
Bernoulli 23(4B), 2017, 3711–3743
DOI: 10.3150/16-BEJ863

Accelerated Gibbs sampling of normal
distributions using matrix splittings and
polynomials
COLIN FOX1 and ALBERT PARKER2

1Department of Physics, University of Otago, Dunedin, New Zealand. E-mail: fox@physics.otago.ac.nz
2Center for Biofilm Engineering, Department of Mathematical Sciences, Montana State University, Boze-
man, MT, USA. E-mail: parker@math.montana.edu

Standard Gibbs sampling applied to a multivariate normal distribution with a specified precision matrix is
equivalent in fundamental ways to the Gauss–Seidel iterative solution of linear equations in the precision
matrix. Specifically, the iteration operators, the conditions under which convergence occurs, and geomet-
ric convergence factors (and rates) are identical. These results hold for arbitrary matrix splittings from
classical iterative methods in numerical linear algebra giving easy access to mature results in that field,
including existing convergence results for antithetic-variable Gibbs sampling, REGS sampling, and gener-
alizations. Hence, efficient deterministic stationary relaxation schemes lead to efficient generalizations of
Gibbs sampling. The technique of polynomial acceleration that significantly improves the convergence rate
of an iterative solver derived from a symmetric matrix splitting may be applied to accelerate the equivalent
generalized Gibbs sampler. Identicality of error polynomials guarantees convergence of the inhomogeneous
Markov chain, while equality of convergence factors ensures that the optimal solver leads to the optimal
sampler. Numerical examples are presented, including a Chebyshev accelerated SSOR Gibbs sampler ap-
plied to a stylized demonstration of low-level Bayesian image reconstruction in a large 3-dimensional linear
inverse problem.

Keywords: Bayesian inference; Gaussian Markov random field; Gibbs sampling; matrix splitting;
multivariate normal distribution; non-stationary stochastic iteration; polynomial acceleration

1. Introduction

The Metropolis–Hastings algorithm for MCMC was introduced to main-stream statistics around
1990 (Robert and Casella [48]), though prior to that the Gibbs sampler provided a coherent
approach to investigating distributions with Markov random field structure (Turčin [60], Grenan-
der [32], Geman and Geman [25], Gelfand and Smith [23], Besag and Green [11], Sokal [58]).
The Gibbs sampler may be thought of as a particular Metropolis–Hastings algorithm that uses
the conditional distributions as proposal distributions, with acceptance probability always equal
to 1 (Geyer [26]).

In statistics, the Gibbs sampler is popular because of ease of implementation (see, e.g., Roberts
and Sahu [51]), when conditional distributions are available in the sense that samples may be
drawn from the full conditionals. However, the Gibbs sampler is not often presented as an ef-
ficient algorithm, particularly for massive models. In this work, we show that generalized and

1350-7265 © 2017 ISI/BS

http://www.bernoulli-society.org/index.php/publications/bernoulli-journal/bernoulli-journal
http://dx.doi.org/10.3150/16-BEJ863
mailto:fox@physics.otago.ac.nz
mailto:parker@math.montana.edu

3712 C. Fox and A. Parker

accelerated Gibbs samplers are contenders for the fastest sampling algorithms for normal target
distributions, because they are equivalent to the fastest algorithms for solving systems of linear
equations.

Almost all current MCMC algorithms, including Gibbs samplers, simulate a fixed transition
kernel that induces a homogeneous Markov chain that converges geometrically in distribution
to the desired target distribution. In this aspect, modern variants of the Metropolis–Hastings
algorithm are unchanged from the Metropolis algorithm as first implemented in the 1950s. The
adaptive Metropolis algorithm of Haario et al. [34] (see also Roberts and Rosenthal [50]) is an
exception, though it converges to a geometrically convergent Metropolis–Hastings algorithm that
bounds convergence behaviour.

We focus on the application of Gibbs sampling to drawing samples from a multivariate normal
distribution with a given covariance or precision matrix. Our concern is to develop generalized
Gibbs samplers with optimal geometric, or better than geometric, distributional convergence by
drawing on ideas in numerical computation, particularly the mature field of computational linear
algebra. We apply the matrix-splitting formalism to show that fixed-scan Gibbs sampling from
a multivariate normal is equivalent in fundamental ways to the stationary linear iterative solvers
applied to systems of equations in the precision matrix.

Stationary iterative solvers are now considered to be very slow precisely because of their
geometric rate of convergence, and are no longer used for large systems. However, they remain
a basic building block in the most efficient linear solvers. By establishing equivalence of error
polynomials, we provide a route whereby acceleration techniques from numerical linear algebra
may be applied to Gibbs sampling from normal distributions. The fastest solvers employ non-
stationary iterations, hence the equivalent generalized Gibbs sampler induces an inhomogeneous
Markov chain. Explicit calculation of the error polynomial guarantees convergence, while control
of the error polynomial gives optimal performance.

The adoption of the matrix splitting formalism gives the following practical benefits in the
context of fixed-scan Gibbs sampling from normal targets:

1. a one-to-one equivalence between generalized Gibbs samplers and classical linear iterative
solvers;

2. rates of convergence and error polynomials for the Markov chain induced by a generalized
Gibbs sampler;

3. acceleration of the Gibbs sampler to induce an inhomogeneous Markov chain that achieves
the optimal error polynomial, and hence has optimal convergence rate for expectations and
in distribution;

4. numerical estimates of convergence rate of the (accelerated) Gibbs sampler in a single chain
and a priori estimates of number of iterations to convergence;

5. access to preconditioning, whereby the sampling problem is transformed into an equivalent
problem for which the accelerated Gibbs sampler has improved convergence rate.

Some direct linear solvers have already been adapted to sampling from multivariate normal
distributions, with Rue [52] demonstrating the use of solvers based on Cholesky factorization to
allow computationally efficient sampling. This paper extends the connection to the iterative linear
solvers. Since iterative methods are the most efficient for massive linear systems, the associated
samplers will be the most efficient for very high dimensional normal targets.

Polynomial accelerated Gibbs sampling 3713

1.1. Context and overview of results

The Cholesky factorization is the conventional way to produce samples from a moderately sized
multivariate normal distribution (Rue [52], Rue and Held [53]), and is also the preferred method
for solving moderately sized linear systems. For large linear systems, iterative solvers are the
methods of choice due to their inexpensive cost per iteration, and small computer memory re-
quirements.

Gibbs samplers applied to normal distributions are essentially identical to stationary itera-
tive methods from numerical linear algebra. This connection was exploited by Adler [1], and
independently by Barone and Frigessi [8], who noted that the component-wise Gibbs sampler
is a stochastic version of the Gauss–Seidel linear solver, and accelerated the Gibbs sampler
by introducing a relaxation parameter to implement the stochastic version of the successive
over-relaxation (SOR) of Gauss–Seidel. This pairing was further analyzed by Goodman and
Sokal [30].

This equivalence is depicted in panels A and B of Figure 1. Panel B shows the contours of
a normal density π(x), and a sequence of coordinate-wise conditional samples taken by the
Gibbs sampler applied to π . Panel A shows the contours of the quadratic minus log(π(x)) and
the Gauss–Seidel sequence of coordinate optimizations,1 or, equivalently, solves of the normal
equations ∇ logπ(x) = 0. Note how in Gauss–Seidel the step sizes decrease towards conver-
gence, which is a tell-tale sign that convergence (in value) is geometric. In Section 4, we will
show that the iteration operator is identical to that of the Gibbs sampler in panel B, and hence
the Gibbs sampler also converges geometrically (in distribution). Slow convergence of these al-
gorithms is usually understood in terms of the same intuition; high correlations correspond to
long narrow contours, and lead to small steps in coordinate directions and many iterations being
required to move appreciably along the long axis of the target function.

Roberts and Sahu [51] considered forward then backward sweeps of coordinate-wise Gibbs
sampling, with relaxation parameter, to give a sampler they termed the REGS sampler. This
is a stochastic version of the symmetric-SOR (SSOR) iteration, which comprises forward then
backward sweeps of SOR.

The equality of iteration operators and error polynomials, for these pairs of fixed-scan Gibbs
samplers and iterative solvers, allows existing convergence results in numerical analysis texts
(for example, Axelsson [5], Golub and Van Loan [29], Nevanlinna [45], Saad [54], Young [64])
to be used to establish convergence results for the corresponding Gibbs sampler. Existing results
for rates of distributional convergence by fixed-sweep Gibbs samplers (Adler [1], Barone and
Frigessi [8], Liu et al. [39], Roberts and Sahu [51]) may be established this way.

The methods of Gauss–Seidel, SOR, and SSOR, give stationary linear iterations that were used
as linear solvers in the 1950s, and are now considered very slow. The corresponding fixed-scan
Gibbs samplers are slow for precisely the same reason. The last fifty years has seen an explosion
of theoretical results and algorithmic development that have made linear solvers faster and more
efficient, so that for large problems, stationary methods are used as preconditioners at best, while
the method of preconditioned conjugate gradients, GMRES, multigrid, or fast-multipole methods

1Gauss–Seidel optimization was rediscovered by Besag [10] as iterated conditional modes.

3714 C. Fox and A. Parker

Figure 1. The panels in the left column show the contours of a quadratic function 1
2 xT Ax − bT x in

two dimensions and the iteration paths for some common optimizers towards the minimizer μ = A−1b,
or equivalently the path of iterative linear solvers of Ax = b. The right column presents the iteration
paths of the samplers corresponding to each linear solver, along with the contours of the normal density
k exp{− 1

2 xT Ax + bT x}, where k is the normalizing constant. In all panels, the matrix A has eigenpairs

{(10, [1 1]T), (1, [1 −1]T)}. The Gauss–Seidel solver took 45 iterations to converge to μ (shown are the 90
coordinate steps; each iteration is a “sweep” of the two coordinate directions), the Chebyshev polynomial
accelerated SSOR required just 16 iterations to converge, while CG finds the minimizer in 2 iterations. For
each of the samplers, 10 iterations are shown (the 20 coordinate steps are shown for the Gibbs sampler).
The correspondence between these linear solvers/optimizers and samplers is treated in the text (CG in the
supplementary material [20]).

Polynomial accelerated Gibbs sampling 3715

are the current state-of-the-art for solving linear systems in a finite number of steps (Saad and
van der Vorst [55]).

Linear iterations derived from a symmetric splitting may be sped up by polynomial accelera-
tion, particularly Chebyshev acceleration that results in optimal error reduction amongst meth-
ods that have a fixed non-stationary iteration structure (Fox and Parker [21], Axelsson [5]). The
Chebyshev accelerated SSOR solver and corresponding Chebyshev accelerated SSOR sampler
(Fox and Parker [19]) are depicted in panels C and D of Figure 1. Both the solver and sampler
take steps that are more aligned with the long axis of the target, compared to the coordinate-wise
algorithms, and hence achieve faster convergence. However, the step size of Chebyshev-SSOR
solving still decreases towards convergence, and hence convergence for both solver and sampler
is still asymptotically geometric, albeit with much improved rate.

Fox and Parker [19] considered point-wise convergence of the mean and variance of a Gibbs
SSOR sampler accelerated by Chebyshev polynomials. In this paper, we prove convergence in
distribution for Gibbs samplers corresponding to any matrix splitting and accelerated by any
polynomial that is independent of the Gibbs iterations. We then apply a polynomial accelerated
sampler to solve a massive Bayesian linear inverse problem that is infeasible to solve using
conventional techniques.

Chebyshev acceleration requires estimates of the extreme eigenvalues of the error operator,
which we obtain via a conjugate-gradient (CG) algorithm at no significant computational cost
(Meurant [41]). The CG algorithm itself may be adapted to sample from normal distributions;
the CG solver and corresponding sampler, depicted in panels E and F of Figure 1, were analysed
by Parker and Fox [47] and is discussed in the supplementary material [20].

1.2. Structure of the paper

In Section 2, we review efficient methods for sampling from normal distributions, highlighting
Gibbs sampling in various algorithmic forms. Standard results for stationary iterative solvers are
presented in Section 3. Theorems in Section 4 establish equivalence of convergence and conver-
gence factors for iterative solvers and Gibbs samplers. Application of polynomial acceleration
methods to linear solvers and Gibbs sampling is given in Section 5, including explicit expres-
sions for convergence of the first and second moments of a polynomial accelerated sampler,
from which it follows that distributional convergence occurs with rate determined by the same
error polynomial. Numerical verification of convergence results is presented in Section 6.

2. Sampling from multivariate normal distributions

We consider the problem of sampling from an n-dimensional normal distribution N(μ,�) de-
fined by the mean n-vector μ, and the n × n symmetric and positive definite (SPD) covariance
matrix �. Since if z ∼ N(0,�) then z + μ ∼ N(μ,�), it often suffices to consider drawing sam-
ples from normal distributions with zero mean. An exception is when μ is defined implicitly,
which we discuss in Section 4.1.

In Bayesian formulations of inverse problems that use a GMRF as a prior distribution, typ-
ically the precision matrix A = �−1 is explicitly modeled and available (Rue and Held [53],

3716 C. Fox and A. Parker

Higdon [35]), perhaps as part of a hierarchical model (Banerjee et al. [6]). Typically then the
precision matrix (conditioned on hyperparameters) is large though sparse, if the neighborhoods
specifying conditional independence are small. We are particularly interested in this case, and
throughout the paper will focus on sampling from N(0,A−1) when A is sparse and large, or
when some other property makes operating by A easy, that is, one can evaluate Ax for any vec-
tor x.

Standard sampling methods for moderately sized normal distributions utilize the Cholesky fac-
torization (Rue [52], Rue and Held [53]) since it is fast, incurring approximately (1/3)n3 floating
point operations (flops) and is backwards stable (Watkins [62]). Samples can also be drawn using
the more expensive eigen-decomposition (Rue and Held [53]), that costs approximately (10/3)n3

flops, or more generally using mutually conjugate vectors (Fox [18], Parker and Fox [47]). For
stationary Gaussian random fields defined on the lattice, Fourier methods can lead to efficient
sampling for large problems (Gneiting et al. [28]).

Algorithm 1 shows the steps for sampling from N(0,�) using Cholesky factorization, when
the covariance matrix � is available (Neal [42], MacKay [40], Higdon [35]).

Algorithm 1: Cholesky sampling using a covariance matrix �

input : Covariance matrix �

output: y ∼ N(0,�)

Cholesky factor � = CCT ;
sample z ∼ N(0, I);
y = Cz;

When the precision matrix A is available, a sample y ∼ N(0,A−1) may be drawn using Algo-
rithm 2 given by Rue [52] (see also Rue and Held [53]).

Algorithm 2: Cholesky sampling using a precision matrix A
input : Precision matrix A
output: y ∼ N(0,A−1)

Cholesky factor A = BBT ;
sample z ∼ N(0, I);
solve BT y = z by back substitution;

The computational cost of Algorithm 2 depends on the bandwidth of A, that also bounds the
bandwidth of the Cholesky factor B. For a bandwidth b, calculation of the Cholesky factoriza-
tion requires O(b2n) flops, which provides savings over the full-bandwidth case when b � n/2
(Golub and Van Loan [29], Rue [52], Watkins [62]). For GMRF’s defined over 2-dimensional
domains, the use of a bandwidth reducing permutation often leads to substantial computational

Polynomial accelerated Gibbs sampling 3717

savings (Rue [52], Watkins [62]). In 3-dimensions and above, typically no permutation exists
that can significantly reduce the bandwidth below n2/3, hence the cost of sampling by Cholesky
factoring is at least O(n7/3) flops. Further, Cholesky factorizing requires that the precision ma-
trix and the Cholesky factor be stored in computer memory, which can be prohibitive for large
problems. In Section 6, we give an example of sampling from a large GMRF for which Cholesky
factorization is prohibitively expensive.

2.1. Gibbs sampling from a normal distribution

Iterative samplers, such as Gibbs, are an attractive option when drawing samples from high di-
mensional multivariate normal distributions due to their inexpensive cost per iteration and small
computer memory requirements (only vectors of size n need be stored). If the precision matrix
is sparse with O(n) non-zero elements, then, regardless of the bandwidth, iterative methods cost
only about 2n flops per iteration, which is comparable with sparse Cholesky factorizations. How-
ever, when the bandwidth is O(n), the cost of the Cholesky factorization is high at O(n3) flops,
while iterative methods maintain their inexpensive cost per iteration. Iterative methods are then
preferable when requiring significantly fewer than O(n2) iterations for adequate convergence. In
the examples presented in Section 6 we find that O(n) iterations give convergence to machine
precision, so the iterative methods are preferable for large problems.

2.1.1. Componentwise formulation

One of the simplest iterative sampling methods is the component-sweep Gibbs sampler (Ge-
man and Geman [25], Gelman et al. [24], Gilks et al. [27], Rue and Held [53]). Let y =
(y1, y2, . . . , yn)

T ∈ �n denote a vector in terms of its components, and let A be an n×n precision
matrix with elements {aij }. One sweep over all n components can be written as in Algorithm 3
(Barone and Frigessi [8]), showing that the algorithm can be implemented using vector and scalar
operations only, and storage or inversion of the precision matrix A is not required.

Algorithm 3: Component-sweep Gibbs sampling using a precision matrix A

input : Precision matrix A, initial state y(0) = (y
(0)
1 , y

(0)
2 , . . . , y

(0)
n)T , and maximum

iteration kmax

output: {y(0),y(1),y(2), . . . ,y(kmax)} where y(k) D→ N(0,A−1) as k → ∞
for k = 1,2, . . . , kmax do

for i = 1,2, . . . , n do
Sample z ∼ N(0,1);
y

(k)
i = z√

aii
− 1

aii
(
∑

j>i aij y
(k−1)
j − ∑

j<i aij y
(k)
j)

end
end

3718 C. Fox and A. Parker

The index k may be omitted (and with “=” interpreted as assignment) to give an algorithm
that can be evaluated in place, requiring minimal storage.

2.1.2. Matrix formulation

One iteration in Algorithm 3 consists of a sweep over all n components of y(k) in sequence. The
iteration can be written succinctly in the matrix form (Goodman and Sokal [30])

y(k+1) = −D−1Ly(k+1) − D−1LT y(k) + D−1/2z(k), (1)

where z(k) ∼ N(0, I), D = diag(A), and L is the strictly lower triangular part of A. This equation
makes clear that the computational cost of each sweep is about 2n2 flops, when A is dense, due
to multiplication by the triangular matrices L and LT , and O(n) flops when A is sparse.

Extending this formulation to sweeps over any other fixed sequence of coordinates is achieved
by putting PAPT in place of A for some permutation matrix P. The use of random sweep Gibbs
sampling has also been suggested (Amit and Grenander [4], Fishman [17], Liu et al. [39], Roberts
and Sahu [51]), though we do not consider that here.

2.1.3. Convergence

If the iterates y(k) in (1) converge in distribution to a distribution � which is independent of the
starting state y(0), then the sampler is convergent, and we write

y(k) D→ �.

It is well known that the iterates y(k) in the Gibbs sampler (1) converge in distribution geomet-
rically to N(0,A−1) = N(0,�) (Roberts and Sahu [51]). We consider geometric convergence in
detail in Section 4.

3. Linear stationary iterative methods as linear equation solvers

Our work draws heavily on existing results for stationary linear iterative methods for solving
linear systems. Here we briefly review the main results that we will use.

Consider a system of linear equations written as the matrix equation

Ax = b, (2)

where A is a given n×n nonsingular matrix and b is a given n-dimensional vector. The problem
is to find an n-dimensional vector x satisfying equation (2). Later we will consider the case
where A is symmetric positive definite (SPD) as holds for covariance and precision matrices
(Feller [16]).

Polynomial accelerated Gibbs sampling 3719

3.1. Matrix splitting form of stationary iterative algorithms

A common class of methods for solving (2) are the linear iterative methods based on a splitting
of A into A = M−N. The matrix splitting is the standard way of expressing and analyzing linear
iterative algorithms, following its introduction by Varga [61]. The system (2) is then transformed
to Mx = Nx + b or, if M is nonsingular, x = M−1Nx + M−1b. The iterative methods use this
equation to compute successively better approximations x(k) to the solution using the iteration
step

x(k+1) = M−1Nx(k) + M−1b = Gx(k) + g. (3)

We follow the standard terminology used for these methods (see, e.g., Axelsson [5], Golub
and Van Loan [29], Saad [54], Young [64]). Such methods are termed linear stationary iterative
methods (of the first degree); they are stationary2 because the iteration matrix G = M−1N and
the vector g = M−1b do not depend on k. The splitting is symmetric when both M and N are
symmetric matrices. The iteration, and splitting, is convergent if x(k) tends to a limit independent
of x(0), the limit being A−1b (see, e.g., Young [64], Theorem 5.2).

The iteration (3) is often written in the residual form so that convergence may be monitored in
terms of the norm of the residual vector, and emphasizes that M−1 is acting as an approximation
to A−1, as in Algorithm 4.

Algorithm 4: Stationary iterative solve of Ax = b

input : The splitting M, N of A, initial state x(0)

output: x(k) approximating x∗ = A−1b

k = 0
repeat

r(k) = b − Ax(k);
x(k+1) = x(k) + M−1r(k);
increment k;

until ‖r(k)‖ is sufficiently small;

In computational algorithms, it is important to note that the symbol M−1r is interpreted as
“solve the system Mu = r for u” rather than “form the inverse of M and multiply r by M−1”
since the latter is much more computationally expensive (about 2n3 flops (Watkins [62])). Thus,
the practicality of a splitting depends on the ease with which one can solve Mu = r for any
vector r.

2This use of stationary corresponds to the term homogeneous when referring to a Markov chain. It is not to be confused
with a stationary distribution that is invariant under the iteration. Later we will develop non-stationary iterations, inducing
a non-homogeneous Markov chain that will, however, preserve the target distribution at each iterate.

3720 C. Fox and A. Parker

3.1.1. The Gauss–Seidel algorithm

Many splittings of the matrix A use the terms in the expansion A = L + D + U where L is the
strictly lower triangular part of A, D is the diagonal of A, and U is the strictly upper triangular
part.

For example, choosing M = L + D (so N = −U) allows Mu = r to be solved by “forward
substitution” (at a cost of n2 flops when A is dense), and hence does not require inversion or
Gauss-elimination of M (which would cost 2/3n3 flops when A is dense). Using this splitting in
Algorithm 4 results in the Gauss–Seidel iterative algorithm. When A is symmetric, U = LT , and
the Gauss–Seidel iteration can be written as

x(k+1) = −D−1Lx(k+1) − D−1LT x(k) + D−1b. (4)

Just as we pointed out for the Gibbs sampler, variants of the Gauss–Seidel algorithm such as “red-
black” coordinate updates (Saad [54]), may be written in this form using a suitable permutation
matrix.

The component-wise form of the Gauss–Seidel algorithm can be written in “equation” form
just as the Gibbs sampler (1) was in Algorithm 3. The component-wise form emphasizes that
Gauss–Seidel can be implemented using vector and scalar operations only, and neither storage
nor inversion of the splitting is required.

3.2. Convergence

A fundamental theorem of linear stationary iterative methods states that the splitting A = M−N,
where M is nonsingular, is convergent (i.e., x(k) → A−1b for any x(0)) if and only if �(M−1N) <

1, where �(·) denotes the spectral radius of a matrix (Young [64], Theorem 3.5.1). This charac-
terization is often used as a definition (Axelsson [5], Golub and Van Loan [29], Saad [54]).

The error at step k is e(k+1) = x(k+1) − x∗, where x∗ = A−1b. It follows that

e(k+1) = (
M−1N

)ke(0) (5)

and hence the asymptotic average reduction in error per iteration is the multiplicative factor

lim
k→∞

(‖e(k+1)‖2

‖e(0)‖2

)1/k

= �
(
M−1N

)
(6)

(Axelsson [5], page 166). In numerical analysis, this is called the (asymptotic average) con-
vergence factor (Axelsson [5], Saad [54]). Later, we will show that this is exactly the same as
the quantity called the geometric convergence rate in the statistics literature (see, e.g., Robert
and Casella [49]), for the equivalent Gibbs sampler. We will use the term “convergence factor”
throughout this paper to avoid a clash of terminology, since in numerical analysis the rate of
convergence is minus the log of the convergence factor (see, e.g., Axelsson [5], page 166).

Polynomial accelerated Gibbs sampling 3721

Table 1. Common stationary linear solvers generated by splittings A = M − N, and conditions that guar-
antee convergence when A is SPD

Splitting M Convergence

Richardson (R) 1
ω I 0 < ω < 2

�(A)

Jacobi (J) D A strictly diagonally dominant
Gauss–Seidel (GS) D + L always
SOR 1

ω D + L 0 < ω < 2
SSOR ω

2−ω
MSORD−1MT

SOR 0 < ω < 2

3.3. Common matrix splittings

We now present the matrix splittings corresponding to some common stationary linear iterative
solvers, with details for the case where A is symmetric, as holds for precision or covariance
matrices.

We have seen that the Gauss–Seidel iteration uses the splitting MGS = L + D and NGS =
−LT . Gauss–Seidel is one of the simplest splittings and solvers, but is also quite slow. Other
splittings have been developed, though the speed of each method is often problem specific. Some
common splittings are shown in Table 1, listed with, roughly, greater speed downwards. Speed
of convergence in a numerical example is presented later in Section 6.

The method of successive over-relaxation (SOR) uses the splitting

MSOR = 1

ω
D + L and NSOR = 1 − ω

ω
D − LT (7)

in which ω is a relaxation parameter chosen with 0 < ω < 2. SOR with ω = 1 is Gauss–Seidel.
For optimal values of ω such that �(M−1

SORNSOR) < �(M−1
GSNGS), SOR is an accelerated Gauss–

Seidel iteration. Unfortunately, there is no closed form for the optimal value of ω for an arbitrary
matrix A, and the interval of values of ω which admits accelerated convergence can be quite
narrow (Young [64], Golub and Van Loan [29], Saad [54]).

The symmetric-SOR method (SSOR) incorporates both a forward and backward sweep of SOR
so that if A is symmetric then the splitting is symmetric (Golub and Van Loan [29], Saad [54]),

MSSOR = ω

2 − ω
MSORD−1MT

SOR and NSSOR = ω

2 − ω
NT

SORD−1NSOR. (8)

We will make use of symmetric splittings in conjunction with polynomial acceleration in Sec-
tion 5.

When the matrix A is dense, Gauss–Seidel and SOR cost about 3n2 flops per iteration, with
2n2 due to multiplication by the matrix A (in order to calculate the residual) and another n2 for
the forward substitution to solve Mu = r. Richardson incurs no cost to solve Mu = r, while a
solve with the diagonal Jacobi matrix incurs n flops. Iterative methods are particularly attractive
when the matrix A is sparse, since then the cost per iteration is only O(n) flops.

3722 C. Fox and A. Parker

Many theorems establish convergence of splittings by utilizing properties of A in specific
applications. Some general conditions that guarantee convergence when A is SPD are given in
the right column of Table 1 (Golub and Van Loan [29], Saad [54], Young [64]).

4. Equivalence of stationary linear solvers and Gibbs samplers

We first consider the equivalence between linear solvers and stochastic iterations in the case
where the starting state and noise are not necessarily normally distributed, then in Section 4.2 et
seq. we restrict consideration to normal distributions.

4.1. General noise

The striking similarity between the Gibbs sampler (1) and the Gauss–Seidel iteration (4) is no
coincidence. It is an example of a general equivalence between the stationary linear solver derived
from a splitting and the associated stochastic iteration used as a sampler. We will make explicit
the equivalence in the following theorems and corollary. In the first theorem we show that a
splitting is convergent (in the sense of stationary iterative solvers) if and only if the associated
stochastic iteration is convergent in distribution.

Theorem 1. Let A = M − N be a splitting with M invertible, and let π(·) be some fixed prob-
ability distribution with zero mean and fixed non-zero covariance. For any fixed vector b, and

random vectors c(k) i.i.d.∼ π , k = 0,1,2, . . . , the stationary linear iteration

x(k+1) = M−1Nx(k) + M−1b (9)

converges, with x(k) → A−1b as k → ∞ whatever the initial vector x(0), if and only if there exists
a distribution � such that the stochastic iteration

y(k+1) = M−1Ny(k) + M−1c(k) (10)

converges in distribution to �, with y(k) D→ � as k → ∞ whatever the initial state y(0).

Proof. If the linear iteration (9) converges, then �(M−1N) < 1 (Theorems 3–5.1 in Young [64]).

Hence, there exists a unique distribution � with y(k+1) D→ � (Theorem 2.3.18–4 of Duflo [15]),
which shows necessity. Conversely, if the linear solver does not converge to a limit independent
of x(0) for some b, that also holds for b = 0 and hence initializing the sampler with E[y(0)] =
x(0) yields E[y(k+1)] = (M−1N)kx(0) which does not converge to a value independent of y(0).
Sufficiency holds by the contrapositive. �

Convergence of the stochastic iteration (10) could also be established via the more general
theory of Diaconis and Freedman [14] that allows the iteration operator G = M−1N to be random,
with convergence in distribution guaranteed when G is contracting on average; see Diaconis and
Freedman [14] for details.

Polynomial accelerated Gibbs sampling 3723

The following theorem shows how to design the noise distribution π so that the limit distribu-
tion � has a desired mean μ and covariance � = A−1.

Theorem 2. Let A be SPD, A = M − N be a convergent splitting, μ a fixed vector, and π(·)
a fixed probability distribution with finite mean ν and non-zero covariance V. Consider the

stochastic iteration (10) where c(k) i.i.d.∼ π , k = 0,1,2, Then, whatever the starting state y(0),
the following are equivalent:

1. E[c(k)] = ν and Var(c(k)) = V = MT + N;
2. the iterates y(k) converge in distribution to some distribution � that has mean μ = A−1ν

and covariance matrix A−1; in particular E[y(k)] → μ and Var(y(k)) → A−1 as k → ∞.

Proof. Appendix A.1. �

Additionally, the mean and covariance converge geometrically, with convergence factors given
by the convergence factors for the linear iterative method, as established in the following corol-
lary.

Corollary 3. The first and second moments of iterates in the stochastic iteration in Theo-
rem 2 converge geometrically. Specifically, E(y(k)) → μ with convergence factor �(M−1N) and
Var(y(k)) = A−1 + Gk(Var(y(0)) − A−1)(Gk)T → A−1 with convergence factor �(M−1N)2.

Proof. Appendix A.1. �

Note that the matrix splitting has allowed an explicit construction of the noise covariance to
give a desired precision matrix of the target distribution. We see from Theorem 2 that the stochas-
tic iteration may be designed to converge to a distribution with non-zero target mean, essentially
by adding the deterministic iteration (9) to the stochastic iteration (10). This is particularly use-
ful when the mean is defined implicitly via solving a matrix equation. In cases where the mean
is known explicitly, the mean may be added after convergence of the stochastic iteration with
zero mean, giving an algorithm with faster convergence since the covariance matrix converges
with factor �(M−1N)2 < �(M−1N) (this was also noted by Barone et al. [9]). Convergence in
variance for non-normal targets was considered in Fox and Parker [19].

Using Theorems 1 and 2, and Corollary 3 we can draw on the vast literature in numerical linear
algebra on stationary linear iterative methods to find random iterations that are computationally
efficient and provably convergent in distribution with desired mean and covariance. In particular,
results in Amit and Grenander [4], Barone and Frigessi [8], Galli and Gao [22], Roberts and Sahu
[51], and Liu et al. [39] are special cases of the general theory of matrix splittings presented here.

4.2. Sampling from normal distributions using matrix splittings

We now restrict attention to the case of normal target distributions.

3724 C. Fox and A. Parker

Table 2. Some generalized Gibbs samplers for drawing from N(0,A−1) adapted from common stationary
linear solvers. Each Gibbs iteration requires sampling the noise vector c(k) ∼ N(0,MT + N)

Sampler M Var(c(k)) = MT + N

Richardson 1
ω I 2

ω I − A
Jacobi D 2D − A
Gibbs (Gauss–Seidel) D + L D
SOR 1

ω D + L 2−ω
ω D

SSOR (REGS) ω
2−ω

MSORD−1MT
SOR

ω
2−ω

(MSORD−1MT
SOR + NT

SORD−1NSOR)

Corollary 4. If in Theorem 2 we set π = N(ν,V), for some non-zero covariance matrix V,

then, whatever the starting state y(0), the following are equivalent: (i) V = MT + N; (ii) y(k) D→
N(μ,A−1) where μ = A−1ν.

Proof. Since π is normal, then � in Theorem 2 is normal. Since a normal distribution is suffi-
ciently described by its first two moments, the corollary follows. �

Using Corollary 4, we found normal sampling algorithms corresponding to some common sta-
tionary linear solvers. The results are given in Table 2. A sampler corresponding to a convergent
splitting is implemented in Algorithm 5.

Algorithm 5: Stationary sampler of N(0,A−1)

input : SPD precision matrix A, M and N defining a convergent splitting of A, number of
steps kmax, initial state y(0)

output: y(k) approximately distributed as N(0,A−1)

for k = 0, . . . , kmax do
sample c(k) ∼ N(0,MT + N);
y(k+1) = M−1(Ny(k) + c(k))

end

The assignment y(k+1) = M−1(Ny(k) + c(k)) in Algorithm 5 can be replaced by the slightly
more expensive steps r(k) = c(k) − Ay(k) and y(k+1) = y(k) + M−1r(k), which allows monitoring
of the residual, and emphasizes the equivalence with the stationary linear solver in Algorithm 4.
Even though convergence may not be diagnosed by a decreasing norm of the residual, lack of
convergence can be diagnosed when the residual diverges in magnitude. In practice, the effective
convergence factor for a sampler may be calculated by solving the linear system (2) (perhaps with
a random right-hand side) using the iterative solver derived from the splitting and monitoring the
decrease in error to evaluate the asymptotic average convergence factor using equation (6). By
Corollary 3, this estimates the convergence factor for the sampler.

Polynomial accelerated Gibbs sampling 3725

The practicality of a sampler derived from a convergent splitting depends on the ease with
which one can solve My = r for any r (as for the stationary linear solver) and also the ease of
drawing i.i.d. noise vectors from N(0,MT + N). Sampling the noise vector is simple when a
matrix square root, such as the Cholesky factorization, of MT + N is cheaply available. Thus,
a sampler is at least as expensive as the corresponding linear solver since, in addition to op-
erations in each iteration, the sampler must factor the n × n matrix Var(c(k)) = MT + N. For
the samplers listed in Table 2 it is interesting that the simpler the splitting, the more compli-
cated is the variance of the noise. Neither Richardson nor Jacobi splittings give useful sampling
algorithms since the difficulty of sampling the noise vector is no less than the original task of
sampling from N(0,A−1). The Gauss–Seidel splitting, giving the usual Gibbs sampler, is at a
kind of sweet spot, where solving equations in M is simple while the required noise variance is
diagonal, so posing a simple sampling problem.

The SOR stationary sampler uses the SOR splitting MSOR and NSOR in (7) for 0 < ω < 2
and the noise vector c(k) ∼ N(0,MT

SOR + NSOR = 2−ω
ω

D) (Table 2). This sampler was intro-
duced by Adler [1], rediscovered by Barone and Frigessi [8], and has been studied extensively
(Barone et al. [9], Galli and Gao [22], Liu et al. [39], Neal [43], Roberts and Sahu [51]).
For ω = 1, the SOR sampler is a Gibbs (Gauss–Seidel) sampler. For values of ω such that
�(M−1

SORNSOR) < �(M−1
GSNGS)), the SOR-sampler is an accelerated Gibbs sampler. As for the

linear solver, implementation of the Gibbs and SOR samplers by Algorithm 5 requires multipli-
cation by the upper triangular N and forward substitution with respect to M at a cost of 2n2 flops.
In addition, these samplers must take the square root of the diagonal matrix 2−ω

ω
D at a mere cost

of O(n) flops.
Implementation of an SSOR sampler instead of a Gibbs or SOR sampler is advantageous

since the Markov chain {y(k)} is reversible (Roberts and Sahu [51]). SSOR sampling uses the
symmetric-SOR splitting MSSOR and NSSOR in (8). The SSOR stationary sampler is most easily
implemented by forward and backward SOR sampling sweeps as in Algorithm 6, so the matrices
MSSOR and NSSOR need never be explicitly formed.

Algorithm 6: SSOR sampling from N(0,A−1)

input : The SOR splitting M,N of A, relaxation parameter ω, initial state y, kmax
output: y approximately distributed as N(0,A−1)

set γ = (2
ω

− 1)1/2;

for k = 1, . . . , kmax do
sample z ∼ N(0, I);
x := M−1(Ny + γ D1/2z);
sample z ∼ N(0, I);
y := M−T (NT x + γ D1/2z)

end

We first encountered restricted versions of Corollary 4 for normal distributions in Amit and
Grenander [4] and in Barone and Frigessi [8] where geometric convergence of the covariance

3726 C. Fox and A. Parker

matrices was established for the Gauss–Seidel and SOR splittings. These and the SSOR splitting
were investigated in Roberts and Sahu [51] (who labelled the sampler REGS).

Corollary 4 and Table 1 show that the Gibbs, SOR and SSOR samplers converge for any
SPD precision matrix A. This summarizes results in Barone and Frigessi [8], Galli and Gao
[22] and the deterministic sweeps investigated in Amit and Grenander [4], Roberts and Sahu
[51], Liu et al. [39]. Corollary 4 generalizes these results for any matrix splitting A = M − N
by guaranteeing convergence of the random iterates (10) to N(0,A−1) with convergence factor
�(M−1N) (or �(M−1N)2 if μ = 0).

5. Non-stationary iterative methods

5.1. Acceleration of linear solvers by polynomials

A common scheme in numerical linear algebra for accelerating a stationary method when M
and N are symmetric is through the use of polynomial preconditioners (Axelsson [5], Golub and
Van Loan [29], Saad [54]). Equation (5) shows that after k steps the error in the stationary method
is a kth order polynomial of the matrix I − G = M−1A. The idea behind polynomial acceleration
is to implicitly implement a different kth order polynomial Pk(M−1A) such that �(Pk(M−1A)) <

�((I−M−1A)k). The coefficients of Pk(M−1A) are functions of a set of acceleration parameters
{{αk}, {τk}}, introduced by the second order iteration

x(k+1) = (1 − αk)x(k−1) + αkx(k) + αkτkM−1(b − Ax(k)
)
. (11)

At the first step, α0 = 1 and x(1) = x(0) + τ0M−1(b − Ax(0)). Setting αk = τk = 1 for every k

yields a basic un-accelerated stationary method. The accelerated iteration in (11) is implemented
at a negligible increase in cost of O(n) flops per iteration (due to scalar-vector multiplication and
vector addition) over the corresponding stationary solver (3).

It can be shown (e.g., Axelsson [5]) that the (k + 1)st order polynomial Pk+1 generated recur-
sively by the second order non-stationary linear solver (11) is

Pk+1(λ) = (αk − αkτkλ)Pk(λ) + (1 − αk)Pk−1(λ). (12)

Hence, the k-step error e(k) = x(k) −A−1b may be written as e(k+1) = Pk(M−1A)e(0), which can
be compared directly to (5).

When estimates of the extreme eigenvalues λmin and λmax of I − G = M−1A are available
(λmin and λmax are real when M and N are symmetric), then the coefficients {τk,αk} can be
chosen to generate the scaled Chebyshev polynomials {Qk}, which give optimal error reduction
at every step. The Chebyshev acceleration parameters are

τk = 2

λmax + λmin
, βk =

(
1

τk

− βk−1

(
λmax − λmin

4

)2)−1

, αk = βk

τk

, (13)

where α0 = 1 and β0 = τ0 (Axelsson [5]). Note that these parameters are independent of the
iterates {x(k)}. Since M is required to be symmetric, applying Chebyshev acceleration to SSOR
is a common pairing; its effectiveness as a linear solver is shown later in Table 3.

Polynomial accelerated Gibbs sampling 3727

Whereas the stationary methods converge with asymptotic average convergence factor
�(M−1N), the convergence factor for the Chebyshev accelerated method depends on
cond(M−1A) = λmax/λmin. Specifically the scaled Chebyshev polynomial Qk(λ) minimizes
maxλ∈[λmin,λmax] Pk(λ) over all kth order polynomials Pk , with

max
λ∈[λmin,λmax]

∣∣Qk(λ)
∣∣ = 2σk

1 + σ 2k
. (14)

Since the error at the kth step of a Chebyshev accelerated linear solver is e(k+1) = Qk(λ)e(0),
then the asymptotic convergence factor is bounded above by

σ = 1 − √
λmin/λmax

1 + √
λmin/λmax

(15)

(Axelsson [5], page 181). Since σ ∈ [0,1), the polynomial accelerated scheme is guaranteed to
converge even if the original splitting was not convergent. Further, the convergence factor of the
stationary iterative solver is bounded below by ρ = 1−λmin/λmax

1+λmin/λmax
(see, e.g., Axelsson [5], Theo-

rem 5.9). Since σ < ρ (except when λmin = λmax in which case σ = 0), polynomial acceleration
always reduces the convergence factor, so justifies the term acceleration. The Chebyshev accel-
erated iteration (11) is amenable to preconditioning that reduces the condition number, and hence
reduces σ , such as incomplete Cholesky factorization or graphical methods (Axelsson [5], Saad
[54]). Axelsson also shows that after

k∗ =
⌈

ln(ε/2)

lnσ

⌉
(16)

iterations of the Chebyshev solver, the error reduction is ‖e(k∗)‖Aν /‖e(0)‖Aν ≤ ε for some real
number ν and any 0 < ε < 1 (Axelsson [5], equation (5.32)).

5.2. Acceleration of Gibbs sampling by polynomials

Any acceleration scheme devised for a stationary linear solver is a candidate for accelerating
convergence of a Gibbs sampler. For example, consider the second order stochastic iteration

y(k+1) = (1 − αk)y(k−1) + αky(k) + αkτkM−1(c(k) − Ay(k)
)

(17)

analogous to the linear solver in (11) but now the vector b has been replaced by a random vector
c(k). The equivalence between polynomial accelerated linear solvers and polynomial accelerated
samplers is made clear in the next three theorems.

Theorem 5. Let A be SPD and A = M − N be a symmetric splitting. Consider a set of indepen-
dent noise vectors {c(k)} with moments

E
(
c(k)

) = ν and Var
(
c(k)

) = akM + bkN

3728 C. Fox and A. Parker

such that ak := 2−τk

τk
+ (bk − 1)(1

τk
+ 1

κk
− 1), bk := 2(1−αk)

αk
(
κk

τk
)+ 1, κk+1 := αkτk + (1 −αk)κk ,

and κ1 = τ0. If the polynomial accelerated linear solver (11) converges to A−1b with a set of
parameters {{αk}, {τk}} that are independent of {x(k)}, then the polynomial accelerated stochastic
iteration (17) converges in distribution to a distribution � with mean A−1ν and covariance
matrix A−1. Furthermore, if the {c(k)} are normal, then

y(k) D→ N
(
μ = A−1ν,A−1).

Proof. Appendix A.2. �

Given a second order linear solver (11) that converges, Theorem 5 makes clear how to con-
struct a second order sampler (17) that is guaranteed to converge. The next corollary shows that
the polynomial Pk that acts on the linear solver error x(k) −A−1b is the same polynomial that acts
on the errors in the first and second moments of the sampler, E(y(k))−A−1ν and Var(y(k))−A−1

respectively. In other words, the convergence factors for a polynomial accelerated solver and
sampler are the same.

Corollary 6. Suppose that the polynomial accelerated linear solver (11) converges with asymp-
totic convergence factor σ = (limk→∞ maxλ |Pk(λ)|)1/k , where Pk is the kth order polynomial
recursively generated by (12). Then under the conditions of Theorem 5,

E
(
y(k)

) − A−1ν = Pk

(
M−1A

)(
E
(
y(0)

) − A−1ν
) → 0

with asymptotic convergence factor σ , and

Var
(
y(k)

) − A−1 = Pk

(
M−1A

)(
Var

(
y(0) − A−1))(Pk

(
M−1A

))T → 0

with asymptotic convergence factor σ 2.

Proof. Appendix A.2. �

While Corollary 6 treats convergence in L2-norm, or, equivalently, the spectral radius of the
error in covariance matrices, standard results in matrix analysis such as Corollary 5.6.13 in Horn
and Johnson [36] then imply that convergence in covariance matrices also occurs elementwise,
and with the same convergence factor.

Corollary 6 allows a direct comparison of the convergence factor for a polynomial accelerated
sampler (σ , or σ 2 if μ = 0) to the convergence factor given previously for the corresponding
un-accelerated stationary sampler (�(M−1N), or �(M−1N)2 if μ = 0). In particular, given a sec-
ond order linear solver with accelerated convergence compared to the corresponding stationary
iteration, the corollary guarantees that the second order Gibbs sampler (17) will converge faster
than the stationary Gibbs sampler (10).

The explicit forms for error in mean and covariance given in Corollary 6 may be used to give
explicit forms for distributional convergence of k-step distributions to the target distribution. An
example is the following:

Polynomial accelerated Gibbs sampling 3729

Corollary 7. Consider the sampler in Corollary 6, initialized at y(0) ∼ π(0) = N(μ(0),�(0)),
with possibly �(0) = 0, and targeting π = N(μ,�). Denote the k-step distribution π(k) =
N(μ(k),�(k)), that is, E(y(k)) = μ(k) and Var(y(k)) = �(k). Then the χ2-divergence of π

from π(k)

χ2(π(k)‖π) =
∫ [π(k)(y) − π(y)]2

π(y)
dy

converges to 0 as k → ∞ with asymptotic average convergence factor σ 2.

Proof.

χ2(π(k)‖π) = |W|−1/2|2I − W|−1/2 exp(S) − 1 (18)

in which | · | denotes determinant, W = �(k)�−1 = I + Pk(�
(0) − �)P T

k �−1 → I, and S =
(μ(k) −μ)T (2� −�(k))−1(μ(k) −μ) = (μ(0) −μ)T Pk�

−1(2I − W)−1P T
k (μ(0) −μ) → 0, both

with asymptotic convergence factor σ 2. We have omitted the argument of the error polynomial
Pk for brevity. The result follows.

Corollary 7 may be used to show that expectations of square π -integrable functions also con-
verge with asymptotic convergence factor σ 2, for any y(0) and in π -expectation over y(0), estab-
lishing distributional convergence with the same asymptotic convergence factor; see Appendix A
of Roberts and Sahu [51] for the latter calculation in the setting of stationary iterations.3 �

Just as Chebyshev polynomials are guaranteed to accelerate linear solvers, Corollaries 6 and
7 assure that Chebyshev polynomials can also accelerate a Gibbs sampler. Using Theorem 5, we
derived the Chebyshev accelerated SSOR sampler (Fox and Parker [19]) by iteratively updating
parameters via (13) and then generating a sampler via (17). Explicit implementation details of the
Chebyshev accelerated sampler are provided in the supplementary material [20]. The polynomial
accelerated sampler is implemented at a negligible increase in cost of O(n) flops per iteration
over the cost (4n2 flops) of the SSOR sampler (Algorithm 6). The asymptotic convergence factor
is given by the next Corollary, which follows from Corollary 6 and equation (15).

Corollary 8. If the Chebyshev accelerated linear solver converges, then the mean E(y(k)) of
the corresponding Chebyshev accelerated stochastic iteration (17) converges to μ = A−1ν with

asymptotic convergence factor (
1−√

λmin/λmax
1+√

λmin/λmax
) and the covariance matrix Var(y(k)) converges to

A−1 with asymptotic convergence factor (
1−√

λmin/λmax
1+√

λmin/λmax
)2.

Corollary 8 and (14) show that a Chebyshev accelerated normal sampler is guaranteed to
converge faster than any other acceleration scheme that has the parameters {{τk,αk}} independent
of the iterates {y(k)}. This result shows that the preconditioning ideas presented in Section 5.1 to
reduce cond(M−1A) = λmax/λmin can also be used to speed up Chebyshev accelerated samplers.
We do not investigate such preconditioning here.

3Note that (18) differs from equation (15) in Roberts and Sahu [51] that appears to be incorrect.

3730 C. Fox and A. Parker

Corollary 8 and equation (16) suggest that, for any ε > 0, after k∗ iterations the Chebyshev
error reduction for the mean is smaller than ε. But even sooner, after k∗∗ = k∗/2 iterations, the
Chebyshev error reduction for the variance is predicted to be smaller than ε (Fox and Parker
[19]).

6. Computed examples

The iterative sampling algorithms we have investigated are designed for problems where operat-
ing by the precision matrix is cheap. A common such case is when the precision matrix is sparse,
as occurs when modeling a GMRF with a local neighbourhood structure. Then, typically, the
precision matrix has O(n) non-zero elements, so direct matrix-vector multiplication has O(n)

cost. We give two examples of sampling using sparse precision matrices: first, we present a small
n = 100 example where complete diagnostics can be computed for evaluating the quality of con-
vergence; and second, we present a n = 106 Bayesian linear inverse problem that demonstrates
computational feasibility for large problems. The samplers are initialized with y(0) = 0 in both
examples.

6.1. A 10 × 10 lattice example (n = 100)

A first order locally linear sparse precision matrix A, considered by Higdon [35], Rue and
Held [53], is

[A]ij = 10−4δij +

⎧⎪⎨
⎪⎩

ni, if i = j,

−1, if i = j and ‖si − sj‖2 ≤ 1,

0 otherwise.

The discrete points {si} are on a regular 10 × 10 lattice (n = 100) over the two dimensional
domain S = [1,10] × [1,10]. The scalar ni is the number of points neighbouring si , i.e., with
distance 1 from si . The resulting matrix A is 100 × 100, ‖A‖2 = 7.8 and ‖� = A−1‖2 = 104.
The sparsity of A is shown in the left panel of Figure 2. Although n2 = 104, the number of non-
zero elements of A is O(n) (460 in this example), hence each iteration of an iterative method
costs O(n) flops. Since the bandwidth of A is O(n1/2) (b = 11 in this example), a Cholesky
factorization costs O(b2n) =O(n2) flops.

To provide a comparison between linear solvers and samplers, we solved the system Ax = b
using linear solvers with different matrix splittings (Table 1), where b is fixed and non-zero,
all initialized with x(0) = 0. The results are given in Table 3. The Richardson method does not
converge (DNC) since the spectral radius of the iteration operator is greater than 1. The SOR
iteration was run at the optimal relaxation parameter value of ω = 1.9852. SSOR was run at
its optimal value of ω = 1.6641. Chebyshev accelerated SSOR (Cheby-SSOR), CG accelerated
SSOR (CG-SSOR) (both run with ω = 1.6641) and CG utilize a different implicit operator for
each iteration, and so the spectral radius given in these cases is the geometric mean spectral radius
of these operators (estimated using (5)). Even for this small example, Chebyshev acceleration

Polynomial accelerated Gibbs sampling 3731

Figure 2. Left panel: Location of non-zero elements in the 100 × 100 precision matrix A. Right panel:

Relative error in covariance ‖A−1 − S(k)
y ‖2/‖A−1‖2 versus number of floating point operations (flops) for

a sampler implemented with SSOR and ω = 1, SSOR with optimal relaxation ω = 1.6641, and SSOR with
Chebyshev acceleration. When generating a single sample using Cholesky factoring, the green horizontal
line indicates the fixed relative error in covariance, and the green vertical line indicates the fixed cost.

reduces the computational effort required for convergence by about two orders of magnitude,
while CG acceleration reduces work by nearly two more orders of magnitude.

We investigated the following Gibbs samplers: SOR, SSOR, and the Chebyshev accelerated
SSOR. These samplers are guaranteed to converge since the corresponding solver converges

Table 3. The number of iterations and the total number of floating point operations performed by some
common stationary and accelerated linear solvers, and the Cholesky factorization, used to solve Ax = b for
fixed non-zero b. Each solver was run until the residual became sufficiently small, ‖b − Ax(k)‖2 < 10−8.
Details in Section 6

Solver ω �(M−1N) Number of iterations Flops

Richardson 1 6.8 DNC –
Jacobi – 0.999972 4.01 × 105 5.69 × 107

Gauss–Seidel – 0.999944 2.44 × 105 4.34 × 108

SSOR 1.6641 0.999724 6.7 × 104 2.39 × 108

SOR 1.9852 0.985210 1655 2.95 × 106

Cheby-SSOR 1 0.9786 958 3.41 × 106

Cheby-SSOR 1.6641 0.9673 622 2.21 × 106

CG – 0.6375 48 9.22 × 104

CG-SSOR 1.6641 0.4471 29 6.66 × 104

Cholesky – – – 1.35 × 104

3732 C. Fox and A. Parker

(Theorems 1 and 5). Since the convergence factor for a sampler is equal to the convergence
factor for the corresponding solver (Corollaries 3 and 6) then Gibbs samplers implemented with
any of the matrix splittings in Table 1 exhibit the same convergence behavior as shown for the
linear solvers in Table 3.

To numerically assess sampler convergence, the empirical sample covariance S(k)
y ≈ Var(y(k))

was calculated for each iteration k using 104 chains of samples. Convergence of Var(y(k)) →
A−1 is depicted in the right panel of Figure 2 in terms of the relative error in covariance, ‖A−1 −
S(k)

y ‖2/‖A−1‖2, as a function of the flop count. Each sampler iteration costs about 2.24 × 103

flops, so the figure shows the results from just over 220 sampler iterations. Since the sample
means were uniformly close to zero, error in the mean is not shown.

The benchmark for evaluation of convergence of the iterative samplers in finite precision is
the Cholesky factorization. The cost to generate a single sample by Cholesky factoring is about
1.34 × 104 flops. This cost is depicted by the green vertical line in the right panel of Figure 2.
The relative error in covariance for a Cholesky sample, estimated empirically using 104 chains
as for the iterative samplers, is depicted as the green horizontal line in the right panel of Fig-
ure 2. The figure shows that the Cholesky sample covariance S(k)

y does not converge precisely to
A−1 due to both the variability of the empirical sample covariance (calculated from 104 chains),
and the effect of finite precision. To briefly explain the latter, when calculated in finite pre-
cision, the Cholesky factorization is A = CCT + E where E is the finite precision error with

‖E‖2 < 2n3/2ε

1−2n3/2ε
‖A‖2 + O(ε2) and ε is machine precision (Watkins [62]). Figure 2 shows that

the iterative sample covariances become more precise than Cholesky with more computing time
(indicated by the relative error in covariance for the iterative samplers eventually falling below
the green horizontal line). Hence, for this example, the iterative samplers produce better samples
than a Cholesky sampler.

The slow geometric convergence of the unaccelerated SSOR (REGS) samples y(k) to
N(0,A−1) is clear in Figure 2. Even after 5 × 105 flops (k = 220 iterations), the sampler is
not even close to convergence. This is not surprising given the large number of iterations nec-
essary for the same stationary method to converge to a solution of Ax = b (see Table 3). The
accelerated convergence of the Chebyshev samplers, suggested by the faster convergence of the
corresponding linear solvers in Table 3, is also evident in Figure 2, with convergence after only
1.70 × 105 flops (76 iterations) for the Chebyshev accelerated SSOR sampler with optimal re-
laxation parameter ω = 1.6641, and the somewhat slower convergence at 2.37 × 105 flops (106
iterations) when ω = 1.

We monitored convergence to the normal target distribution N(0,A−1) in this example by
showing convergence in L2-norm of the sample covariance to A−1, ‖A−1 − S(k)

y ‖2. Corollary 6
shows that L2 convergence of covariance occurs with k-step factor bounded by ‖Pk(M−1N)‖2.
As shown in Corollary 7, this same term bounds the asymptotic rate of distributional conver-
gence. Hence, the plots of empirical L2 convergence of covariance in Figure 2 may also be
interpreted as numerical estimates for the distributional convergence of the k-step distributions
to the target distribution.

Polynomial accelerated Gibbs sampling 3733

6.2. A 100 × 100 × 100 (n = 106) linear inverse problem in biofilm imaging

We now perform accelerated sampling from a GMRF in 3-dimensions, as a stylized example of
estimating a voxel image of a biofilm from confocal scanning laser microscope (CSLM) data
(Lewandowski and Beyenal [37]). This large example illustrates the feasibility of Chebyshev
accelerated sampling in large problems for which sampling by Cholesky factorization of the
precision matrix is too computationally and memory intensive to be performed on a standard
desktop computer.

We consider the problem of reconstructing a 100 × 100 × 100 voxel image x of a bacte-
rial biofilm, that is, a community of bacteria aggregated together as slime, given a subsampled
100 × 100 × 10 CSLM data set y. For this exercise, we synthesized a “true” image xt of a 90 μm
tall ellipsoidal column of biofilm attached to a surface, taking value 10 inside the biofilm column,
and 0 outside, in arbitrary units. Similar geometry has been observed experimentally for Pseu-
domonas aeruginosa biofilms (Swogger and Pitts [59]), and is also predicted by mathematical
models of biofilm growth (Alpkvist and Klapper [2]). CSLM captures a set of planar “images”
at different distances from the bottom of the biofilm where it is attached to a surface. In nature
biofilms attach to any surface over which water flows, for example, human teeth and creek bot-
toms. Each horizontal planar image in this example is 100 × 100 pixels; the distance between
pixels in each plane is typically about 1 μm, with the exact spatial resolution set by the micro-
scope user. The vertical distance between planar slices in a CSLM image is typically an order
of magnitude larger than the horizontal distance between pixels; for this example, the vertical
distance between CSLM planes is 10 μm.

Given the “true” image xt, we generated synthetic 100 × 100 × 10 CSLM data by

y = Fxt + ε,

where the 105 × 106 matrix F arithmetically averages over 10 pixels in the vertical dimension
of x, to approximate the point spread function (PSF) of CSLM (Sheppard and Shotton [56]),
and ε ∼ N(0,P−1 = I). The data is displayed in the left panel of Figure 3 as layers of pixels, or
“slices”, located at the centre of sensitivity of the CSLM, that is, the centre of the PSF. Thus, the
likelihood we consider is π(y|x) = N(Fx,P−1).

To encapsulate prior knowledge that the bacteria in the biofilm aggregate together, we model
x by the GMRF x ∼ N(0,Q−1

R) where the precision matrix QR models local smoothness of the
density of the biofilm and background. We construct the matrix QR as a sparse inverse of the
dense covariance matrix corresponding to the exponential covariance function. This construction
uses the relationship between stationary Gaussian random fields and partial differential equations
(PDEs) that was noted by Whittle [63] for the Matérn (or Whittle–Matérn (Guttorp and Gneiting
[33])) class of covariance functions, that was also exploited by Cui et al. [13] and Lindgren et
al. [38]. Rather than stating the PDE, we find it more convenient to work with the equivalent
variational form, in this case (the square of)

Q(x) =
∫
D

(
R

4
|∇x|2 + 1

4R
x2

)
dv +

∫
∂D

x2

2
ds,

where x is a continuous stochastic field, dv is the volume element in the domain D and ds is
the surface element on the boundary ∂D. This form has Euler–Lagrange equations being the

3734 C. Fox and A. Parker

Figure 3. The left panel depicts a 100 × 100 × 10 pixelated confocal scanning microscope image, y of
a simulated ellipsoidal column of a bacterial biofilm; the distance between horizontal pixels is 1 μm, the
distance between vertical pixels is 10 μm. The right panel shows a surface rendering of a sample from the
n = 106 dimensional multivariate normal posterior distribution conditioned on hyperparameters.

Helmholtz operator with (local) Robin boundary conditions x + R ∂x
∂n

= 0 on ∂D, induced by

the x2

2 term. In our example, we apply the Hessian of this form twice, which can be thought
of as squaring the Helmholtz operator. When the quadratic form is written in the operator form
Q(x) = xT Hx, where H is the Hessian, the resulting Gaussian random field has density

π(x) ∝ exp
{−xT H 2x

}
. (19)

We chose this operator because the discretized precision matrix is sparse, while the covariance
function (after scaling) is close to exp{−r/R}, having length-scale R.

The GMRF over the discrete field x is then defined using FEM (finite element method) dis-
cretization; we used cubic-elements between nodes at voxel centres in the cubic domain, and
tri-linear interpolation from nodal values within each element. To verify this construction, we
show in Figure 4 contours of the resulting covariance function, between the pixel at the centre
of the normalised cubic domain [0,1]3 and all other pixels, for length scale R = 1/4. The con-
tours are logarithmically spaced in value, hence the evenly spaced spherical contours show that
the covariance indeed has exponential dependence with distance. The contours look correct at
the boundaries, indicating that the local Robin boundary conditions4 give the desired covariance
function throughout the domain. In contrast, Dirichlet conditions would make the cubic boundary
a contour, while Neumann conditions as used by Lindgren et al. [38] would make contours per-
pendicular to the cubic boundary; neither of those pure boundary conditions produce the desired
covariance function.

4Local boundary conditions are approximate but preserve sparseness. The exact boundary conditions are given by the
boundary integral equation for the exterior Helmholtz operator, resulting in a dense block in H that is inconvenient for
computation (Neumayer [44]).

Polynomial accelerated Gibbs sampling 3735

Figure 4. Contours of the effective covariance function centred on the cubic domain, logarithmically
spaced in value.

In the deterministic setting, this image recovery problem is an example of a linear inverse
problem. In the Bayesian setting, we may write the hierarchical model in the general form

y|x, θ ∼ N
(
Fx,P−1

θ

)
, (20)

x|θ ∼ N
(
μ,Q−1

θ

)
, (21)

θ ∼ π(θ), (22)

where θ is a vector of hyperparameters. This stochastic model occurs in many settings (see, e.g.,
Simpson et al. [57], Rue and Held [53]) with y being observed data, x is a latent field, and θ is
a vector of hyperparameters that parameterize the precision matrices P and Q. The (hyper)prior
π(θ) models uncertainty in covariance of the two random fields.

There are several options for performing sample-based inference on the model (20), (21),
(22). Most direct is forming the posterior distribution π(x, θ |y) via Bayes’ rule and implement-
ing Markov chain Monte Carlo (MCMC) sampling, typically employing Metropolis–Hastings
dynamics with a random walk proposal on x and θ . Such an algorithm can be very slow due to
high correlations within the latent field x, and between the latent field and hyperparameters θ .
More efficient algorithms block the latent field, noting that the distribution over x given every-
thing else is a multivariate normal, and hence can be sampled efficiently as we have discussed
in this paper. Higdon [35] and Bardsley [7] utilized this structure, along with conjugate hyper-
priors on the components of θ , to demonstrate a Gibbs sampler that cycled through sampling
from the conditional distributions for x and components of θ . When the normalizing constant
for π(x, θ |y) is available, up to a multiplicative constant independent of state, a more efficient
algorithm is the one block algorithm (Rue and Held [53], Section 4.1.2) in which a candidate
θ ′ is drawn from a random walk proposal, then a draw x′ ∼ π(x′|y, θ ′), with the joint proposal
(θ ′,x′) accepted with the standard Metropolis–Hastings probability. The resulting transition ker-
nel in θ is in detailed balance with the distribution over θ |y, and hence can improve efficiency

3736 C. Fox and A. Parker

dramatically. A further improvement is the marginal algorithm in which MCMC is performed
directly on π(θ |y) as indicated by Simpson et al. [57], with subsequent independent sampling
x ∼ π(x|y, θ) to facilitate Monte Carlo evaluation of statistics. In each of these schemes, com-
putational cost is dominated by the cost of drawing samples from the large multivariate normal
x ∼ π(x|y, θ). We now demonstrate that sampling step for this synthetic example.

In our example, the distribution over the 100 × 100 × 100 image x, conditioned on everything
else, is the multivariate normal

π(x|y, θ = R) = N
(
x;μ = A−1FT Py,� = A−1) (23)

with precision matrix A = FT PF + QR (cf. Calvetti and Somersalo [12], Higdon [35]). For this
calculation, we used the same covariance matrix as shown above, so R = 1/4 in units of the width
of the domain, though for sample-based inference one would use samples from the distribution
over R|y. The right panel of Figure 3 depicts a reconstructed surface derived from a sample from
the conditional distribution in (23) using the Chebyshev polynomial accelerated SSOR sampler.
The sampler was initialized with the precision matrix A, E(c(k)) = FT Py for all k, and relaxation
parameter ω = 1. The contour is at value 6, after smoothing over 3 × 3 × 3 voxels, displaying a
sample surface that separates regions for which the average over 3 × 3 × 3 voxel blocks is less
than 6 (outside surface) and greater than 6 (inside surface). As can be seen, the surface makes an
informative reconstruction of the ellipsoidal phantom.

Using CG, estimates of the extreme eigenvalue of M−1
SSORA were λ̂min = 4.38 × 10−6 and

λ̂max = 1 − 1.36 × 10−8. By Corollary 6, the asymptotic convergence factors for the Chebyshev
sampler are σ ≈ 0.9958 for the mean and σ 2 = 0.9917 for the covariance matrix. Using this
information, equation (16) predicts the number of sampler iterations until convergence. After
k∗ = 4566 iterations of the Chebyshev accelerated sampler, it is predicted that the mean error is
reduced by ε = 10−8; that is∥∥μ − E

(
y(k∗))∥∥

2 ≈ 10−8
∥∥μ − E

(
y(0)

)∥∥
2.

But even sooner, after only k∗∗ = k∗/2 = 2283 iterations, it is predicted that the covariance error
is ∥∥A−1 − Var

(
y(k∗∗))∥∥ ≈ 10−8

∥∥A−1 − Var
(
y(0)

)∥∥.

Contrast these Chebyshev polynomial convergence results to the performance of the non-
accelerated stationary SSOR sampler that has convergence factors �(M−1N) ≈ 1 − λ̂min =
1 − 4.38 × 10−6 for the mean error, and ρ(M−1N)2 = 1 − 8.76 × 10−6 for covariance error.
These convergence factors suggest that after running the non-accelerated SSOR Gibbs sampler
for only 4566 iterations, the covariance error will be reduced to only �(M−1N)2·4566 ≈ 0.96 of
the original error; 1.9 × 106 iterations are required for a 10−8 reduction.

The cost difference between the Cholesky factorization and an iterative sampler in this ex-
ample is dramatic. After finding a machine with the necessary n2 memory requirements, the
Cholesky factorization would cost about b2n = 1016 flops (since the bandwidth of the precision
matrix A is about b = 105). Since the number of non-zero elements of A is 3.3×108, an iterative
sampler costs about 6.6 × 108 flops per iteration, much less than n2. The sample in Figure 3 was
generated by kmax = 5 × 103 iterations of the Chebyshev accelerated SSOR sampler, at a total
cost of 3.3 × 1012 flops, which is about 104 times faster than Cholesky factoring.

Polynomial accelerated Gibbs sampling 3737

7. Discussion

This work began, in part, with a curiosity about the convergence of the sequence of covariance
matrices in Gibbs sampling applied to multivariate normal distributions, as studied by Liu et al.
[39]. Convergence of that sequence indicates that the algorithm is implicitly implementing some
factorization of the target covariance or precision matrix. Which one?

The answer was given by Goodman and Sokal [30], Amit and Grenander [4], Barone and
Frigessi [8], and Galli and Gao [22], that the standard component-sweep Gibbs sampler cor-
responds to the classical Gauss–Seidel iterative method. That result is given in Section 4.2,
generalized to arbitrary matrix splittings, showing that any matrix splitting used to generate a
deterministic relaxation also induces a stochastic relaxation that is a generalized Gibbs sampler;
the linear iterative relaxation and the stochastic relaxation share exactly the same iteration oper-
ator, conditions for convergence, and convergence factor, which may be summarized by noting
that they share exactly the same error polynomial.

Equivalence of error polynomials is important because they are the central object in designing
accelerated solvers including the multigrid, Krylov space, and parallel algorithms. We demon-
strated that equivalence explicitly for polynomial acceleration, the basic non-stationary accelera-
tion scheme for linear solvers, showing that this control of the error polynomial can be applied to
Gibbs sampling from normal distributions. It follows that, just as for linear solvers, Chebyshev-
polynomial accelerated samplers have a smaller average asymptotic convergence factor than their
un-accelerated stationary counterparts.

The equivalences noted above are strictly limited to the case of normal target distributions.
We are also concerned with continuous non-normal target distributions and whether acceleration
of the normal case can usefully inform acceleration of sampling from non-normal distributions.
Convergence of the unaccelerated, stationary, iteration applied to bounded perturbations of a
normal distribution was established by Amit [3], though carrying over convergence rates proved
more problematic.

There are several possibilities for extending the acceleration techniques to non-normal distri-
butions. A straightforward generalization is to apply Gibbs sampling to the non-normal target,
assuming the required conditional distributions are easy to sample from, though using the direc-
tions determined by the accelerated algorithm. Simply applying the accelerated algorithm to the
non-normal distribution does not lead to optimal acceleration, as demonstrated by Goodman and
Sokal [30].

A second route, that looks more promising to us, is to exploit the connection between Gibbs
samplers and linear iterative methods that are often viewed as local solvers for non-linear prob-
lems, or equivalently, optimizers for local quadratic approximations to non-quadratic functions.
Since a local quadratic approximation to logπ is a local Gaussian approximation to π , the it-
erations developed here may be used to target this local approximation and hence provide local
proposals in an MCMC. We imagine an algorithm along the lines of the trust-region methods
from optimization in which the local quadratic (Gaussian) approximation is trusted up to some
distance from the current state, implemented via a distance penalty. One or more steps of the
iterative sampler would act as a proposal to a Metropolis–Hastings accept/reject step that en-
sures the correct target distribution. Metropolis adjusted Langevin (MALA) and hybrid Monte
Carlo (HMC) turn out to be examples of this scheme (Norton and Fox [46]), as is the algorithm
presented by Green and Han [31]. This naturally raises the question of whether acceleration of

3738 C. Fox and A. Parker

the local iteration can accelerate the Metropolised algorithm. This remains a topic for ongoing
research.

Appendix

A.1. Stationary sampler convergence (Proof of Theorem 2 and Corollary 3)

First, the theorem and corollary are established for the mean. Since A = M − N is a convergent
splitting, then (10) and Theorem 1 show that E(c(k)) = ν if and only if E(y(k)) → A−1ν with
the same convergence factor as for the linear solver. To establish convergence of the variance,
let G = M−1N in (10), then y(k) = Gky(0) + ∑k−1

i=0 Gi (M−1c(k−1−i)). This equation and the in-
dependence of {c(i)} show that Var(y(k)|y(0)) = ∑k−1

i=0 (GiM−1 Var(ci)M−T (Gi)T). Theorem 1
establishes the existence of a unique limiting distribution with a non-zero covariance matrix �.
Thus, for y(i),y(i+1) ∼ �, (10) implies

� = G�GT + M−1 Var
(
c(i)

)
M−T (24)

since y(i) and c(i) are independent. Thus Var(y(k)|y(0)) = � − Gk�(Gk)T , and so

Var
(
y(k)

) = � − Gk
(
� − Var

(
y(0)

))(
Gk

)T
. (25)

That is, Var(y(k)) → � with convergence factor �(M−1N)2. To prove that part (b) of the theorem
implies part (a), consider the starting vector y(0) ∼ � with covariance matrix � = A−1. Since
c(k) is independent of y(k), the relation (24) shows that Var(c(k)) = M(A−1 − GA−1GT)MT =
MA−1MT −NA−1NT . Substituting in N = M − A shows that Var(c(k)) = MT +N. To prove that
(a) implies (b), consider y(0) ∼ N(μ,A−1). By (25), � − Var(y(1)) = G(� − A−1)GT . Substitut-
ing Var(c(0)) = M(A−1 − GA−1GT)MT into equation (24) shows � − A−1 = G(� − A−1)GT .
Thus Var(y(1)) = A−1, which shows that Var(y(k)) has converged to A−1. By Theorem 1,
� = A−1.

A.2. Polynomial accelerated sampler convergence (Proof of Theorem 5 and
Corollary 6)

If the polynomial accelerated linear solver (11) converges, then E(y(k+1)) → A−1E(c(k)) = μ.
To determine Var(c(k)) rewrite the iteration (17) as y(k+1) = (1 − αk)y(k−1) + αkG(k)y(k) +
αk(M(k))−1c(k) where M(k) = 1

τk
M, N(k) = M(k) − A, and G(k) =

I − τk(M(k))−1A = (M(k))−1N(k). First, we will consider y(i−1) ∼ N(μ,A−1) and then find
Var(c(k)) that will guarantee that y(i),y(i+1) ∼ N(μ,A−1). Since {c(i)} are independent of {y(i)},
the above equation for y(k+1) shows that Var(c(k)) is equal to

1

α2
k

M(k)
((

1 − (1 − αk)
2)A−1 − 2(1 − αk)αk

(
G(k)K(k) + K(k)T G(k)T

)
− α2

kG(k)A−1G(k)T
)
M(k),

Polynomial accelerated Gibbs sampling 3739

where K(k) := Cov(y(k−1),y(k)). To simplify this expression, we need Lemma 9, which gives
K(k) explicitly. Parts (1) and (2) of the lemma show that

Var
(
c(k)

) = 1

α2
k

M(k)
(
α2

k

(
A−1 − G(k)A−1G(k)T

) + 2(1 − αk)αk

(
A−1 − G(k)

κ A−1G(k)T
))

M(k).

Part (3) of Lemma 9 shows that Var(c(k)) has the form specified in the theorem.

Lemma 9. For a symmetric splitting A = M − N,

1. K(k) is symmetric.
2. K(k) = G(k)

κ A−1, where G(k)
κ = I − κkM−1A and κk+1 := αkτk + (1 − αk)κk .

3. A−1 − Gτ A−1GT
κ = τκM−1((1/τ + 1/κ)M − A)M−1.

Proof. To nail down K(k), rewrite the Chebyshev iteration (17) as

Y(k+1) =
(

αkG(k) (1 − αk)I
I 0

)
Y(k) + αk

(
g(k)

0

)
,

where Y(0) = (y(0)

0

)
,Y(k+1) = (y(k+1)

y(k)

)
and g(k) = (M(k))−1c(k). Letting G(k) = (

αkG(k)

I
(1−αk)I

0

)
shows that

Var
(
Y(k+1)

) = G(k) Var
(
Y(k)

)
G(k)T + α2

k

(
Var

(
g(k)

)
0

0 0

)
. (26)

If Var(y(0)) = A−1 then Var(y(k)) = A−1 for k ≥ 1 in which case Var(Y(k+1)) is

(
A−1 K(k+1)

K(k+1)T A−1

)
= G(k)

(
A−1 K(k)

K(k)T A−1

)
G(k)T +

(
α2

k Var
(
g(k)

)
0

0 0

)
. (27)

By definition of Y(0), K(0) = 0; for k ≥ 0,

K(k+1) = αkG(k)A−1 + (1 − αk)K(k)T . (28)

Since α0 = 1, then K(1) = G(0)A−1 which proves parts (1) and (2) of the lemma for k = 0 since
κ1 = τ0 and G(k)

κ A−1 is symmetric. Assuming that K(k) = G(k)
κ A−1 for k > 0, the recursion in

(28) gives K(k+1) = (I − [αkτk + (1 − αk)κk]M−1A)A−1 so the expansion and recursion hold
for k + 1, and parts (1) and (2) of the lemma follow by induction. Part (c) of the lemma follows
from the equation

A−1 − Gτ A−1GT
κ = M−1

τ

(
Mτ A−1MT

κ

)
M−T

κ − M−1
τ Nτ A−1(M−1

κ Nκ

)
T . �

3740 C. Fox and A. Parker

The selection of Var(c(k)) = akM+bkN assures that if Var(y(0)) = A−1, then Var(y(k)) = A−1

for k ≥ 1. Thus, subtracting (27) from (26) gives

Var
(
Y(k+1)

)(
A−1 K(k+1)

K(k+1)T A−1

)
= G(k)

(
Var

(
Y(k)

) −
(

A−1 K(k)

K(k)T A−1

))
G(k)T

or E (k+1) = G(k)E (k)G(k)T for k ≥ 0, where E (k) = Var(Y(k))−(A−1

K(k)T
K(k)

A−1

)
. Hence, by recursion,

E (k) = (
∏k−1

l=0 G(l))E (0)(
∏k−1

l=0 G(l))T .

Denote the polynomial of the block matrix by P(k+1) = (
∏k

l=0 G(l)) that satisfies

P(k+1) = G(k)P(k) =
(

αkG(k) (1 − αk)I
I 0

)(
P(k)

11 P(k)
12

P(k)
21 P(k)

22

)

with P(1) = G(0) = (G(0)

I
0
0

)
. Thus

P(k+1)
11 = αkG(k)P(k)

11 + (1 − αk)P(k−1)
11 = αk

(
I − τkM−1A

)
P(k)

11 + (1 − αk)P(k−1)
11

with P(1)
11 = G(0), which shows that P(k+1)

11 = Pk+1 by (12). Furthermore, this shows that the
error in variance at the kth iteration has the specified form and convergence factor.

Acknowledgments

This work was partially funded by the New Zealand Institute for Mathematics and its Applica-
tions (NZIMA) thematic programme on Analysis, Applications and Inverse Problems in PDEs,
and Marsden contract UOO1015.

Supplementary Material

Implementation details of the Chebyshev accelerated sampler (DOI: 10.3150/16-
BEJ863SUPP; .pdf). An explicit algorithm for the Chebyshev SSOR sampler is provided.

References

[1] Adler, S.L. (1981). Over-relaxation method for the Monte Carlo evaluation of the partition function
for multiquadratic actions. Phys. Rev. D 23 2901–2904.

[2] Alpkvist, E. and Klapper, I. (2007). A multidimensional multispecies continuum model for heteroge-
neous biofilm development. Bull. Math. Biol. 69 765–789.

[3] Amit, Y. (1991). On rates of convergence of stochastic relaxation for Gaussian and non-Gaussian
distributions. J. Multivariate Anal. 38 82–99. MR1128938

[4] Amit, Y. and Grenander, U. (1991). Comparing sweep strategies for stochastic relaxation. J. Multi-
variate Anal. 37 197–222. MR1114473

http://dx.doi.org/10.3150/16-BEJ863SUPP
http://www.ams.org/mathscinet-getitem?mr=1128938
http://www.ams.org/mathscinet-getitem?mr=1114473
http://dx.doi.org/10.3150/16-BEJ863SUPP

Polynomial accelerated Gibbs sampling 3741

[5] Axelsson, O. (1996). Iterative Solution Methods. Cambridge: Cambridge Univ. Press. MR1276069
[6] Banerjee, S., Gelfand, A.E. and Carlin, B.P. (2003). Hierarchical Modeling and Analysis for Spatial

Data. London: Chapman & Hall.
[7] Bardsley, J.M. (2012). MCMC-based image reconstruction with uncertainty quantification. SIAM J.

Sci. Comput. 34 A1316–A1332. MR2970254
[8] Barone, P. and Frigessi, A. (1990). Improving stochastic relaxation for Gaussian random fields.

Probab. Engrg. Inform. Sci. 23 2901–2904.
[9] Barone, P., Sebastiani, G. and Stander, J. (2002). Over-relaxation methods and coupled Markov chains

for Monte Carlo simulation. Stat. Comput. 12 17–26. MR1877576
[10] Besag, J. (1986). On the statistical analysis of dirty pictures. J. R. Stat. Soc. Ser. B. Stat. Methodol. 48

259–302. MR0876840
[11] Besag, J. and Green, P.J. (1993). Spatial statistics and Bayesian computation. J. R. Stat. Soc. Ser. B.

Stat. Methodol. 55 25–37. MR1210422
[12] Calvetti, D. and Somersalo, E. (2007). Introduction to Bayesian Scientific Computing. Surveys and

Tutorials in the Applied Mathematical Sciences 2. New York: Springer. MR2351679
[13] Cui, T., Fox, C. and O’Sullivan, M.J. (2011). Bayesian calibration of a large-scale geothermal reser-

voir model by a new adaptive delayed acceptance Metropolis Hastings algorithm. Water Resources
Research 47 W10521.

[14] Diaconis, P. and Freedman, D. (1999). Iterated random functions. SIAM Rev. 41 45–76. MR1669737
[15] Duflo, M. (1997). Random Iterative Models. Applications of Mathematics (New York) 34. Berlin:

Springer. MR1485774
[16] Feller, W. (1968). An Introduction to Probability Theory and Its Applications. Vol. I, 3rd ed. New

York: Wiley. MR0228020
[17] Fishman, G.S. (1996). Coordinate selection rules for Gibbs sampling. Ann. Appl. Probab. 6 444–465.

MR1398053
[18] Fox, C. (2008). A conjugate direction sampler for normal distributions, with a few computed exam-

ples. Technical Report 2008-1, Electronics Group, University of Otago.
[19] Fox, C. and Parker, A. (2014). Convergence in variance of Chebyshev accelerated Gibbs samplers.

SIAM J. Sci. Comput. 36 A124–A147. MR3162409
[20] Fox, C. and Parker, A. (2016). Supplement to “Accelerated Gibbs sampling of normal distributions

using matrix splittings and polynomials.” DOI:10.3150/16-BEJ863SUPP.
[21] Fox, L. and Parker, I.B. (1968). Chebyshev Polynomials in Numerical Analysis. Oxford: Oxford Univ.

Press. MR0228149
[22] Galli, A. and Gao, H. (2001). Rate of convergence of the Gibbs sampler in the Gaussian case. Math.

Geol. 33 653–677. MR1956389
[23] Gelfand, A.E. and Smith, A.F.M. (1990). Sampling-based approaches to calculating marginal densi-

ties. J. Amer. Statist. Assoc. 85 398–409. MR1141740
[24] Gelman, A., Carlin, J.B., Stern, H.S. and Rubin, D.B. (1995). Bayesian Data Analysis. Texts in Statis-

tical Science Series. London: Chapman & Hall. MR1385925
[25] Geman, S. and Geman, D. (1984). Stochastic relaxation, Gibbs distributions, and the Bayesian restora-

tion of images. IEEE Trans. Pattern Analysis and Machine Intelligence 6 721–741.
[26] Geyer, C.J. (2011). Introduction to Markov chain Monte Carlo. In Handbook of Markov Chain Monte

Carlo (S. Brooks, A. Gelman, G. L. Jones and X.-L. Meng, eds.). Chapman & Hall/CRC Handb. Mod.
Stat. Methods 3–48. Boca Raton, FL: CRC Press. MR2858443

[27] Gilks, W.R., Richardson, S. and Spiegelhalter, D.J., eds. (1996). Markov Chain Monte Carlo in Prac-
tice. Interdisciplinary Statistics. London: Chapman & Hall. MR1397966

[28] Gneiting, T., Ševčíková, H., Percival, D.B., Schlather, M. and Jiang, Y. (2006). Fast and exact sim-
ulation of large Gaussian lattice systems in R

2: Exploring the limits. J. Comput. Graph. Statist. 15
483–501. MR2291260

http://www.ams.org/mathscinet-getitem?mr=1276069
http://www.ams.org/mathscinet-getitem?mr=2970254
http://www.ams.org/mathscinet-getitem?mr=1877576
http://www.ams.org/mathscinet-getitem?mr=0876840
http://www.ams.org/mathscinet-getitem?mr=1210422
http://www.ams.org/mathscinet-getitem?mr=2351679
http://www.ams.org/mathscinet-getitem?mr=1669737
http://www.ams.org/mathscinet-getitem?mr=1485774
http://www.ams.org/mathscinet-getitem?mr=0228020
http://www.ams.org/mathscinet-getitem?mr=1398053
http://www.ams.org/mathscinet-getitem?mr=3162409
http://dx.doi.org/10.3150/16-BEJ863SUPP
http://www.ams.org/mathscinet-getitem?mr=0228149
http://www.ams.org/mathscinet-getitem?mr=1956389
http://www.ams.org/mathscinet-getitem?mr=1141740
http://www.ams.org/mathscinet-getitem?mr=1385925
http://www.ams.org/mathscinet-getitem?mr=2858443
http://www.ams.org/mathscinet-getitem?mr=1397966
http://www.ams.org/mathscinet-getitem?mr=2291260

3742 C. Fox and A. Parker

[29] Golub, G.H. and Van Loan, C.F. (1989). Matrix Computations, 2nd ed. Johns Hopkins Series in the
Mathematical Sciences 3. Baltimore, MD: Johns Hopkins Univ. Press. MR1002570

[30] Goodman, J. and Sokal, A.D. (1989). Multigrid Monte Carlo method. Conceptual foundations. Phys.
Rev. D 40 2035–2071.

[31] Green, P. and Han, X. (1992). Metropolis methods, Gaussian proposals and antithetic variables. In
Stochastic models, statistical methods, and algorithms in image analysis (Rome, 1990) (A. Frigessi,
P. Barone and M. Piccioni, eds.). Lecture Notes in Statistics 74 142–164. Berlin: Springer. MR1188484

[32] Grenander, U. (1983). Tutorial in pattern theory. Technical report, Division of Applied Mathematics,
Brown University.

[33] Guttorp, P. and Gneiting, T. (2005). On the Whittle–Matérn correlation family. Technical Report 80,
NRCSE University of Washington.

[34] Haario, H., Saksman, E. and Tamminen, J. (2001). An adaptive Metropolis algorithm. Bernoulli 7
223–242. MR1828504

[35] Higdon, D. (2006). A primer on space–time modelling from a Bayesian perspective. In Statistics of
Spatio-Temporal Systems (B. Finkenstadt, L. Held and V. Isham, eds.) 217–279. New York: Chap-
man & Hall/CRC.

[36] Horn, R.A. and Johnson, C.R. (1985). Matrix Analysis. Cambridge: Cambridge Univ. Press.
MR0832183

[37] Lewandowski, Z. and Beyenal, H. (2014). Fundamentals of Biofilm Research. Boca Raton, FL: CRC
Press.

[38] Lindgren, F., Rue, H. and Lindström, J. (2011). An explicit link between Gaussian fields and Gaussian
Markov random fields: The stochastic partial differential equation approach. J. R. Stat. Soc. Ser. B.
Stat. Methodol. 73 423–498. MR2853727

[39] Liu, J.S., Wong, W.H. and Kong, A. (1995). Covariance structure and convergence rate of the Gibbs
sampler with various scans. J. R. Stat. Soc. Ser. B. Stat. Methodol. 57 157–169. MR1325382

[40] MacKay, D.J.C. (2003). Information Theory, Inference and Learning Algorithms. New York: Cam-
bridge Univ. Press. MR2012999

[41] Meurant, G. (2006). The Lanczos and Conjugate Gradient Algorithms: From Theory to Finite Preci-
sion Computations. Software, Environments, and Tools 19. Philadelphia, PA: SIAM. MR2261212

[42] Neal, R. (1997). Monte Carlo implementation of Gaussian process models for Bayesian regression
and classification. Technical Report 9702, Department of Statistics, University of Toronto.

[43] Neal, R. (1998). Suppressing random walks in Markov chain Monte Carlo using ordered overrelax-
ation. In Learning in Graphical Models (M.I. Jordan, ed.) 205–225. Norwell: Kluwer Academic.

[44] Neumayer, M. (2011). Accelerated Bayesian Inversion and Calibration for Electrical Tomography
Ph.D. thesis, Graz University of Technology.

[45] Nevanlinna, O. (1993). Convergence of Iterations for Linear Equations. Lectures in Mathematics ETH
Zürich. Basel: Birkhäuser. MR1217705

[46] Norton, R.A. and Fox, C. (2014). Efficiency and computability of MCMC with Langevin, Hamilto-
nian, and other matrix-splitting proposals. Unpublished manuscript.

[47] Parker, A. and Fox, C. (2012). Sampling Gaussian distributions in Krylov spaces with conjugate gra-
dients. SIAM J. Sci. Comput. 34 B312–B334. MR2970281

[48] Robert, C. and Casella, G. (2011). A short history of Markov chain Monte Carlo: Subjective recollec-
tions from incomplete data. Statist. Sci. 26 102–115. MR2849912

[49] Robert, C.P. and Casella, G. (1999). Monte Carlo Statistical Methods. Springer Texts in Statistics.
New York: Springer. MR1707311

[50] Roberts, G.O. and Rosenthal, J.S. (2007). Coupling and ergodicity of adaptive Markov chain Monte
Carlo algorithms. J. Appl. Probab. 44 458–475. MR2340211

http://www.ams.org/mathscinet-getitem?mr=1002570
http://www.ams.org/mathscinet-getitem?mr=1188484
http://www.ams.org/mathscinet-getitem?mr=1828504
http://www.ams.org/mathscinet-getitem?mr=0832183
http://www.ams.org/mathscinet-getitem?mr=2853727
http://www.ams.org/mathscinet-getitem?mr=1325382
http://www.ams.org/mathscinet-getitem?mr=2012999
http://www.ams.org/mathscinet-getitem?mr=2261212
http://www.ams.org/mathscinet-getitem?mr=1217705
http://www.ams.org/mathscinet-getitem?mr=2970281
http://www.ams.org/mathscinet-getitem?mr=2849912
http://www.ams.org/mathscinet-getitem?mr=1707311
http://www.ams.org/mathscinet-getitem?mr=2340211

Polynomial accelerated Gibbs sampling 3743

[51] Roberts, G.O. and Sahu, S.K. (1997). Updating schemes, correlation structure, blocking and parame-
terization for the Gibbs sampler. J. R. Stat. Soc. Ser. B. Stat. Methodol. 59 291–317. MR1440584

[52] Rue, H. (2001). Fast sampling of Gaussian Markov random fields. J. R. Stat. Soc. Ser. B. Stat.
Methodol. 63 325–338. MR1841418

[53] Rue, H. and Held, L. (2005). Gaussian Markov Random Fields: Theory and Applications. Monographs
on Statistics and Applied Probability 104. Boca Raton, FL: Chapman & Hall/CRC. MR2130347

[54] Saad, Y. (2003). Iterative Methods for Sparse Linear Systems, 2nd ed. Philadelphia, PA: SIAM.
MR1990645

[55] Saad, Y. and van der Vorst, H.A. (2000). Iterative solution of linear systems in the 20th century.
J. Comput. Appl. Math. 123 1–33. MR1798516

[56] Sheppard, C.J.R. and Shotton, D.R. (1997). Confocal Laser Scanning Microscopy. New York: Garland
Science.

[57] Simpson, D., Lindgren, F. and Rue, H. (2012). Think continuous: Markovian Gaussian models in
spatial statistics. Spatial Statistics 1 16–29.

[58] Sokal, A.D. (1993). Discussion on the meeting on the Gibbs sampler and other Markov chain Monte
Carlo methods. J. R. Stat. Soc. Ser. B. Stat. Methodol. 55 87.

[59] Swogger, E. and Pitts, B. (2005). CSLM 3D view of pseudomonas aeruginosa biofilm structure. En-
gineering. Available at http://www.biofilm.montana.edu/resources/movies/2005/2005m06.html.

[60] Turčin, V. (1971). On the computation of multidimensional integrals by the Monte Carlo method.
Theory Probab. Appl. 16 720–724.

[61] Varga, R.S. (1962). Matrix Iterative Analysis. Englewood Cliffs, NJ: Prentice-Hall. MR0158502
[62] Watkins, D.S. (2002). Fundamentals of Matrix Computations, 2nd ed. Pure and Applied Mathematics

(New York). New York: Wiley. MR1899577
[63] Whittle, P. (1954). On stationary processes in the plane. Biometrika 41 434–449. MR0067450
[64] Young, D.M. (1971). Iterative Solution of Large Linear Systems. New York: Academic Press.

MR0305568

Received April 2015 and revised December 2015

http://www.ams.org/mathscinet-getitem?mr=1440584
http://www.ams.org/mathscinet-getitem?mr=1841418
http://www.ams.org/mathscinet-getitem?mr=2130347
http://www.ams.org/mathscinet-getitem?mr=1990645
http://www.ams.org/mathscinet-getitem?mr=1798516
http://www.biofilm.montana.edu/resources/movies/2005/2005m06.html
http://www.ams.org/mathscinet-getitem?mr=0158502
http://www.ams.org/mathscinet-getitem?mr=1899577
http://www.ams.org/mathscinet-getitem?mr=0067450
http://www.ams.org/mathscinet-getitem?mr=0305568

	Introduction
	Context and overview of results
	Structure of the paper

	Sampling from multivariate normal distributions
	Gibbs sampling from a normal distribution
	Componentwise formulation
	Matrix formulation
	Convergence

	Linear stationary iterative methods as linear equation solvers
	Matrix splitting form of stationary iterative algorithms
	The Gauss-Seidel algorithm

	Convergence
	Common matrix splittings

	Equivalence of stationary linear solvers and Gibbs samplers
	General noise
	Sampling from normal distributions using matrix splittings

	Non-stationary iterative methods
	Acceleration of linear solvers by polynomials
	Acceleration of Gibbs sampling by polynomials

	Computed examples
	A 10x10 lattice example (n=100)
	A 100x100x100 (n=106) linear inverse problem in bioﬁlm imaging

	Discussion
	Appendix
	Stationary sampler convergence (Proof of Theorem 2 and Corollary 3)
	Polynomial accelerated sampler convergence (Proof of Theorem 5 and Corollary 6)

	Acknowledgments
	Supplementary Material
	References

