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One of the steps toward understanding the neural basis of an animal’s behavior is charac-
terizing the code with which its nervous system represents information. All computations
underlying an animal’s behavioral decisions are carried out within the context of this code.

Tools from information theory can be used to achieve two goals towards characterizing the
neural coding scheme of a simple sensory system [8]. First, the functioning of a neural system
is modeled as a communication channel. Although this model is stochastic, in this context a
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Abstract

Our main interest is the question of how neural ensemble activity represents sensory
stimuli. In this paper we discuss a new approach to characterizing neural coding
schemes. It attempts to describe the specific stimulus parameters encoded in the neural
ensemble activity and at the same time determines the nature of the neural symbols
with which that information is encoded.

This recently developed approach for the analysis of neural coding [6, 8] minimizes
an intrinsic information-theoretic cost function (the information distortion) to produce
a simple approximation of a coding scheme, which can be refined as more data becomes
available. We study this optimization problem. The admissible region is a direct prod-
uct of simplices. We show that the optimal solution always occurs at a vertex of the
admissible region. This allows us to reformulate the problem as a maximization prob-
lem on the set of vertices and develop a new algorithm, which, under mild conditions,
always finds a local extremum. We compare the performance of the new algorithm to
standard optimization schemes on synthetic cases and on physiological recordings from
the cricket cercal sensory system.
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coding scheme consists of classes of stimulus/response pairs which form a structure akin to
a dictionary: each class consists of a stimulus set and a response set, which are synonymous.
The classes themselves are almost independent, with few intersecting members. The number
of distinguishable classes is related to the mutual information between stimulus and response.

Secondly, we find high quality approximations of such a coding scheme. To do this, the
neural responses are quantized to a small reproduction set. This quantization is optimized
to minimize an information-based distortion function. Fixing the size of the reproduction
produces an approximation of the coding scheme described above. The approximation can
be refined by increasing the size of the reproduction. For the model described above, there is
a critical size, beyond which further refinements do not significantly decrease the distortion.
We choose the optimal quantization at this size to represent the coding scheme.

The admissible region over which the optimization is performed is a direct product of
simplices. We show that the optimal solution always occurs at a vertex of the admissible
region. This allows us to reformulate the optimization problem as the maximization of a
new cost function on the set of vertices. We then develop a new algorithm, which, under
mild conditions, always finds a local extremum.

Lastly, We compare the performance of the vertex search algorithm to standard opti-
mization schemes on synthetic cases and on physiological recordings from the cricket cercal
sensory system.

2 Preliminaries

2.1 The neural code

Deciphering the neural code of a sensory system means determining the correspondence
between neural activity patterns and sensory stimuli. This task can be reduced further to
three related problems: determining the specific stimulus parameters encoded in the neural
ensemble activity, determining the nature of the neural symbols with which that information
is encoded, and finally, quantifying the correspondence between these stimulus parameters
and neural symbols. If we model the coding problem as a correspondence between the
elements of an input set X and an output set Y, these three tasks are: finding the spaces X
and Y and the correspondence between them.

Common approaches to this problem include stimulus reconstruction [25] and the use of
impoverished stimulus sets to characterize stimulus/response properties [13]. However, these
methods often introduce multiple assumptions that may affect the character of the obtained
solution. Some of these approaches start with an assumption about the relevant structures
of the space Y (e.g., a single spike in the first-order stimulus reconstruction method, or the
mean spike rate over a defined interval) and proceed by calculating the expected stimulus
features that are correlated with these codewords. Other approaches make an assumption
about the relevant stimulus features (the space X), such as moving bars and gratings when
investigating parts of the visual cortex, and proceed to study the patterns of spikes that
follow the presentation of these features.

Observe that any neural code must satisfy at least two conflicting demands. On the
one hand, the organism must recognize the same natural object as identical in repeated



exposures. On this level the response of the organism needs to be deterministic. On the other
hand, the neural code must deal with uncertainty introduced by both external and internal
noise sources. Therefore the neural responses are by necessity stochastic on a fine scale. In
this respect the functional issues that confront the early stages of any biological sensory
system are similar to the issues encountered by communication engineers in their work of
transmitting messages across noisy media. With this in mind, we model the input/output
relationship present in a biological sensory system as an optimal information channel [27]
as in Figure 1A. An information channel characterizes the relationship between two random
variables: an input X and an output Y. The structure of the neural code, which is stochastic
on a fine scale, but deterministic on a large scale, emerges naturally in the context of an
information channel using information theory.
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Figure 1: (A) The cricket cercal sensory system modeled as a communication channel. (B)
The structure of a communication system. There are about 2"#X) stimulus (z) sequences,
2mH(Y) response () sequences but only about 2"/(X:Y) distinguishable equivalence classes yy;
of (x,y) pairs.

2.2 Introduction to Information Theory
2.2.1 Basic Concepts

The basic object in information theory is an information source or a random variable X. X
is a mathematical model for a physical system that produces a succession of symbols {z1,
Ty, ... , Tp} in a manner which is unknown to us and is treated as random [5, 12].

The basic concepts of information theory are entropy and mutual information. The
concept of entropy was first introduced in thermodynamics to provide a statement of the
second law of thermodynamics [5]: the entropy of an isolated system is non-decreasing.
In information theory, entropy is described as a measure of the uncertainty, or of the self
information, of a random variable [5], and is defined as

H = —FE;logp(x).



Next we define the conditional and joint entropy respectively as
HY|X) = —E;,logp(y|z)
H(X,)Y) = —E;,logp(z,y).

The notion of mutual information I(X,Y) is introduced as a measure of the degree of de-
pendence between a pair of random variables (X,Y):

p(z,y)

p(x)p(y)
= H(X)+H(Y)-H(X,Y).

I(X)Y) = logE,,

Both entropy and mutual information are special cases of a more general quantity — the
Kullback-Leibler directed divergence or relative entropy [19] between two probability measures
on the same event space:

_ p(l‘))
KL(pllo) = Eytog (2. 1)
The information quantities H, I and KL depend only on the underlying probability distri-
butions and not on the structure of X and Y. This allows us to evaluate them in cases where
more traditional statistical measures (e.g. variance, correlations, etc.) simply do not exist.

Why are entropy and mutual information valid measures to use when analyzing an in-
formation channel between X and Y7 Let {yi, o, ... , yn} be i.i.d. observations from an
information source Y. Then the Strong Law of Large Numbers provides theoretical justifi-
cation for making inference about population parameters (e.g. response parameters) from
data collected experimentally. In particular, the Shannon Entropy Theorem in this case
assures that the entropy (and hence the mutual information) calculated from data taken
experimentally converges to the true population entropy as the amount of data available
increases. In the case of physiological recordings from a biological sensory system, {y, ya, ...
, Yn} are not usually i.i.d.. For example, in the data that we present in this paper, we take
a single, “long” recording of a neural response and break it up into observations of length
10ms. Inference made about population parameters from data collected this way is justified
if we can assume that Y is ergodic. Now we may appeal to the Ergodic Theorem [3] and
the Shannon-McMillan-Breiman Theorem [5] to justify the use of our information theoretic
quantities.

2.2.2 Quantization Theory

A random variable Y can be related to another random variable Yy through the process of
quantization (lossy compression) [5, 12]. Yy is referred to as the reproduction of Y. The
process is defined by a map ¢ from the probability space Y to Yy, called a quantizer. In
general, quantizers can be stochastic: ¢ assigns to y € Y the probability that the response y
belongs to an abstract class yy. A deterministic quantizer is a special case in which ¢ takes
the values of 0 or 1 only. By Theorem A.4 in [§],

I(X,Yyy) > I(X,Yy) 2)



Furthermore, it can be shown that the mutual information 7(X,Y) is the least upper bound
of I(X, Yx) over all possible reproductions Yy of Y. Hence, the original mutual information
can be approximated with arbitrary precision using carefully chosen reproduction spaces.

2.3 Neural systems as an information channels

Communication channels characterize a relation between two random variables: an input
X and an output Y. When mapping this structure to neural systems, the output space is
usually the set of activities of a group of neurons. The input space can be sensory stimuli
from the environment or the set of activities of another group of neurons. We would like to
recover the correspondence between stimuli and responses, which we call a coding scheme
[29].

The early stages of neural sensory processing encode information about sensory stimuli
into a representation that is common to the whole nervous system. We will consider this
encoding process within a probabilistic framework [1, 18, 25]: The input signal X is produced
by a source with a probability p(z). This may be a sensory stimulus or the activity of a
set of neurons. The output signal Y is produced by ¢ with probability p(y). This is the
temporal pattern of activity across a set of cells. The encoder Q(y|z) is a quantizer mapping
X to Y. This will model the operations of a neuronal layer. In this framework we model
a neuron or a group of neurons as a communication channel [5]. Results from information
theory can be applied almost directly to this model for insights into the operation of a neural
sensory system. Although the model is stochastic, an almost deterministic relation emerges
naturally on the level of clusters of stimulus/response pairs. When restricted to codeword
classes, the stimulus/response relation is almost bijective, as in Figure 1B. That is, with
probability close to 1, elements of Y are assigned to elements of X in the same codeword
class. We shall decode an output y as (any of) the inputs that belong to the same codeword
class. Similarly, we shall consider the representation of an input z to be any of the outputs
in the same codeword class.

2.4 Recovering a neural coding scheme

We recently developed a novel approach to finding a neural coding scheme through quanti-
zation of the neural response Y into a coarser representation in a smaller event space Yy [8].
An important reason for using quantization for this purpose is the goal of using available
data in the most efficient way. As pointed out in [15], the amount of data needed to support
non-parametric estimates of coding schemes which contain long sequences of length 7" across
N neurons grows exponentially with 7" and N. For some systems the required data recording
time may well exceed the expected lifespan of the system. To resolve this issue we choose
to sacrifice some detail in the description of the coding scheme in order to obtain robust
estimates of a coarser description.

A quantization [5, 12] in this context is a stochastic map ¢(yx|y) of the neural represen-
tation Y into a coarser representation in a smaller event space Yy. The random variables
X — Y — Yy form a Markov chain. We characterize the quality of a quantization by a
distortion function [5] and look for a minimum distortion quantization. The resulting re-
lation between stimulus and reproduction, ¢(yx|z), will be a recovered approximation of



the neural coding scheme. By increasing the size of the reproduction, N, we can refine the
approximation as much as the available data allows.

2.5 The distortion function

In engineering applications, the distortion function D(-,-) is usually chosen in a fairly ar-
bitrary fashion [5, 11],typically the Euclidean squared distance [26]. We want to avoid this
arbitrariness. A quantization ¢(yy|y) produces a new random variable (a reproduction space)
Yy with associated probabilities p(yx). At the same time, quantization induces probabilities
p(z|yn) which allow us to obtain a reconstruction of the input p(z) = Yy p(z|yn)p(yn)
related to quantized observations p(yy). We view the distribution p(z|yy) as an approxima-
tion of the neural decoder p(x|y). We require that this approximation is the best possible
under the constraint that the number of classes NV is fixed. The natural measure of the
closeness of two distributions is the Kullback-Leibler divergence K L. For each fixed y € YV
and yy € Yy, p(z|y) and p(xz|yy) are a pair of distributions on the space X. We define our
distortion function as the expected Kullback-Leibler divergence over all pairs (y, yn)

Dr(Y,Yn) = Di(q(yn|y)) := Eyyy KL(p(z|yn)|[p(z|y)).

Unlike the pointwise distortion functions usually investigated in information theory [5, 26],
this one depends on the quantizer q(yx|y), through p(z|yy). We derive an alternate expres-
sion for Dj. Starting from the definition

Dr = ) w(y,yn) KL(p(aly)lp(z|yx)) (3)
= > p(y,un) Zp zly)lo || ))
= ¥ p(x,y,ym(logp(xw)—logp<x|yN>) (4)

= pry log pryN log (() o )) (5)

= I(X, Y) - I(X, YN)

Step (4) uses the Markov property p(z,y,yn) = p(z|y)p(y,yn). (5) is justified by using

the identities p(z,y) = Y-, p(z,y,yn) and p(z,yn) = >, p(z,y,yn), the Bayes property
p(z,y)/p(y) = p(z|y), and the fact that logp(z) is common for the two parts and cancels.
This shows that the information distortion can be written as

Dr=I1(X,Y)—I(X,Yy)

as in [8]. This function can be interpreted as an information distortion measure, hence the
symbol D;. The only term in D; that depends on the quantization is I(X;Yy), so we can
replace Dy with the effective distortion

Depp = 1(X;Yn)

6



in our optimization schemes. Our goal is to find a quantization ¢(yy|y) that minimizes the
information distortion measure D; for a fixed reproduction size N.

2.6 Finding the codebook

Following examples from rate distortion theory [5, 26], the problem of optimal quantization
can be formulated as a maximum entropy problem [8, 14]. The reason is that, among all
quantizers that satisfy a given set of constraints, the maximum entropy quantizer does not
implicitly introduce additional constraints in the problem. In this framework, the minimum
distortion problem is posed as a maximum quantization entropy problem with a distortion
constraint:

max H(Yn|Y) constrained by (6)
q(ynly)
Di(q(ynly)) < D, and

D alynly) =1 and q(ynly) >0 VyeY
YN

The conditional entropy H(Yy|Y) and mutual information I(X,Yy) (the only term in
D; which depends on ¢(yn|y)), can be written explicitly in terms of g(yn|y)

H(Yy|Y) = Eyy,logq(ynly)
= Y palynly) log (a(ynly))

YYnN

and

— lwp.  PEyn)
I(X,Yy) = lgEx’pr(iE)p(yN)

- Z q(yn|y)p(z, y) log(

Z,Y,YN

>, aunly)p(z,y)
p(z) >, p(y)a(ynly)

The optimal quantizer ¢(yy|y) induces a coding scheme from X — Yy by p(yn|z) =
>, 4(yn|y)p(y|z) which is the most informative approximation of the original relation p(z|y)
for a fixed size N of the reproduction Yy. Increasing N produces a refinement of the approx-
imation, which is more informative (by (2)), so it has lower distortion and thus preserves
more of the original mutual information I(X,Y). The model of a coding scheme we use
suggests that D; oc —log N for N < N, ~ 2/%Y) and D; ~ constant for N > N, [8]. Since
we in general don’t know I(X,Y’), we empirically choose N, at which the rate of change
of Dy with N decreases dramatically. This method allows us to study coarse but highly
informative models of a coding scheme, and then to automatically refine them when more
data becomes available.



3 Optimization schemes

The admissible region for the linear constraints in (6),

A= {qlynly) | Y alunly) =1Vy €Y and q(ynly) > 0},

YN

is a direct product of simplices. In section 5, we show that the optimal solution always occurs
at a vertex of this region. We have devised three different algorithms to find this optimal
solution. Two of these algorithms solve the system by starting in the interior of the feasible
region and then using the method of annealing to find extrema. The third algorithm searches
for extrema over A. When searching for the extrema of a general optimization problem,
there is no known theory indicating whether using continuous, gradient-type algorithms is
cheaper than searching over a finite, large set which contains the extrema. In this section,
we investigate and compare these different approaches applied to (6).

3.1 Annealing

Using the method of Lagrange multipliers and D, instead of D; we can reformulate the
optimization problem as finding the maximum of the cost function

max P(g(ynly) = max (H(Yw|Y)+ BDess(alynly)) (7)

a(yny) a(yn1y)
constrained by q(ynly) € A.

This construction removes the nonlinear constraint from the problem and replaces it with
a parametric search in 3 = (Dy). For small  the obvious optimal solution is the uniform
solution ¢(yn|y) = 1/N [26]. It can be shown that as # — oo solution of the problem (7)
converges to a solution of the problem (6), which lies on the boundary of A. Therefore we
need to track the optimal solution from # = 0 to # = co. We do this by incrementing
in small steps and use the optimal solution at one value of 3 as the initial condition for a
subsequent . To do this we must solve (7) at a fixed value of 3. We have implemented
two algorithms to solve this problem: an Augmented Lagrangian algorithm and an implicit
solution algorithm.

3.1.1 Augmented Lagrangian

The Augmented Lagrangian algorithm is similar to other penalty methods in that the con-
straints to the problem are subtracted from F' to create a new cost function to maximize

1
P(g,p) == F(q) — oM > (ey(@)?
y
where ¢,(q) :==1—3_ q(ynly), the constraint imposed V y € Y. The more infeasible the
constraints ¢y(g) (when 1 —3" = q(yn|y) >> 0), the harsher the penalty in P.
The Augmented Lagrangian, however, avoids the ill-conditioning of other penalty meth-

ods (as 4 — 00) by introducing explicit approximations of the Lagrange multipliers into the
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cost function at each optimization iteration. These approximations are constructed in such
a way so that the solution to this algorithm satisfies the KKT conditions.

We use the Augmented Lagrangian, constructed specifically to deal with the equality
constraints [23]

Lag ) m) =F() = 3 Aoy (@) + i 3 ey(0)?

and use a projected linesearch at each Augmented Lagrangian iteration to deal with the
constraint ¢(yn|y) > 0.

A Newton Conjugate Gradient method [23] is used to efficiently find a search direction for
each linesearch. Once the active sets are identified, the theory assures us that this algorithm
procures a stationary point (where V,F = 0) [17].

3.1.2 TImplicit solution algorithm

This algorithm is based on the observation that extrema of F' can be found by setting its
derivatives with respect to the quantizer ¢(yy|y) to zero [8]. Solving this system produces
the implicit equation (V Dy depends on ¢q(yn|y))

qynly) = ———»; (8)

Here VD; denotes the gradient of Dy with respect to the quantizer. The expression (8) can
be iterated for a fixed value of 3 to obtain a solution for the optimization problem, starting
from a particular initial state.

3.2 Vertex search algorithm

Applying standard results from information theory [5], we have shown [8] that the function
Dy is concave in ¢(yn|y). The domain A is a product of simplices and therefore convex.
In section 5, we show that these two facts imply that the optimal solution of (6) always
lies in a vertex of A (Corollary 13). Since the set of vertices is large, we implement a local
search, linear in the order of the space Y, which leads, under modest assumptions, to a local
maximum of (6) (Theorem 15). Details of the algorithm are given in (23).

4 Application to Data

As in [8], we now discuss the application of the method to synthetic data. Then we will
turn our attention to the method applied to physiological recordings from the cricket cercal
sensory system. In both of these scenarios, we compare the performance of the vertex
search algorithm (23), the Augmented Lagrangian algorithm [23] with a projected Newton
Conjugate Gradient line search and an implicit solution algorithm [8].



4.1 Synthetic Data

We analyze the performance of the three optimization schemes when using synthesized data
(X,Y) drawn from the probability distribution shown in figure 2a. In this model we assume
that X represents a range of possible stimulus properties and Y represents a range of possible
spike train patterns. We have constructed four clusters of pairs in the stimulus/response
space. Each cluster corresponds to a range of responses elicited by a range of stimuli. The
mutual information between the two sequences is about 1.8 bits, which is comparable to
the mutual information conveyed by single neurons about stimulus parameters in several
unrelated biological sensory systems [7, 18, 24, 28]. For this analysis we assume the original
relation between X and Y is known (the joint probability p(x,y) is used explicitly).
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Figure 2: (a) A joint probability for the relation between two random variables X and Y,
each with 52 elements. (b—e) The optimal quantizers ¢(yn|y) for N = 2, 3, 4 and 5 classes
respectively. These panels represent the conditional probability ¢(yx|y) of a pattern y, a
point on the horizontal axis in a, belonging to the class yy, a point on the vertical axis
in a. White represents ¢(yn|y) = 0, black represents ¢(yy|y) = 1, and intermediate values
are represented by levels of gray. The behavior of the mutual information I(X,Yy) with
increasing N can be seen in the log-linear plot (f). The dashed line is I(X,Y"), which is the
least upper bound of I(X,Yy).

The optimal quantizer ¢(yx|y) for N = 2, 3, 4 and 5 is show in panels b—f of figure 2.
The gray-scale map in these, and later representations of the quantizer, depicts ¢(yn|y) =0
with white, ¢(yny|y) = 1 with black, and intermediate values with levels of gray. When an
N = 2 class reproduction is forced as in panel (b), the algorithm recovers an incomplete
representation of the coding scheme. The representation is improved for the N = 3 class
refinement (c). The next refinement (d) with N = 4 separates all the classes correctly and
recovers most of the mutual information. Further refinements (e) fail to split the classes
and are effectively identical to (d). Note that classes yy = 1 and 2 in (e) are almost evenly
populated and the class membership there is close to a uniform 1/2. That is, ¢(yy = 1|y) =
q(yn = 2|y) = 1/2 for y : 12 < y < 23. The quantized mutual information in (f) increases
with the number of classes approximately as log N until it recovers about 90% of the original
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mutual information (at N = 4), at which point it levels off.

A random permutation of the rows and columns of the joint probability in figure 2a has
the same channel structure. The quantization is identical to the case presented in figure
2 after applying the inverse permutation and fully recovers the permuted classes (i.e., the
quantization commutes with the action of the permutation group).
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Figure 3: For the data set in Figure 1A, the behavior of D.j; = I(X,Yy) (top) and the optimal
quantizer q(yn|y) (bottom) as a function of the annealing parameter (3.

Further details of the course of the annealing optimization procedure (section 3.1) that
lead to the optimal quantizer in panel (d) are presented in figure 3. The behavior of Dy
as a function of the annealing parameter 3 can be seen in the top panel. Snapshots of the
optimal quantizers for different values of 3 are presented on the bottom row (panels 1 —6).
We can observe the bifurcations of the optimal solution (1 through 5) and the corresponding
transitions of the effective distortion. The abrupt transitions (1 — 2, 2 — 3) are similar to
the ones described in [26] for a linear distortion function. We also observe transitions (4 — 5)
which appear to be smooth in D,¢; even though the solution for the optimal quantizer seems
to undergo a bifurcation.

Figure 4 gives a comparison of our optimization algorithms for this data set. For N =
1, 2, 3 and 4, (A) shows the maximal mutual information procured by each algorithm,
while (B) indicates the computational cost of each. The vertex search was the fastest and
the Augmented Lagrangian the slowest of the three with an order of magnitude difference
between each two algorithms. Each algorithm has its advantages, though, as the Augmented
Lagrangian always gives a point that satisfies the KKT conditions and the vertex search
does so under certain conditions (15). Although we do not have a complete theoretical
understanding of the convergence of the implicit solution algorithm, it works very well in
practice.
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Figure 4: Comparison of the Augmented Lagrangian, implicit solution and vertex search op-
timization algorithms for N = 2, 3, and 4. (A) Compares the value of I(q(yn|y)) = I(X, Yn),
the mutual information evaluated at the optimal quantizer obtained by each optimization
algorithm. (B) A comparison of the computational cost, in FLOPS, incurred by each opti-
mization algorithm for N = 2.

4.2 Real Data

4.2.1 Dealing with complex stimuli

To successfully apply our method to physiological data, we need to estimate the information
distortion Dy, which in turn depends on the joint stimulus/response probability. If the
stimuli are sufficiently simple, p(x,y) can be estimated directly as a joint histogram, and the
method is applied as described above. In general, we want to analyze conditions close to the
natural for the particular sensory system, which usually entails observing rich stimulus sets
of high dimensionality. Characterizing such a relationship non-parametrically is extremely
difficult. To cope with this regime, we model the stimulus/response relationship as in [9, 10].
The formulation as an optimization problem suggests certain classes of models which are
better suited for this approach. We shall look for models that give us strict upper bounds
D; of the information distortion function D;. In this case, when we minimize the upper
bound DI, the actual value of Dy is also decreased, since 0 < Dy < f)l. This also gives us a
quantitative measure of the quality of a model: a model with smaller D; is better.
We start the modeling process by noting that D; can be expressed as

Dr(Y,Yy; X) = H(X) — H(X]Y) — (H(X) — H(X[Yy)) (9)

by using standard equalities from information theory [5]. The only term in (9) that depends
on the quantizer ¢(yy|y) is H(X|Yy), so minimizing D; is equivalent to minimizing H (X |Yy).
Thus the models we need to consider should produce upper bounds of H(X|Yy). One way
to achieve this is by constructing a maximum entropy model [14] conditioned on constraints
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imposed by the researcher. We can express H(X|Yy) as H(X|Yn) = E,, H(X|yn) [7, 10],
where each term H (X|yy) is the entropy of X conditioned on yy being the observed response
class, and E,, denotes the expectation in Yy. As a first attempt, we constrained the class
conditional mean py(X) and covariance Cy(X) of the stimulus to the ones observed from
data. The maximum entropy model under such constraints is a Gaussian, N (py(X), Cn(X)).
Each entropy term is then bounded by

1
H(X|yy) < He(X|yn) = 3 log(2me) X! det Cy(X)

where |X| is the dimensionality of the stimulus space X. This produces an upper bound,
H(X|Yy), of H(X|Yy):

N 1
H(X|Yx) < H(X|Yy) = Eyy Ha(X|yn) = Eyy 5 log(2me) X! det Cy(X) (10)

In this expression, Cn(X) can be expressed explicitly as a function of the quantizer and
parameters depending on the data [9, 10]. The stimulus model obtained in this man-
ner is effectively a Gaussian mixture model, with priors p(yy) and Gaussian parameters
(un(X),Cn(X)). We define . .

Deff = H(X'YN)

Theorem 6 shows that D, ff obtained from D,y by this approximation is concave and that
the optimal quantizer g(yn|y) will be deterministic (Corollary 13). This means that D,y
can be used in place of D.ss in any of the optimization schemes.

4.2.2 Results

A biological system that has been used very successfully to address aspects of neural coding
(2, 4, 21, 22, 31] is the cricket’s cercal sensory system. It provides the benefits of being simple
enough so that all output signals can be recorded, yet sufficiently elaborate to address ques-
tions about temporal and collective coding schemes. The cricket’s cercal system is sensitive
to low frequency, near-field air displacement stimuli [16]. The sense organs are two cerci at
the rear of the abdomen. Each cercus is covered by approximately 1000 mechanoreceptor
hairs, which are deflected by air currents in the animal’s immediate environment. The entire
sensory epithelium for this system consists of the 2000 receptors that innervate these hairs.
Afferent axons from these receptors project into the terminal abdominal ganglion, where
they make synaptic connections to approximately 50 sensory inter-neurons. The entire out-
put layer of this system consists of only 20 of these neurons, which send axons to higher
centers.

We apply the method to intra-cellular recordings from identified inter-neurons in the
cricket cercal sensory system. During the course of the physiological recording, the system
was stimulated with air current stimuli, drawn from a band-limited (5-400Hz) Gaussian
white noise (GWN) source [30].

When applying the method to real data, the joint stimulus response probability p(z, y)
needs to be estimated. We use (10) D, ##, an upper bound of the effective distortion Dy,
in place of Dy in the optimization scheme [6].
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The results in figure 5 show the optimal quantizer for this system. Patterns 2 through
105 in A were obtained by choosing 10 ms sequences from the recording which started with
a spike (at time 0 here). Sequences in which the initial spike was preceded by another spike
closer than 10ms were excluded. Pattern 2 contains a single spike. Patterns 3-59 are doublets.
Patterns 60-105 are triplets. Pattern 1 is a well isolated empty codeword (occurances were
chosen to be relatively far from the other patterns). The number of samples from this class
were restricted to be comparable to the rest of the set. Each pattern was observed multiple
times (histogram not shown).

10
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Figure 5: Results from the information distortion method. (A) Raster plot of Y: All the
response spike patterns that were analyzed. Fach dot represents the occurrence of a single
spike. The bottom row of dots represents the first spike for every pattern. The dots above
these represent the subsequent spikes occurring at some time within 10 ms after the first
spike. The y axis is the time in ms after the occurrence of the first spike in the pattern.
The z axis here and below is an arbitrary number, assigned to each pattern, where all the
patterns have been ordered according to number of spikes first, and increasing ISI between
spikes second. (B) The lower bound of the I (green) obtained through the Gaussian model
can be compared to the absolute upper bound I = log, N for an N class reproduction
(blue). (C) The optimal quantizer for N = 2 classes. This is the conditional probability
q(yn|y) of a pattern number y, a point on the horizontal axis in A, belonging to class yn, a
point on the vertical axis in A. White represents where q(yn|y) = 0, black represents where
q(yn|y) = 1, and intermediate values are represented by levels of gray. (D) The stimulus
means, conditioned on the occurrence of class 1 (blue) or 2 (green). (E) The optimal quantizer
(obtained by bootstrapping) for N = 3 classes. (F) The stimulus means, conditioned on the
occurrence of class 1 (blue), 2 (green) or 3 (red).

Panels C-F show the results of applying the information distortion approach to this
dataset. The optimal quantizer for the N = 2 reproduction is shown in panel C. It isolates
the empty codeword in one class (class yy = 1) and all other patterns in another class (class
yn = 2). The mean of the stimuli conditioned with the zero codeword (D, blue), does not
significantly deviate from a zero signal.

Panels E and F show the results of extending the analysis to a reproduction of N = 3
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classes. The zero codeword remains in class 1. The former class 2 is split into two separate
classes: class 2, which contains the single spike codeword and codewords with an inter-spike
interval IST > 5ms, and class 3, which contains all doublets with 15T < 2ms and all triplets.
The mean in (D, green) is split into two separate class conditioned means (F, green and red).

The Augmented Lagrangian algorithm was unable to resolve the optimal quantizer for
N = 3 and 4. Both the vertex search and the implicit solution algorithms procured optimal
quantizers for N = 2,3 and 4 similar to those depicted in Figure 5 C and E. Figure 77
compares the performance of the vertex search algorithm and the implicit solution algorithm
on this data set.

5 Theory

The admissible region for the linear constraints in (6) is a direct product of simplices. We
show that the optimal solution always occurs at a vertex of this region. This allows us
to reformulate (6) as a maximization of the mutual information I(X,Yy) on the set of
vertices. We then describe a new algorithm, which, under mild conditions, always finds a
local extremum.

5.1 Maximum on the boundary

In (6), the quantizer q(yn|y) affects D; only through I(X,Yy). Therefore, we pose and
investigate the following equivalent maximization problem

mazyyy) H(YnY), (11)
with constraints
I(X,Yy) > I, (12)
and
> qlynly)=1 and q(ynly) >0 VyeY (13)

N

The parameter I is the informativeness of the quantization. The function is maximized over
q(ynly) € R™, subject to (13), where n is the number of quantization classes and s is the
cardinality of the output space Y.

Lemma 1 The function I1(X,Yy) is a convez function of q(yn|y).

Proof.  Lemma B.1 of [8]. O

Lemma 2 Given a convez function f(z), = € R¥, the set S(k) := {z | f(x) < k} is conver.
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Proof.  Let xp := 0zy + (1 — @)z,. Assume zg,z1 € S(k). Then

fzg) < 0f(wo) + (1 =0)f(21) <k

where the first inequality follows from convexity of the function f and the second from the
fact that x, 2z, € S(k). O
Let

D = {q(yn|y) € R™ | (13) is satisfied }

be the set of ¢(yn|y) which satisfy the linear constraints. Observe that D = II, D, where

Dy :={q(ynly) €R™||: ) q(ynly) =1, and q(ynly) > 0}.

Each D, is a standard simplex and D is a product of these simplices.
Let E denote the set of all vertices of the set D. An element e in this set can be written
as

e = llye,
where e, is a vertex of the simplex D,.
Lemma 3 The set D is the convex hull of E.

Proof.  Let C' := convex hull (). We show first that D C C. Select a point w € D. Such
a point is determined by a collection of barycentric coordinates 3111, ..., 8y In Dy for each y.
To show that w € C' we need to find n* numbers A; such that

(G)eE

We denote the vertices of the simplex Dy by v,,v?,... ,v). Observe that (14) will be satisfied
if
Z )\j:Sl;, forally =1,...,s, k=1,...,n. (15)

€y (j):U§

We construct the set \;, satisfying (15), explicitly. We start our construction with a
collection of sn barycentric coordinates s’;, for k = 1,...,n and for each y € Y, which
specify the point w. Let

— k
Sy = maxy s,

k. Hence S, = s5'®. Let e(1) be a vertex of D such

for each y and let m(y) = argmax, s

that

ey(1) == v;”(y) for each y. (16)
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Finally, we select
AL = miny Sy.

Notice that A; # 0 since for each y at least one s’; # 0. We let SZ(O) = s’; for all y and all

k. We construct a new set of numbers s¥(1) (which are no longer barycentric coordinates)

y
)

in the following way: we replace each number si¥ by number si'® — A,

s (1) := 8;”(3’) (0) — Ay (17)

Y

We note two facts about this construction

1. After replacement (17) the sum

Z SZ(I) + A =1 foreach y.
k=1

2. At least one number si*® (1) is zero.

We repeat the construction and in the I-th step we construct vertex e(l), coefficient \;, and
a new set of numbers 5’;([). After the [-th step of the construction we observe that

1. For each fixed y, the sum

s+ Ai=1. (18)

At least [ numbers s%(1) are zero. (19)

Y

Claim 4 If for y =t there is only one nonzero element s¥ and for some y = q there are
u > 1 nonzero elements sb', ..., shv, then in next step of the algorithm s¥ will not be selected
as Aj.

Proof.  Observe that by (18) above

Uu

j-1

k_ _ .

st—l—g )\Z-—E sy
i=1

i=1
and so the maximum of the set sbi,4 =1,... ,u is smaller than sk, O

It follows from the Claim and (19) above that after at most s(n — 1) steps the algorithm

comes to the situation where for each y there is precisely one sg(y) # 0 and all other s; are
zero. Again, by (18), it must be that

j-1
Slg(y) =1- Z A; for all y.
i=1
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Hence, in the next step, A; := sf ™ and the algorithm ends. For the vertices e(i) which did

not come up in the construction step (16), we set A\; = 0. Note that it follows immediately
from (18) that

By construction, s¥(I) # s(I + 1) for some [ if and only if \; = s}(l) — sk(I + 1) and the
corresponding vertex e(l) has y-th component, e,(l), equal to vl’j. It follows that (15) is
satisfied. Hence (14) holds and this proves D C C.

To show that C C D it is enough to realize that D, being a product of convex sets D,,
is convex. Since C' is the smallest convex set containing £ and £ C D, we have C C D. O

Theorem 5 Using the previous notation,
mazpl(X,Yy) > mazpl (X, Yy).
Proof.  Denote M := mazglI(X,Yy) and let

A= {q(yaly) | I(q(ynly)) < M}.

By Lemma 1 and Lemma 2, A is a convex set. Since ' C A, then for C', the convex hull of
E (and hence the smallest convex set containing E), we have C C A. By Lemma 3, C = D
and thus D C A. O

5.2 Cost function for real data

In applications to real data, one can either estimate the joint probability p(z,y) and then
use the cost function I(X,Yy), or, as authors in [6] did, one can use a different function,

D.yy, which is an upper bound of D,y = H(X|Yw) = E,, H(X|y,). We note that
I(X,Yy) =H(X) - H(X|Yy) = H(X) — Deyy

and the only part which depends on the quantizer ¢(yn|y) is Dess. Therefore, maximization
of I(X,Yy) is equivalent to minimization of D.y;.

For real data, we estimate the mean and covariance of X conditioned on yy for each
yny € Yy. The maximum entropy model for H(X|y,) under these constraints is Gaussian
with estimated mean and covariance matrix Cx|,,. Calculation in [6] shows that this leads

to an upper bound function Deff, (i.e. with the property that D.ry < l~)eff)

Deys = Zp(yN)é log(2re) *ldet[y  p(ylyw)(Cxiy +a3) — (Q_p(ylyn)=,)*),  (20)

YN Y

where z, is the mean and Cx|, is the covariance matrix of a Gaussian mixture model of X
conditioned on a particular y. z2 is a matrix formed by z,z]. Since

I(X,Yn) = H(X) = Degy > H(X) = Degy = I(2,Yn),
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this estimate leads to a new version of the optimization problem (11):
mazy(yyy) H(Yn[Y),
with constraints
I(X,Yy) > I (21)
and (13).

Theorem 6 The function Deff is concave in q(yn|y) and hence the function I is convez in
a(ynly)-

Our argument is based on four Lemmas.

Lemma 7 (Ky-Fan [20]) The function log det A is concave in A.

Lemma 8 For all i and j, the (i,j)-th component of the matrix

F =) p(ylyn) (Cxpy +23) — (Y p(ylyn)z,)*

is concave in p(y|lyn)-

Proof. The first part of F is linear in p(y|yy). We look at the second part. Fix i and
j and look at the (i, j)-th component of the matrix. After taking out the constants we get
that the second part is a function of the form

gi =~ ayp(ylyn)) O byp(ylyw)) (22)

where a is a vector of i-th components ([zy, |, [Ty, - - - , [%4,]") and b is a similar vector of j
components of z,,. Denote the vector z := (p(y1|yn), P(¥2|yn), - - - , P(yYn|yn)). Differentiating
gij we arrive at

V2gz~j = —(baT + abT).
The function g,; is concave if the quadratic form
27 (ba” + abT)z

is positive semidefinite. Observe that both matrix ba’ and matrix ab? have rank 1 and so
the rank of matrix M := (ba’ + ab"’) is at most two. To show positive semidefiniteness we
need to show that the nonzero eigenvalues are nonnegative.

Note that equation Mv = Av leads to

(baT)v + (ab")v = b(av) + a(bTv) = M.

Since both (a?v) and (bv) are scalars this shows that eigenvectors with nonzero eigenvalues
must be in span{a, b}.

19



We compute the eigenvalues and eigenvectors by setting v = ¢ya+ cob where the constants
c1, co are to be determined.

(ba™)v + (ab")v = (ba”)(cra + czb) + (ab”)(cia + cob)
= b(ci(a”a) + ca(a™d)) + a((ci (BT a) + ca(b7D))
= Mcra + eb).

Comparing terms in front of a and b (this assumes linear independence of these vectors) we
get

ci(a¥a) + co(a¥'b) = ey, c1 (b7 a) + co(b7D) = Aes.

In matrix form, this is A(cy, c2)T = A(c1, c2)T, where

ata aTh
A= [ Ma b7 ]

So ) is also an eigenvalue of the matrix A. Observe that a’a > 0 and the determinant of A
is

detA = (a"a)(b"b) — (a"b)* > 0

by Cauchy-Schwartz inequality. So A has nonnegative eigenvalues which are also eigenvalues
of M. 0.

Lemma 9 Let FF: R" — R and f : R® — R" such that
1. V?F is negative semidefinite
2. If we denote f = (f1, fa, ... , fa), then for each i, xTV? f;z = 0.
Then for G = Fo f: R™ — R we have that VG is negative semidefinite.
Proof.  Straightforward computation shows that
VG = Df VE(f),

where Df is n x n matrix and both VG and VF' are n vectors. We write out the [-th
component of VG

06 _ §~OFdf;
890, = 8f] aSEl.

Now compute the (I, k)-th element of the matrix V?G

0 0G "< OF Of, 0f; OF 0%f;
2 _ s YJg J
(v G) 8$k (8331) N Zl SZI 8fj8fs c‘)xk a.’L‘l Z afj 8l‘ka$l

2
d.T k d.??l Z V f]
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Finally, we compute 27 V2Ga:

2IViGr = Z Z(VQG)l,kxlxk

— ZZ kdka2Fd:El +ZZZ V f] kliL'kiEl

= (Dfx)"V?F(Dfz)+ a—f(:vTVij:v)-
F J

By the second assumption the last term is zero and so

tTV?Gz = (Dfz)"V?*F(Dfxz).
The first assumption now guarantees that V2G is negative semidefinite.
Lemma 10 Fix the value of the random variable yy = M. Let

Filg(My)) := p(y:| M) = q(M|yi)p(yi) q(My;)p(yi)

p(M) Y2 a(Mly;)p(y;)”
Then, if we denote ¢ = (q(M|y1),q(M|ya),- .. ,q(M|y,)), we have
¢Vfig=0
for all 1.
Proof.  To simplify notation we let a; := p(y;), x; := ¢(M|y;) and © = (x4, . .. ,
QAT
fz) = 225 45T
We compute
df; — 5 .a’l(Zj a;;) W
O, ! (Z ajxj)Q (22, ajz5)?
5, a,a;%;

Z ;T (Z] a;z;)?’
where 0;; = 1 if [ = ¢ and zero otherwise. The second derivative is
dfi g . may Ak TiTET)
= —0li=———,; — 0ki 5 3
0x10zy, (22, az;) (32 ajzs) (32 azs)
Then z7V2f;z is

af;
' V*fix l axlaxkxkxl

Zp). Then

2a;%;
= E —QiQpT; Ty — E azalxzzvl—i- E ApTEaT;
(Z a;z;)?

a]xj P

> 45T

1 2 a;x; QrTy,
= % a,x, [ Zakxk — Zal:rl + Zl Zk
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Proof of Theorem 6

Lemma 10 and Lemma 8 verify the assumptions of Lemma 9 where we set f := f; (f;
from Lemma 10) and F = gy, (gx from Lemma 8), for any k,,i. Hence, by Lemma 9, each
(k,1)-th component g, of F is a concave function of ¢(M|y;) for all i. By Lemma 7 the
function log det F is concave in F and thus in q(M|y;) for any i. At this point we should
write F, instead of F since we have the value yy = M fixed in computation of F. Clearly
our argument is true so far for any such M. Finally, since p(yn) = >_, a(yn|y)p(y) is a linear

combination of g(yy|y), then the function D.;; = Dess(q(ynly)) (20 is a linear combination
of concave functions

log det Fy,
where Fj; has fixed value yy = M. This finishes the proof. O

Theorem 11 Using the previous notation,
mafo(X, Yy) > ma:ch(X, Yn).

Proof. Analogous to the proof of Theorem 5, where we use the Theorem 6 instead of
Lemma 1. O

5.3 Equivalent problem

Lemma 12 Let f be a convex function, f: D — R, where D := Ay X ... X Ap and A; is
a simplex. Assume that maxp f(x) < maxg f(x), where E is the vertex set of D, and that

f(e) = k for every verter e € E. Assume also that there exists an interior point p of D such
that f(p) = k. Then f(x) =k for all x € D.

Proof.  Fixaset U:=1Int(A; x...x Ag), U CD. Let A:={x €U | f(z) = k}. This set
is clearly closed since A = f~!(k) and f is continuous. We show that A is open in U. Let
us first consider z € A. Since U is open, there is an open neighborhood N(z) C U. Pick an
arbitrary y € N(z). Since N(z) is open there is a z € N(z) such that

(y+2)/2=u.

By convexity & = f(z) < f(y)/2+ f(z)/2. By assumption f(y) < f(z) and f(2) < f(z)
and so

@) <fW)/2+ f(2)/2=fz) =k

It follows that f(x) = f(y) = f(z) = k. Hence if x € A then N(z) C A. Since every U is
connected, either A = U or A = (). By assumption p € A and so A = U. By continuity of
the function f

f(x)y=4k forall ze€D.
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Corollary 13 The optimal solution of the problem (11) with constraints (12) and (13) can
be found by the following algorithm:

1. Find a vertex e € E such that

I(e) := max I(X,Yy)

2. if all neighboring vertices e; (which differ from e in exactly one entry, e,) have I(e;) <
I(e), then e is an optimal solution of (11) with (12) and (13).

3. if there is a set of vertices eq, ... ,eg such that I(e;) = I(e), consider the region D :=
Ay X ... x Ay spanned by these vertices. Pick a point © € IntD. If I(x) = I(e) then
the solution of (11) is the product of the barycenters of A;. If I(x) < I(e) then any
vertex e; is a solution of (11).

Moreover, the problem for real data (11) with constrains (21) and (13) is equivalent to the
problem described above, where the function I is replaced by function I.

Proof.  Add proof for (1) and (2) (for (3)) If I(z) = I(e) then by Lemma 12 I(y) = I(e)
for all y € D. Then the solution with maximum entropy is the product of barycenters of
A;. If I(z) # I(e) by Theorem 5 I(z) < I(e) and by Lemma 12 I(y) < I(e) for all y € D.
Result follows.

The only difference in the proof for the function I is that we use Theorem 11 instead of

Theorem 5. 0

5.4 Vertex Search Algorithm and convergence to a local maximum

All results in this section are valid for both I and I. We will mention only I in the the text.
Vertex Search Algorithm (23)

Description:

1. Start at any initial point in D. One possible choice is to start at the point ¢(yn|y) =
1/N for all y as in Figure 6A.

2. Select randomly y; and evaluate mutual information at all the vertices of D,,, so
that ¢(L]y;) = 1 for some class yy = L and zero for all other classes M. Select the
assignment of y; to a class which gives the maximal mutual information. See Figure
6B.

3. repeat step 2 with yo, ys,... until all y, are assigned classes. This yields a vertex e of
D. See Figure 6C.

Remark 14 Clearly the assignment of y; to a class is arbitrary, so the algorithm should
start with yo after y; is assigned to a class randomly.
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Figure 6: The vertex search algorithm, shown here for N =3 and |Y| = s=3. (A) The
algorithm begins at some initial ¢(yx|y). Here, we start with ¢(yx|y) = 1/3 for all y and
yn- (B) Randomly assign y; to each class: yy =1, 2 and 3. For each of these classifications,
evaluate I(X,Yy). Assign y; to the class yy which maximizes the mutual information. (C)
We repeat the process in (B) for yo and then for y3. Shown here is a possible classification
of y1, yo and y3: y; and y3 are put into one class (call it yy = 1), and ¥y is put into another
class (call this one yy = 2). yy = 3 remains empty.

Theorem 15 The point e is a local mazximum of I if for each k and each class L, the
numbers

p(z,y) << Y pl@,y), ply) << Y pw).

yi€L,i£k yi€L,i#k

Proof. Assume that the points y;, 7 = 1,... ,k — 1 were assigned to their prospective
classes by steps 2 and 3. The algorithm decides where to assign y; based on the mutual
information of different assignments at this point. We can write I(y, — L) for the value of
the mutual information when we assign ¢(L|yx) = 1 and ¢(M|yx) = 0 for M # L.

Let

_ 2y 1(Lly)p(z,y)
—ople) X, ply)

We denote Si(N,z) the function S(NN,z) where we assigned y; to class L (i.e. q(yy =

S(L,x) :
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Llyx) = 1 and zero otherwise). We compute

Iye— L) = > alynly)p(z,y)log S(yy, )

Z,YYN

= Y ) logS(yn,2)(D_ plz,y))

y; €L

= > D logSlyw o) Y. plz,y)) (24)

yn#L =z y; €L i#k

+ ZlogSL(L,a:)( Z p(z,y) + p(z, yr))

yi€L,itk
We select q(L|yx) = 1 if and only if

for all M # L. Observe that the first term in (24) is the same for I(y, — L) and I(yx — M).
Then dy, ;s for fixed classes L and M is

diy = ZIOgSLLl")[ Z p(x,y) + p(z, yr)]

y; €ELi#£k
+ ZlogSL (M) Y p
Yy €M itk
- ZlogSM (L,z)[ Z
y; €EL,i#£k
- ZlogSM M,2) Y plz,y) +plz, )] (25)
T Y, €M i#£k
— _ p(T:yk) . _ p(yw)
Denote ¢, := S e 00 and €, := SR We compute
Su(M,z)  Dyem P Y) + 1N P(2,9i) D yenr yrn PY) + P(vk)
Su(M, x) ZyeM,y;ék p(z,y) + p(z, Yr) ZyEM,y;ék p(y)
1
= (—)(1
()0 +e)
~ 1-— €1€9.
Similarly,
SM(L,I) -
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Then from (25) we get
div = Y p(a,ye)llog Si(L,z) — log Sp,(M, z)]

SL L,SE
+ ZIOgSM((L’x)[ > plz,y)]

yeL,y?ﬁk
Sp(M, x
+ Z]og SAL/[ [ Z
yeM,y;ék
= Zp(x, Yi)[log SL.(L, z) — log S1,(M, z)] + O(er€2). (26)

Now we look at conditions under which a vertex e is a local maximum of the function
I(g(yn|y)). These conditions are equivalent to the Karush-Kuhn-Tucker conditions for a
local maximum. At a point where I(¢(yn|y)) achieves a local maximum the projection of
the gradient VI onto each affine space forming the boundary of D must fall outside D. A
boundary near a vertex is a collection of affine faces, each spanned by the vectors e — e¢;,
where e; is a vertex of D which differs from e in i-th component only. If the projection

(VI)e-(e—€) >0 (27)

for all 7 then e is a local maximum. For each i there are N vectors e; = {ef}, . —r. From [8],
(Vl)q(th) = Zp(xa g) log S(La .T)

Select y = v;. Assume that at the vertex e we have ¢(L|y;) = 1. Taking the dot product of
VI with the vector e — e, where the gradient is evaluated at the point e gives

(VD)o (e = ') = D plo )08 Su(L:2) = S1 (M) (28)

Observe that in the course of the algorlthm q(L|yy) is selected to be 1, if and only if drp > 0
for all M # L. This condition, by (26), is equivalent to condition for local maximum ((27)
with (28)) at the point e. O

To satisfy the conditions of Theorem 15 we suggest the following improvement of the
vertex search algorithm:

1. Assign y, to classes L in such a way that
> ply) ® 1/N
YrEL;

where NV is the number of desired classes. This choice represents a vertex in D. This
choice can be made by ordering all probabilities p(y;) according to size and then as-
signing them to classes in order 1,2,3,..., NN, N —1,...,2,1,1,....

2. Select randomly y; and evaluate the mutual information at all the vertices of D,,, so
that ¢(L|y;) = 1 for some class yy = L and zero for all other classes M. Select the
assignment of y; to a class which gives the maximal mutual information.

3. repeat step 2 with y,,ys,... until all y; are assigned classes. This yields a vertex e of
D.
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6 Conclusions

The intersting thing to note ...
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