)k so that pk[I −M−1N ] = Pk =

(M−1N)k. The assignment of {αk} and {τk} in (6) to other non-constant values corresponds to a

polynomial accelerated solver when Pk 6= (M−1N)k and convergence is faster than the stationary

solver (5). The following Theorem shows that this same polynomial reduces the sampler error in

the first and second moments, ||E(θk)−A−1b|| and ||Var(θk)−A−1||. In other words, applying

the prescription (7) based on a polynomial accelerated solver (6) always results in a polynomial

accelerated sampler.

Theorem 2 (Fox and Parker, 2017, Corollaries 6 and 7) Suppose that the polynomial accel-

erated linear solver (6) converges. Then it converges with geometric convergence rate ρ =

(limk→∞ maxλ |pk[λ]|)1/k, where pk is the kth order polynomial recursively generated by iterating
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(6). Under the conditions of Lemma 1, the polynomial accelerated sampler (7) also converges

with

E
(

θk+1
)

= µ+ Pk(E(θ
0)− µ) → µ = A−1b

with geometric convergence rate ρ where Pk := pk[I −M−1N ]; and

Var
(

θk+1
)

= A−1 + Pk

(

Var(θ
0 −A−1)

)

PT
k → A−1

with geometric convergence rate ρ2.

Theorem 2 shows that solvers and samplers have the same convergence rate. Hence, the

geometric rate of convergence of these iterative samplers can be found by looking up the corre-

sponding solver in a numerical linear algebra textbook (e.g., Axelsson (1996); Golub and Van

Loan (1989); Saad (2003); Young (1971)). In fact, the Theorem shows that samplers from distri-

butions that have zero mean converge faster than the corresponding solver because the covariance

matrix of the sampler converges with convergence rate ρ2 < ρ < 1. For a solver (5) or sampler

(4), because the linear operator is the same at each iteration, Pk = (M−1N)k, which shows

that the convergence rate of these iterations is the spectral radius ρ = ̺(M−1N) (Axelsson,

1996; Golub and Van Loan, 1989; Saad, 2003; Young, 1971). Hence convergence of the sampler

and solver can be assessed by simply checking whether ̺(M−1N) < 1 (Young, 1971). This

inequality is always satisfied for a component sweep Gibbs sampler of a Gaussian and also for a

Gauss-Seidel linear solver given an SPD A. The solver in (5) and the sampler in (4) are actually

accelerated by the polynomial iterations (6) and (7) when the polynomial convergence rate ρ is

less than the convergence rate ̺(M−1N).

3.2 Optimal iterative samplers

The previous section gave a general method, i.e. the correspondence between equations (6) and

(7), for deriving a polynomial accelerated sampler from a polynomial accelerated solver. The

goal is to find a sampler by tweaking αk and τk and implicitly generating a different operator

(6= M−1N) at each iteration so that the resulting polynomial sampler (7) converges faster than

the stationary sampler (4). Fox and Parker (2014) applied this approach to attain an iterative

sampler with an optimal geometric convergence rate using Chebyshev polynomials. We mean
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optimal with respect to all iterations (7) that have coefficients {αk, τk} independent of the states

{θk}. Parker and Fox (2012) accelerate sampler convergence even more to only a finite number

of iterations using CG polynomials (Algorithm 1 below with M = I); in this case the coefficients

are not independent of the states.

In the rest of this section, we present the strengths and limitations of these and other available

iterative Gaussian samplers. The goal is to derive a sampler (in section 4) that is provably

convergent in exact arithmetic, has an optimal geometric convergence rate, and performs well in

finite precision.

3.2.1 Chebyshev accelerated sampling

Chebyshev polynomial acceleration can be applied via equations (6) and (7) for any symmetric

matrix splitting (Golub and Van Loan, 1989; Fox and Parker, 2014). The coefficients {τk, αk}
in a Chebyshev implementation are functions of the extreme real eigenvalues λmin and λmax

of M−1A (Axelsson, 1996). Theorem 2 shows that Chebyshev samplers are guaranteed to be

accelerated compared to the stationary sampler (4) because the geometric convergence rate,

ρCheby, for the Chebyshev polynomial accelerated sampler satisfies

ρCheby :=
1−

√

cond(A−1)

1 +
√

cond(A−1)
< ̺(M−1N) (8)

where cond(·) is the condition number of a matrix (Axelsson, 1996; Fox and Parker, 2017). In

fact, ρCheby is the smallest geometric convergence rate among all polynomials generated by either

(6) or (7) when {αk} and {τk} are independent of the iterates xk and θk (Axelsson, 1996).

Theorem 2 shows that the errors in the mean and covariance of the samplers (7) decrease

according to a specific polynomial. This allows, a priori to running a solver or sampler, for one

to determine the number of iterations required for convergence to the target normal distribution.

For example, after k∗stat = ⌈ log(ε)
log ̺(M−1N)⌉ iterations, the stationary sampler (4) with mean µ =

A−1b 6= 0 attains an error reduction in the mean ||ek∗

stat ||/||e0|| ≤ ε for any ε > 0, where

ek = E(θk)− µ. The mean of the Chebyshev sampler converges even faster so that after

k∗Cheby = ⌈ log(ε/2)

log (ρCheby)
⌉ (9)

iterations the error reduction in the mean is ||ek∗

Cheby ||Aν/||e0||Aν ≤ ε for some real number ν

where ρCheby is specified in (8) (Fox and Parker, 2014)). Convergence in the variance is even
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faster after only k∗∗stat = ⌈ log(ε)
log(̺(M−1N)2)⌉ iterations for stationary samplers, or after

k∗∗Cheby = ⌈ log(ε/2)
log(σ2)

⌉ (10)

iterations for Chebyshev accelerated samplers (Fox and Parker, 2014)).

3.2.2 CG accelerated sampling

A CG solver also takes the form of (6) by setting M = I and setting αk and τk to functions

of the residuals (Golub and Van Loan, 1989, section 10.3.6). Using CG with other symmetric

matrix splittings (i.e., M and N are symmetric) is called preconditioned CG (PCG). In this case

M is referred to as a preconditioner because M−1 is viewed as an approximation to A−1 (Saad,

1992). The corresponding CG sampler was investigated in (Parker and Fox, 2012). We provide

an explicit algorithm for a PCG sampler in section 4.

Neither Lemma 1 nor Theorem 2 apply to CG polynomials because the CG coefficients

({αk, τk} in (6) and (7)) are functions of the residuals and hence not independent of either the

solutions {xk} or of the samples {θk}. The theory guaranteeing convergence of the CG sampler

relies on the fact that a CG solver and CG sampler are equivalent to a Lanczos eigensolver, which

implies that if the n eigenvalues of A are distinct then the CG sample θn ∼ N(A−1b, A−1). The

following Theorem describes the results of the CG sampler in exact arithmetic when it terminates

at iteration k < n.

Theorem 3 (Corollary 3.2 of Parker and Fox (2012)) If the CG sampler terminates at iteration

k with ||b − Axk||2 = 0, then the CG sampler has successfully sampled from the k eigenspaces

of A corresponding to the well separated eigenvalues {λ1, ..., λk} of A. More specifically, if

{wi}ki=1 are the corresponding eigenvectors of A, then (Var(θk|θ0, b) − A−1)v = 0 for any v ∈
span

(

w1, ..., wk
)

and ||Var(θk|θ0, b) − A−1||2 = 1/λ∗ where λ∗ is the smallest eigenvalue of A

such that λ∗ /∈ {λ1, ..., λk}.

Theorem 3 shows that the error in the variance of a CG sample is as large as the largest

eigenvalue of A−1 associated with the eigenspaces not sampled. This result is a consequence

of the action of the CG polynomial that reduces the error of the solver and the sampler. Put

another way, when setting αk and τk in (7) to the same values used by the CG solver, the

resulting CG sampler is accelerated by the same CG polynomial (Parker and Fox, 2012).
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Like Chebyshev, CG polymomial solvers and samplers are guaranteed to accelerate stationary

methods. The acceleration is even faster than Chebyshev because CG converges in a finite

number of steps (Nocedal and Wright, 2000; Parker and Fox, 2012).

3.3 Sampling in finite precision

Numerical analysts have invested decades to develop a Chebyshev accelerated linear solver that

provably converges geometrically in finite precision (Axelsson, 1996). The Chebyshev accelerated

sampler implementation in Fox and Parker (2014) is such an implementation. In all of the

examples Fox and Parker (2014, 2017) have studied using computationally expensive diagnostics,

the Chebyshev accelerated samplers behave like the corresponding solvers, and converge with

the predicted convergence rates in finite precision.

CG is a member of a class of Krylov methods that at the kth iteration, after initialization

with a starting state x0, have traditionally been used to find a linear solution of Ax = b in

a Krylov space with basis {x0, Ax0, A2x0, ..., Ak−1x0} (Meurant, 2006). Lanczos methods are

Krylov eigensolvers that find eigensolutions of A in the same Krylov space (Lanczos, 1950).

Lanczos methods were adapted to sample from Gaussians by Schneider and Willsky (2003);

Simpson et al. (2008); Aune et al. (2013); Chow and Saad (2014). Like the CG sampler, these

Lanczos samplers converge in a finite number of steps in exact arithmetic. Unfortunately, Lanczos

methods may be challenging to implement for massive Gaussians because the states from all

iterations must be either saved, or re-calculated, in order to generate a sample. This is the same

memory demanding and computationally intensive calculation that a Lanczos eigensolver must

perform when determining eigenvectors of the matrix A (Meurant, 2006; Saad, 1992).

Relying on existing results from numerical linear algebra, all of the samplers described above

are provably convergent in exact arithmetic (sections 3.1 and 3.2). Unfortunately, provably

convergent methods (whether linear solvers, eigensolvers or samplers) in exact arithmetic do

not always lead to convergent algorithms when implemented in finite precision (i.e., when im-

plemented on a computer). All algorithms are affected by finite precision, some worse than

others. There are many well-known examples of this phenomenon in numerical linear algebra.

Notably the Lanczos eigensolver is only able to estimate the eigenpairs of a matrix associated

with well-separated eigenvalues before numerical instability makes further progress impossible
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without corrective measures (Meurant, 2006).

Not surprisingly, in finite precision, the Krylov samplers (Aune et al., 2013; Chow and Saad,

2014; Parker and Fox, 2012; Simpson et al., 2008; Schneider and Willsky, 2003) appear to per-

form like a Lanczos eigensolver without correction. That is, while provably convergent in exact

arithmetic, in finite precision they effectively sample only from k of the eigenspaces of A af-

ter k iterations (Theorem 3) before numerical instability thwarts further progress. Among the

eigenspaces not sampled, if the smallest eigenvalue of A is equal to λ(not sampled), then when the

Krylov sampler terminates at iteration k,

||A−1 −Var(θk|b, θ0)||2 ≈ 1/λ(not sampled)

(Theorem 3). Schneider andWillsky (2003) implement a potentially expensive corrective measure

(i.e., re-orthogonalization of the sampling directions) that allows a Lanczos algorithm to run

longer in finite precision in order to converge to more of the eigenpairs of A, and also allows

Krylov sampling from more of the eigenspaces of A. The preconditioning techniques applied by

Chow and Saad (2014) actually seek to decrease the number of Lanczos sampler iterations by

generating an approximation to A1/2z for z ∼ N(0, I) and use a residual stopping criterion. It is

not clear whether their Gaussian sampler generates samples with the correct moments in finite

precision.

Without corrective measures (e.g., re-orthogonalization) or without a favorable spectrum (the

small eigenvalues of A are well separated), Krylov samplers such as CG and Lanczos suffer and

fail to produce either exact samplers or exact eigenproblem solutions due to finite precision.

4 A fast iterative polynomial accelerated sampler

In this section we present our new methodological contribution. First, we present a PCG sampler

that is constructed by adding a single line of code to a PCG solver. Given the strengths and

limitations of the stand-alone applications of the CG and Chebyshev samplers described in

section 3, our contribution is a synergistic implementation of the PCG and Chebyshev samplers.
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4.1 PCG accelerated sampling

The following algorithm accelerates iterative sampling by the same PCG polynomial that a PCG

solver utilizes. Although not immediately obvious, this algorithm can be written in the form (7)

(Golub and Van Loan, 1989, section 10.3.6). Removing the single line of code in Algorithm 1

that updates θk yields a PCG solver (cf. Algorithm 9.2 in Saad (2003)). Setting M = C = I in

Algorithm 1 yields the CG sampler presented in Parker and Fox (2012).

Algorithm 1: Preconditioned conjugate gradient accelerated sampler of N(A−1b, A−1)

input : SPD precision matrix A, M = CCT a symmetric splitting of A, maximum

number of iterations kmax, initial state θ0, b, and residual stopping criterion ǫ

output: xk+1 ≈ µ = A−1b and θk+1 approximately distributed as N(0, A−1)

x0 = θ0, r0 = C−1(Ax0 − b), p0 = −C−T r0;

for k = 1, . . . , kmax do

dk−1 = p(k−1)TApk−1;

γk−1 = r(k−1)T rk−1

dk−1
;

xk = xk−1 + γk−1p
k−1;

θk = θk−1 + z√
dk−1

pk−1 for z ∼ N(0, 1);

rk = rk−1 + γk−1C
−1Apk−1;

βk = rkT rk

r(k−1)T rk−1 ;

pk = −C−T rk + βkp
k−1;

Check for convergence: quit if ||rk|| < ǫ;

end

It is not necessary to factor M = CCT to implement a PCG sampler as might be suggested

by Algorithm 1. Rather, one can implement a PCG sampler by starting with the PCG solver

presented in one of Axelsson (1996); Golub and Van Loan (1989); Nocedal and Wright (2000)

that directly operate by M−1 instead of by C−1 and C−T ; and add in the single line of code

θk = θk−1 + z√
dk−1

pk−1. We focus on Algorithm 1 because the symmetric matrix splittings

that we implement come naturally as M = CCT . For example, one implementation of the

SSOR sampler of Roberts and Sahu (1997) is implemented by the conventional forward sweep

component-wise Gibbs sampler (4) with splitting M1 = L + D (defined after (4)) and then
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a backward sweep with splitting M2 = MT
1 . The resulting symmetric matrix splitting for

SSOR sampling (and solving) is MSSOR = M1M
T
1 . Any sampling scheme (4) (or solver (5))

for a matrix splitting M1 can be implemented by forward and backward sweeps to generate a

symmetric matrix splitting M = M1M
T
1 to be used in Algorithm 1 with C = M1. The key is

to pick a splitting for which it is inexpensive to perform the operations by C−1 and C−T in

Algorithm 1.

In general, it is challenging to check whether an iterative sampler has converged in distri-

bution. The PCG sampler, on the other hand, monitors the residual ||Axk − b|| as a stopping

criteria, just as does a linear solver. Chow and Saad (2014) and Simpson et al. (2008) use an

approximate residual as a stopping criterion that monitors the distance of a current sample from

A−1/2z where z ∼ N(0, I). As for CG and Lanczos solvers (Meurant, 2006), a small residual at

iteration k before numerical instability indicates that a CG or Lanczos sampler has effectively

sampled from k of the eigenspaces of A−1 (Theorem 3).

Convergence of the PCG sampler is assured by viewing PCG as CG applied to the random

vector θ̃k = CT θk. Theorem 3 shows that the PCG sampler successfully samples from k∗ of

the eigenspaces of CTA−1C corresponding to the k∗ well separated eigenvalues of C−1AC−T .

Hence θk = C−T θ̃k ∼̇ N(0, A−1), the output of the PCG sampler, represents a sample from

the corresponding k∗ eigenspaces of A−1. Preconditioners specific for CG and Lanczos sampling

have been investigated by Schneider and Willsky (2003); Fox (2008); Chow and Saad (2014).

4.2 PCG-Chebyshev accelerated sampling

We have seen that, in exact arithmetic, the PCG sampler is guaranteed to sample fromN(A−1b, A−1)

in a finite number of steps (Theorem 3). But in finite precision, PCG fails to sample from the

eigenspaces that do not correspond to the well separated eigenvalues of A (section 3.3). This

is only a problem if the magnitude of the eigenvalues of A−1 associated with the excluded

eigenspaces are large (Theorem 3). To capitalize on PCG’s strengths (convergence in a finite

number of steps to the eigenspaces corresponding to the well separated eigenvalues), the sampler

we propose first runs the PCG sampler. We “clean up” the resulting PCG sample by secondly

running a Chebyshev sampler that does sample well in finite precision and has optimal geometric

convergence rate. Interestingly, even for linear solvers, CG has been used to seed Chebyshev-
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accelerated deterministic iterations when there are multiple right hand sides (Golub et al., 2007).

The resulting PCG-Chebyshev sampler is outlined in Algorithm 2.

Algorithm 2: PCG-Chebyshev accelerated sampler of N(A−1b, A−1)

input : SPD precision matrix A, M = M1M
T
1 where M1 is a matrix splitting of A, initial

state θ0, b, and initial estimate of x0 of A−1b, PCG residual stopping criterion

ǫPCG, maximum number of PCG iterations kPCG, number of Chebyshev

iterations kCheby

output: θ ∼̇ N(A−1b, A−1) and x ≈ A−1b

PCG sampling

input : θ0, x0, A, split preconditioner C = M1, ǫ = ǫPCG, kmax = kPCG

output: θPCG ∼̇ N(0, A−1), xPCG ≈ A−1b and {γk, βk}
Implement Algorithm 1, get approximate solution xk+1 and approximate sample θk+1;

end

Get the extreme eigenvalues of M−1A from {γk, βk} using the prescription in (Parker and

Fox, 2012, Lemma 2.1);

Chebyshev sampling

input : Number of sampler iterations kCheby, θ
0 = θPCG, x

0 = θPCG, bCheby = 0

output: θCheby ∼̇ N(0, A−1)

Run Algorithm 3 of Fox and Parker (2014) for kCheby iterations. At the kthCheby

iteration, get approximate sample θk+1
Cheby;

end

θ = θCheby + xPCG and x = xPCG;

In addition to nailing down the k eigenspaces of A−1 corresponding to the k well separated

eigenvalues of M−1
1 AM−T

1 (by seeding θPCG into Chebyshev), Algorithm 2 makes clear that the

PCG sampler also accomplishes two other crucial tasks:

1. The PCG sampler, with preconditioner equal to the splitting matrix M = M1M
T
1 , provides

an avenue to estimating the extreme eigenvalues of M−1A that are required by Chebyshev.

Strictly speaking, a k × k tridiagonal matrix is built from the PCG parameters {γk, βk}.
The extreme eigenvalues of this tridiagonal, found at a negligible k2 flops when k ≪ n, are

the required extreme eigenvalues of M−1
1 AM−T

1 - or equivalently, of M−1A.
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2. PCG provides an estimate of the mean µ = A−1b 6= 0. The PCG sampler is used to

perform the mean calculation because PCG is a faster linear solver than Chebyshev and

will find µ after a finite number of iterations. Put another way, the Chebyshev sampler

can sample from N(0, A−1) much faster (i.e., after only k∗∗Cheby iterations with convergence

rate ρ2Cheby) compared to sampling from N(µ 6= 0, A−1) that requires k∗Cheby > k∗∗Cheby

iterations with convergence rate ρ > ρ2) - see section 3.2.1.

Acceptance of the PCG sample θPCG ∼̇ N(0, A−1) as an initialization into the Chebyshev

sampler further reduces the geometric convergence rate by a constant factor, according to The-

orem 2: Var(θ
k
) = A−1 + Pk(Var(θPCG) − A−1)PT

k . That is, Chebyshev converges faster the

better that Var(θPCG) approximates A−1.

4.3 Implementation details

For each frame in the video, we procure samples (θ, σ2, λ) from (2) by performing 104 iterations

of the following: sample (1/σ2, λ)|(y, θ) using a product of Gammas; then sample θ|(y, σ2, λ)

from the Gaussian (3) using the PCG-Chebyshev sampler (Algorithm 2) implemented in Matlab.

M = M1M
T
1 in the PCG-Chebyshev sampler is set so that M1 is the lower triangular matrix

splitting defined after (5) (i.e., M implements forward and backward sweeps of a component-wise

Gibbs sampler). When analyzing the first image in the video, the initialization for the sampler

was θ0 = 1/2y + 1/2ȳ1 where ȳ is a scalar value equal to the mean surface thickness in y and

1 is a 5122 vector of 1’s. For each subsequent image in the video, initialization for the sampler

was θ0 = 1/2y + 1/2θ̂pre where θ̂pre is the Bayesian estimate for the previous image in the

video. Our experience confirms the theory (Theorem 2) that shows that while the convergence

rate is the same for any initial condition, the number of iterations is adversely affected, for

solvers and samplers, by a poor starting choice. For example, using white noise θ0 ∼ N(0, I)

is terrible initialization, resulting in a dismal reconstruction of the biofilm’s surface even after

substantial error reductions of 10−8 or more because of the large initial errors ||E(θ0)− A−1b||
and ||Var(θ0)− A−1||. We also considered different starting choices for a few frames, e.g. θ0 =

1/2y+ 1/2ȳ1, with no discernable impact on the surface reconstructions.

Half of the 104 iterations were considered burn-in (Gelman et al., 1995) and hence for each

image Markov chains of length 104/2 were used to estimate the posterior in (2). For each image,
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in each run of the 104 “outer-iterations” that generated a state (θ, σ2, λ) in the Markov chain,

the Chebyshev component of the PCG-Chebyshev sampler ran for kCheby “inner iterations”

to sample θ|(y, λ, σ2) from (3). We set the PCG residual stopping criterion of ǫ = 10−4 and

the maximum number of PCG iterations to kPCG = 103 which we have found works well for

procuring acceptable eigenvalue estimates. These were the same criteria used for the stand-

alone CG sampler implementation. The number of Chebyshev iterations was set according to

kCheby = min(max(10, k∗∗Cheby), 100) where k∗∗Cheby is the number of iterations calculated by (10)

in order to attain an error reduction in variance of ε = 10−8. For early outer-iterations during

burn-in, k∗∗Cheby was sometimes larger than 100 because the convergence rate ρCheby (cf. (8)) was

close to 1; in these instances kCheby was set to 100. But for later outer-iterations, especially after

burn-in, kCheby was typically less than 10 corresponding to cases when ρCheby < 0.1. Nonetheless,

Chebyshev was always run a minimum number of kCheby = 10 iterations that assured a minimum

reduction in the variance error of ε = 10−8.

The main computational costs of the iterative samplers are the matrix-vector multiplication

by A and the forward solve to implement M−1 when generating the next sample θk+1 in (7).

The cost of matrix multiplication is about 2n2 flops for a dense precision matric and is reduced

to about (2nA−1)n flops for a sparse precision matrix A, such as we consider here, that has only

nA = 5 non-zero elements per row. The cost of a forward or backward solve using a triangularM1

is n2 flops for dense matrices and (2nM − 1)n flops for sparse M with nM = 3 non-zero elements

per row (Watkins, 2002). The stand-alone PCG and Chebyshev samplers each multiply by A

and operate by M−1
1 and M−T

1 in each iteration. Hence the PCG-Chebyshev sampler costs

at most (19kPCG + 19kCheby)n flops. A Cholesky factorization on the other hand costs about

b2n flops, where b =
√
n = 512 is the bandwidth of the precision matrix A that we consider,

regardless of the sparseness of the matrix (Watkins, 2002). Hence, the PCG sampler on this 2D

problem will be less expensive than Cholesky as long as the total number of iterations is less than

b2/19 = 1.4×104. We will see (in Figure 3) that the Cholesky factorization incurs 10 times more

operations and more CPU time for the 2D biofilm surface problem that we present. Iterative

samplers are expected to outperform Cholesky even more when solving inverse problems using

3D Gaussian fields for which the posterior precision matrix has bandwidths b ≈ n or more (see,

e.g., Fox and Parker (2017)).
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Figure 3: Comparison of 3 different samplers on the first frame of the video that we analyze. θ̂ row:

Posterior mean estimates of the true biofilm surface. In each pane in the row, the x-axis is the left

horizontal axis, the y-axis is the right horizontal axis. Axes are in pixels, where the distance between

xy-pixels is 1.2µm, and the distance between vertical pixels is 7µm. UQ row: Uncertainty quantification

of the estimate θ̂ with a standard deviation calculated at each xy location across the samples. fit row:

An yz cross-sectional view of the intensities in the raw CM data at x = 280. The black curve shows

the fit of the posterior mean estimate to the CM intensities. σ̂ row: Posterior median estimate of the

standard deviation of the biofilm surface measurement process. λ̂ row: Posterior median estimate of the

prior precision that controls smoothing. flops

kouter
row: maximum number of floating point operations to

generate a single Gaussian sample via (3) when processing the image. time

frame
row: actual time to process

this image over 104 outer iterations using a Matlab implementation of the samplers on THE BEAST, a

Xeon X5690 with a 3.47GHz processor and 110GB.
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5 Results

Figure 3 compares results from the PCG-Chebyshev sampler (Algorithm 2) to a Cholesky sampler

and a stand-alone CG sampler (Algorithm 1 with M = I). For a single image from the video,

the posterior mean estimates of the biofilm surface for these 3 samplers are depicted in the first

row of the figure. The estimated biofilm surface (θ̂) the associated uncertainty (assessed via

the point-wise standard deviation over the 512 × 512 lattice across the samples), and variance

parameter estimates (σ̂ and λ̂) for the PCG-Chebyshev sampler are similar to results for the

Cholesky sampler as predicted by the theory (section 3).

When CG is used by itself, Figure 3 shows that the estimated surface is over-smoothed, and

the uncertainty associated with the estimated surface is vastly underrepresented. This is due

to the known finite precision issues with the CG sampler (section 3.3). Over-smoothed samples

have been noted previously when CG sampling with a Laplacian prior precision (Parker and

Fox, 2012). This is not unlike results produced by others when purposely terminating CG early

(Feron et al., 2016; Wikle et al., 2001). The over-smoothing in the CG samples compared to the

actual samples can be quantified by the eigenspaces of the posterior precision matrix that the CG

sampler successfully sampled from (Theorem 3). These eigenspaces represent the low frequency

components of the image. Figure 3 (in the “fit” row) shows an example of the graphical technique

that we use to assess model fit at a single slice through the 3D data, although in practice the

assessment includes similar plots over multiple xz and yz slices. In this case acceptable fit of

the reconstruction θ̂ to the imaging data is shown in the yz cross-sectional slice shown except

perhaps between 150 ≤ y-pixels≤ 175; here, it appears that the Cholesky and PCG-Chebyshev

samplers overfit to the data (i.e., the estimated surface exhibits high frequency). To impose more

smoothing when using the PCG-Chebyshev sampler, we could use a more informative prior over

larger values of the smoothing parameter λ.

One advantage of a sampling approach to statistical inference is that, once samples of the

biofilm surface are procured from the posterior (2), we can calculate whatever function of the

surface samples we like, whether linear or non-linear, thereby constructing a representation of

the posterior of the corresponding parameter. We calculated a volume for each sample given

a biofilm surface y. This volume is a sample from the marginal posterior π(volume|y). Using

this approach, we estimated the biofilm volume with 99% credible intervals from 40 frames (i.e.,
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Figure 4: Posterior mean estimates of the volume for 40 frames (about 10 minutes) of the video are

indicated by the solid line. These 40 frames capture the response of the biofilm as the salt water

treatment is removed and then re-applied. Error bars indicate 99% credible intervals. Volume is under-

estimated by an estimator that only counts bright pixels as indicated by the dash-dotted line. The salt

water treatment was applied sometime between frames 31 and 32 that is associated with a large drop in

volume between frames 31 and 33.

about 10 minutes) of the video (see Figure 4). These 40 frames capture the response of the

biofilm as the salt water is removed (before frame 5) and then applied again (after frame 31).

Application of the salt water treatment is associated with a 26% reduction in volume. A 99%

credible interval for this reduction was [25%, 27%]. Such reduction calculations are the norm

when assessing the efficacy of antimicrobial treatments. Figure 2 shows the biofilm surface before

(frame 31) and after (frame 35) the application of the treatment. As a comparison, the biased

volumes calculated by counting bright pixels (i.e., in this analysis, pixels with intensity values

larger than 49) is also presented.
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6 Discussion and Conclusion

For the first time, we apply a PCG-Chebyshev accelerated iterative sampler (Algorithm 2) to

efficiently solve the Gaussian step in a Bayesian linear inverse problem. There are more efficient

ways to sample the variances (σ2 and 1/λ) than the conditional sampler that we show here

(Agapiou et al., 2014; Feron et al., 2016; Fox and Norton, 2016). Fixed on values of the variances,

to our knowledge, the PCG-Chebyshev implementation is the fastest and most memory efficient

sampler from a LARGE Gaussian with arbitrary variance structure.

This is also the first time that the drastic attenuation of the CM laser intensity into thick

biofilms has been quantitatively addressed (Pitts and Stewart, 2008). The artifact of attenuation

or “shadowing” is fairly typical in our experience when imaging biofilms with a CM. The thickness

of the biofilm that can be viewed satisfactorily from top to bottom in the z-dimension without

this artifact appears to depend upon the density and composition of the particular sample.

Given this artifact, we do not consider fluorescence microscopy (confocal or otherwise) to be the

technique of choice for measuring biofilm thickness or examining stratification of activity with

depth. Instead, cryoembedding and cryosectioning (Figure 1B), or optical coherence tomography

(OCT) (Figure 1C) can be used. Cryoembedding and sectioning involves freezing the biofilm in

standard tissue embedding medium, cutting 5 µm thick cross-sections through the sample on a

cryostat, and placing those sections flat on a microscope slide. Sections can then be viewed using

widefield fluorescence microscopy or CM, which eliminate any top-down viewing artifact. OCT is

a relatively new addition to biofilm imaging techniques, but the method has been used widely in

ophthalmology and in industry for at least 20 years. OCT is an interferometric technique, where

an infrared laser is incident upon a sample, and the reflected light is compared to a reference

beam to provide an image of a sample in a manner similar to an ultrasound. OCT does not

use fluorescence and has a penetration depth on the order of 1 mm in biofilms. In general, all

three methods (in Figure 1) are used in concert to provide a robust, fully dimensional picture

of a biofilm that includes information regarding thickness, topography, stratification of activity,

structure and function. While confocal microscopy and OCT enable in-situ, fully hydrated

imaging, only cryosectioning provides fluorescence data that is free of the top-down imaging

artifact that we illustrate here.

Previous Bayesian analyses of CM images of thin layers of human cells considered less severe
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attenuation effects (Al-Awadhi et al., 2011). Our approach was inspired by a desire to accu-

rately calculate biofilm volumes from CM images with an associated measure of uncertainty.

Fitting a surface the way we do is simple and subsequent samples from the posterior can be

generated quickly using the PCG-Chebyshev accelerated sampler. This approach presumes that

the precision of the CM’s identification of the top edge of the biofilm is small compared to the

variability of the surface across the entire biofilm. The disadvantage of this surface model is that

the data have been manipulated from pixels in 3D to a surface in 2D. Hence this model cannot

reconstruct holes or overhanging features in the biofilm (e.g., Figure 1B). We are developing

a more computationally demanding non-linear approach that deals with these issues. Perhaps

most importantly, the non-linear approach does not require thresholding, a very common step

of CM data pre-processing by today’s microscopists. Future work also includes developing a

more computationally demanding framework that directly models the temporal relationship of

the frames in the video (see, e.g., Higdon (2006)).

These results demonstrate the dramatic osmotic response of a biofilm to a targeted treatment.

This behavior is not widely appreciated among biofilm researchers and merits further exploration.

Is the biofilm more vulnerable under osmotic stress? Could manipulation of the osmotic response

be paired with an antimicrobial treatment to better kill or remove biofilms? Our analyses show

that the salt water treatment is associated with a statistically significant 26% reduction in

volume. For manufacturers of antimicrobials, quantifiable reductions of microbial abundances

are crucial to bring products to market, convince consumers to buy them, and positively affect

human health. Our future work will focus on determining how the surface representations of

biofilms presented in this paper, and the reductions of biofilm volumes in other scenarios, might

be used to predict reductions of biofilm microbial abundances.

This work helps us to begin to answer the most frequently asked questions that we receive

regarding CM experimental design. Because increased pixel resolution (set by the user) decreases

temporal resolution (i.e., it takes the CM more time to capture more pixel data), microscopists

want to know: How many xy pixels should be used in each planar z-slice? How many z-

slices should be collected in the vertical dimension? How many different fields of view should be

collected? These questions pertain to obtaining a precise assessment of the biofilm volume across

the entire object being imaged. This work can begin to answer the first two questions regarding
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pixelation: If one wishes to use the CM solely as a half-a-million dollar estimator of volumes,

then our analyses suggest that the pixel resolution is much too fine because the error bars - i.e.,

the 99% credible intervals in Figure 4 - are extremely tight. The results presented here provide a

first step towards the application of Bayesian experimental design techniques (e.g., see Solonen

et al. (2012)) that will quantify how much less spatial resolution in CM images is allowed before

the uncertainty in biofilm volumes, or some other imaging outcome, becomes too large. Based on

our experience with other techniques that provide quantitative assessments of biofilms, we expect

that the most important level of replication is to collect CM data from multiple independent

environmental sites or experiments. In the latter setting, biofilms are grown independently with

different inocula on different days in each experiment.

CG and Chebyshev samplers have been applied as stand-alone samplers for Bayesian problems

before. Fox and Parker (2017) applied a Chebyshev sampler to refine the pixelation of CM

images by Bayesian interpolation. Gilavert and Moussaoui (2015) apply CG for linear Bayesian

image reconstruction. They clean up CG’s possible poor performance in finite precision by

instituting a Metropolis Hastings step. Bardsley et al. (2012) applied the CG sampler within

the ensemble Kalman filter and showed improved performance compared to other ensemble filter

implementations. Feron et al. (2016) consider a linear Bayesian model with the same variance

structure as we do, but, for every draw of the variance parameters, they implement a CG

sampler with only a small number of jittered CG search directions to attain a Markov chain that

is provably convergent in exact arithmetic. Unfortunately, that paper contains no specification

of a convergence rate and its performance in finite precision is unknown.

Two other promising methods directly adapt any solver to the task of iterative sampling.

Conditioned on values for the variances (i.e., Σy and 1
λW

−1 in (1)), the method of randomized

maximum likelihood (RML) solves a linear Bayesian inverse problem with a Gaussian likelihood

(Chen and Oliver, 2012). Randomize-then-optimize (RTO) is the extension of RML to non-linear

problems (Bardsley et al., 2014) with a Gaussian likelihood. At each iteration, these algorithms

jitter the data using Gaussian noise with variance Σy then perform a non-linear least squares

optimization step that generates a sample from the posterior. The randomization step can easily

be effected for the common case where the variance of the likelihood is Σy = σ2I (as for the

example in this paper); but for general Σy in large problems, the randomization step would
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require that either Σy be factored or that a method such as introduced here be applied. Another

potentially limiting issue for large problems is that RML and RTO require a factorization of the

prior precision λW .

We suggest that PCG-Chebyshev is the current state-of-the-art iterative sampler from a

LARGE Gaussian with an unstructured precision matrix that does not require any (precision

or covariance) matrix factorization and has minimal memory requirements (only vectors from

2 previous iterations need to be saved). Our methodological contribution in this work is to

present a two-phase PCG-Chebyshev iterative sampler that harnesses CG’s ability to converge

in a finite number of steps when the spectrum of A is favorable (i.e., the small eigenvalues are well

separated). For covariance matrices with less favorable spectra where CG may fail to converge

satisfactorily, the Chebyshev sampler has an optimal geometric convergence rate and reliably

samples in finite precision. Because Krylov methods like CG are the current state-of-the-art for

linear solvers, we expect work to continue to obtain a truly iterative (i.e., only requires a few

iteration’s worth of information) Krylov sampler that converges to the full Gaussian target in a

finite number of steps in theory (exact arithmetic) and in practice (finite precision).
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