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Symmetry breaking in soft clustering decoding
of neural codes

Albert E. Parker, Alexander G. Dimitrov and Tomas Gedeon

Abstract—Information-based distortion methods have
successfully been used in the analysis of neural coding
problems. These approaches allow the discovery of neu-
ral symbols and the corresponding stimulus space of a
neuron or neural ensemble quantitatively, while making
few assumptions about the nature of either the code or of
relevant stimulus features. The neural codebook is derived
by quantizing sensory stimuli and neural responses into a
small set of clusters, and optimizing the quantization to
minimize an information distortion function. The method
of annealing has been used to solve the corresponding
high dimensional non-linear optimization problem. The
annealing solutions undergo a series of bifurcations, which
we study using bifurcation theory in the presence of sym-
metries. In this contribution we describe these symmetry
breaking bifurcations in detail, and indicate some of the
consequences of the form of the bifurcations. In particular,
we show that the annealing solutions break symmetry at
pitchfork bifurcations, and that subcritical branches can
exist. Thus, at a subcritical bifurcation, there are local
information distortion solutions which are not found by
the method of annealing. Since the annealing procedure is
guaranteed to converge to a local solution eventually, the
subcritical branch must turn and become optimal at some
later saddle-node bifurcation, which we have shown occur
generically for this class of problems. This implies that
the rate distortion curve, while convex for non-information
based distortion measures, is not convex for information-
based distortion methods.

Index Terms—Annealing, bifurcations, clustering, infor-
mation distortion, neural coding, symmetry breaking

I. INTRODUCTION

A major unresolved problem in neuroscience concerns
the manner in which a nervous system represents in-
formation. Important questions being studied currently
include: What information about the external world is
represented in patterns of neural activity? How is this
information used by the nervous system to process sen-
sory stimuli? We have yet to reach a generally accepted
theory of neural coding and computation. Our difficulty
does not stem solely from lack of data. What we lack is
a deep understanding of the methods used by interacting
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populations of neurons to represent and process sensory
information.

While we are far from fully answering these deep
questions, the theoretical tool we describe here can
provide a first step toward discovering general prin-
ciples of sensory processing in biological systems. It
is designed to determine the correspondence between
sensory stimuli X and neural activity patterns Y. This
correspondence is referred to as a sensory neural code.
Common approaches to this problem often introduce
multiple assumptions that affect the obtained solution.
For example, the linear stimulus reconstruction method
[1] assumes linearity and independence between the neu-
ral responses (spikes). The current standard in forward
models [2]-[4] places assumptions on either the type of
model (for example integrate-and-fire with a stochastic
threshold [3]) or the type of point process (essentially,
Markov, with specific assumptions about the form of the
conditional intensity function [2]) with which the system
is characterized.

Any neural code must satisfy several conflicting de-
mands. On one hand the organism must recognize certain
natural objects in repeated exposures. Failures on this
level may endanger an animal’s well-being, for example
if a predator is misidentified as a conspecific mate. On
this level, the response of the organism needs to be
deterministic. On the other hand, distinct stimuli need
not produce distinguishable neural responses, if such a
regime is beneficial to the animal (e.g. a wolf and a fox
need not produce distinct responses in a rabbit, just the
combined concept of “predator” may suffice.) Thus the
representation need not be bijective. Lastly, the neural
code must deal with uncertainty introduced by both
external and internal noise sources. Therefore the neural
responses are by necessity stochastic on a fine scale. In
these aspects the functional issues that confront the early
stages of any biological sensory system are similar to the
issues encountered by communication engineers in their
work of transmitting messages across noisy media. Thus
we can view the input-output relationship of a biological
sensory system as a communication system [5].

We consider the neural encoding process within a
probabilistic framework [6], [7]. The input signal X
to a neuron (or neural ensemble) may be a sensory
stimulus or the activity of another set of (pre-synaptic)



neurons. We consider the input signal to be produced by
a stochastic source with probability p(X). The output
signal Y generated by that neuron (or neural ensemble)
in response to X is a series of impulses (a spike train or
ensemble of spike trains.) Thus the system is completely
characterized by its joint distribution, p(X,Y’). We
consider the encoding of X into Y to be a map from
one stochastic signal to the other. This stochastic map
is the encoder q(Y'| X)), which models the operations of
this neuronal layer. The output signal Y is induced by
the encoder ¢(Y'|X) by p(Y') = >, q(Y|z)p(x).

A model of the neural code, which is probabilistic
on a fine scale but deterministic on a large scale,
emerges naturally in the context of Information Theory
[8]. The Noisy Channel Coding Theorem suggests that
relations between individual elements of the stimulus
and response spaces are not the basic building elements
of the system. Rather, the defining objects are relations
between classes of stimulus-response pairs. Given the
mutual information between the two spaces, I(X;Y),
there are about 2I(X:Y) such codeword (or equiva-
lence) classes. When restricted to codeword classes,
the stimulus-response relation is almost deterministic.
That is, with probability close to 1, elements of Y are
associated to elements of X in the same codeword class.
This framework naturally deals with lack of bijectivity,
by treating it as effective noise. We decode an output y
as any of the inputs x that belong to the same codeword
class. Similarly, we consider the neural representation
of an input = to be any of the outputs y in the same
codeword class. Stimuli from the same equivalence class
are considered indistinguishable from each other, as are
responses from within the same class.

The recently introduced Information Bottleneck [9],
[10] and Information Distortion [11], [12] methods ap-
proach the neural coding problem in this probabilistic
framework by using tools from Rate Distortion theory
in order to build simplified models of neural cod-
ing and study them in detail. They approximate the
joint distribution of interest, p(X,Y’), by clustering
the paired stimulus-response observations (X;Y’) into
smaller stimulus-response spaces (S;T'). The clustering
of the data is called a soft clustering since the assignment
of the observations to a cluster can be stochastic rather
than deterministic. An optimal soft clustering is found
by maximizing an information-theoretic cost function
subject to both equality and inequality constraints, in
hundreds to thousands of dimensions. This analytical
approach has several advantages over other current ap-
proaches: it yields the most informative approximation of
the encoding scheme given the available data (i.e. it gives
the lowest distortion, by preserving the most mutual
information between stimulus and response classes); the
cost function, which is intrinsic to the problem, does
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not introduce implicit assumptions about the nature or
linearity of the encoding scheme; it incorporates an
objective, quantitative scheme for refining the codebook
as more stimulus-response data becomes available; and
it does not need repetitions of the stimulus under mild
continuity assumptions, so the stimulus space may be
investigated more thoroughly.

These types of information theoretic optimization
problems also arise in Rate Distortion Theory [8], [13]
and the Deterministic Annealing approach to clustering
[14]. These methods have been used successfully in neu-
ral coding problems [15]-[21] as well as other biological
topics [22]-[29] and general data mining problems [14],
[30].

One approach to solving this class of optimization
problems is through the method of annealing: starting at
the uniform (uninformative) soft clustering, one tracks
this solution as an annealing parameter varies. The solu-
tions undergo a series of rapid changes (bifurcations or
phase transitions) as the annealing parameter increases,
ultimately reaching a nearly deterministic clustering of
the data. In spite of conjectures about the form of
the bifurcations [10], [14], a rigorous treatment of the
bifurcations of the annealing solutions and how they
relate to bifurcations of solutions to the original infor-
mation theoretic optimization problem of interest have
been lacking. This contribution offers such a description
by examining the bifurcations in a dynamical system
defined by the gradient flow of the Lagrangian of the
optimization problem.

Well established tools are available for exploiting
the symmetry of equilibria in a dynamical system. The
reason for switching to the gradient flow is to capitalize
on these tools. The optimal clustering found by the
Information Bottleneck and the Information Distortion
methods, which is an equilibrium in the gradient flow,
has a symmetry: any clustering of the data gives another
equivalent clustering simply by permuting the labels
of the N classes. This symmetry is described by Sy,
the algebraic group of all permutations on [N symbols.
The symmetries of the bifurcating equilibria are dictated
by the subgroup structure of Sy. We describe these
symmetry breaking bifurcations in detail for the gradient
flow, relate these back to bifurcations of the annealing
solutions, and finally to bifurcations of locally optimal
soft clusterings of the information theoretic cost function
of interest.

This paper is organized in the following way. In
section II we illustrate the application of the method
to the analysis of neural coding in the cricket cercal
sensory system. In section III we give the Informa-
tion Bottleneck and Information Distortion optimization
problems, and the results of an annealing procedure used
to solve the Information Distortion problem on a simple



data set which exhibits the generic bifurcation structure.
Section IV presents some relevant constrained optimiza-
tion theory, and an overview of bifurcation theory with
symmetries. Section V is devoted to preparations for
applying the theory of bifurcations with symmetries. We
introduce the gradient flow of the Lagrangian and the
reduced bifurcation problem which, due to the symmetry,
determines the directions of all of the emanating equi-
libria in the much larger space of all soft clusterings.
Section VI is the central part of the paper. We present
existence theorems for symmetry breaking bifurcating
branches, and we derive a condition which determines
whether these branches are subcritical (first order phase
transitions) or supercritical (second order phase transi-
tions). There are also symmetry preserving bifurcations,
which, generically, are saddle-nodes. Numerical illus-
trations of our results occupy section VII. In section
VIII, we discuss some of the insights that the bifurcation
structure gives regarding optimal clusterings of the data,
and consequences for the rate distortion curve from
Information Theory.

II. A CASE STUDY

To approach the neural coding problem with the Infor-
mation Distortion and Information Bottleneck methods
[10], [11], [31], one clusters sensory stimuli and neural
responses to small reproduction sets in a way which
optimizes an information-based distortion function [31].
The essential basis for this approach is to conceptualize
a neural coding scheme as a collection of stimulus-
response classes akin to a dictionary or codebook, with
each class corresponding to a neural response codeword
and its corresponding stimulus feature in the codebook.

A. Finding the codebook

Given the probabilistic model of neural function, we
would like to recover the codebook. In our context,
this means identifying the joint stimulus-response classes
that define the coding relation. We characterize a neural
coding scheme by clustering (quantizing or compressing)
the joint stimulus-response space (X;Y') to a smaller
joint reproduction space (S;T'). S consists of classes
of objects in X, and T consists of classes of objects
in Y. One way to achieve this goal is by clustering the
neural responses Y into a coarser representation in a
small reproduction space T' with N = |T'| elements.
This quantization induces a quantization of the stimulus
space X into a smaller event set S also with IV elements.
The details of how the clustering is performed are
presented in Section III. This method allows us to study
coarse (i.e. small V) but highly informative models of a
coding scheme, and then to refine them when more data
becomes available. The refinement is achieved by simply

3
increasing the sizes of the reproductions, N. We aim to
find the best such clustering of the data with fixed V.

Following examples from rate distortion theory [8],
[14], the Information Distortion method assumes that
the best clustering of the data is the one with maximal
entropy [11], [32]. The reason is that, among all cluster-
ings that satisfy a given set of constraints, the maximum
entropy clustering of the data does not implicitly in-
troduce additional constraints in the problem. Similarly,
the Information Bottleneck method follows the standard
settings of Rate-Distortion Theory [8], formulating the
problem as a minimal rate at a fixed distortion level.

B. Analysis of stimulus-response relations in the cricket
cercal sensory system

We applied these tools to characterize the encoding
characteristics of single identified sensory interneurons
in the cricket cercal sensory system to complex and
biologically relevant stimuli. The goal of the experiments
and analyzes were to discover (jointly) the dynamic
stimulus waveform features encoded by the cells, and the
spike train codeword classes that encoded those features.
Most of these results have been presented elsewhere [18],
[20].

1) Experimental protocols: The preparation we ana-
lyze here is the cercal sensory system of the cricket. In
the following sections, we briefly introduce this system,
describe the experimental methods used to collect the
data, and then discuss the application of the Information
Distortion approach to analysis of coding by single
sensory interneurons in this system.

Functional organization of the cercal system. This sys-
tem mediates the detection and analysis of low velocity
air currents in the cricket’s immediate environment. This
sensory system is capable of detecting the direction and
dynamic properties of air currents with great accuracy
and precision [33]-[36], and can be thought of as a near-
field, low-frequency extension of the animal’s auditory
system.

Primary sensory interneurons. The sensory afferents
of the cercal system synapse with a group of approxi-
mately thirty local interneurons [37] and approximately
twenty identified projecting interneurons that send their
axons to motor centers in the thorax and integrative
centers in the brain [38]. It is a subset of these projecting
interneurons that we study here. Like the afferents,
these interneurons are also sensitive to the direction
and dynamics of air current stimuli [33]-[36]. Stimulus-
evoked neural responses have been measured in several
projecting and local interneurons, using several different
classes of air current stimuli [34]-[36], [39]. The stimuli
that have been used range from simple unidirectional air
currents to complex multi-directional, multi-frequency
waveforms. Each of the interneurons studied so far



has a unique set of directional and dynamic response
characteristics. Previous studies have shown that these
projecting interneurons encode a significant quantity of
information about the direction and velocity of low
frequency air current stimuli with a linear rate code [35],
[36], [39]. More recent studies demonstrate that there is
also substantial amount of information in the spike trains
that cannot be accounted for by a simple linear encoding
scheme [18], [40]. Evidence suggests the implementation
of an ensemble temporal encoding scheme in this system.

Dissection and preparation of specimens All experi-
ments were performed on adult female crickets obtained
from commercial suppliers (Bassett’s Cricket Ranch,
Visalia, CA, and Sunshine Mealworms, Silverton, OR).
Specimens were selected that had undergone their final
molt within the previous 24 h. The legs, wings and
ovipositor were removed from each specimen, and a thin
strip of cuticle was removed from the dorsal surface of
the abdomen. After removal of the gut, the body cavity
was rinsed and subsequently perfused with hypotonic
saline. Hypotonicity facilitated microelectrode penetra-
tion of the ganglionic sheath.

The preparation was pinned to the center of a thin disc
of silicone elastomer approximately 7 cm in diameter,
located within the central arena of an air-current stim-
ulation device, described below. Once the preparation
was sealed and perfused with saline, the ganglion was
placed on a small platform and gently raised from the
ventral surface of the abdomen. This increased the acces-
sibility of the ganglion to electrodes while at the same
time improving the stability of electrode penetration by
increasing surface tension on the ganglion.

Electrophysiological recording Sharp intracellular
electrodes were pulled from glass capillary tubes by
a model P*97/PC electrode puller (Sutter Instrument
Co.) The electrodes were filled with a mixture of 2%
neurobiotin and 3 M KCIl, and had resistances in the
range of 10 to 30 megohms. During recordings the
neurobiotin would diffuse into the nerve cell, allowing
for subsequent staining and identification. Data were
recorded using an NPI SEC-05L Intracellular amplifier
and sampled at 10 kHz rate with a digital data acquisition
system running on a Windows 2000 platform.

Stimulus generation The cricket cercal sensory system
is specialized to monitor air currents in the horizontal
plane. All stimuli for these experiments were produced
with a specially-designed and fabricated device that gen-
erated laminar air currents across the specimens’ bodies.
Air currents were generated by the controlled, coordi-
nated movement of loudspeakers. The loudspeakers were
mounted facing inward into an enclosed chamber that
resembled a miniature multi-directional wind tunnel. The
set of speakers were sent appropriate voltage signals to
drive them in a ”push-pull” manner to drive controlled,
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laminar air-current stimuli through an enclosed arena in
the center of the chamber, where the cricket specimens
were placed after dissection.

Stimulus waveforms were constructed prior to the
experiment using MATLAB®). During experiments, the
stimulus waveforms were sent out through a DAC to
audio amplifiers and then to the set of loudspeakers.
Stimuli consisted of uninterrupted waveform, for which
the air current velocity was drawn from a Gaussian
White Noise process, band-passed between 5 and 150
Hz. Two independent waveforms were presented along
two orthogonal axes, thus covering all possible planar
stimulus directions around the cricket.

2) Results: Stimuli and responses were preprocessed
to a form suitable for the algorithm. The response of
a single cell is represented as a sequence of inter-spike
intervals (ISIs), the times between impulses that the cell
emits in response to sensory stimuli [41]. The sequence
analyzed here is broken into sets of pairs of ISIs, and em-
bedded in two dimensional space [20], [42]. As described
in [18], to be considered a pattern and further processed,
a sequence of spikes must start with a spike preceded by
a quiet period of at least D ms. Each ISI is also limited
to no more than 7" ms. The parameters of the initial
processing, D and T', may be varied to verify their effects
on the final results. They depend on the cell and system
being considered. Typically we use D € [10 25)ms
and T € [15 50]ms. The stimulus associated with each
response is an airflow waveform extracted in a range
of [T~ TT] around the beginning of each response
sequence of ISIs. The stimuli presented to the system
consist of two independent time series of air velocities
(“along” and “across” the cricket’s body), each of length
L, and so are embedded in 2L dimensional Euclidean
space. The number of observations, n, depends on the
recording rate and overall cell responsiveness to a given
stimulus. The choice of specific parameters is evident in
the figures where they are discussed. The complete data
set to be processed by the algorithm consists of n pairs
(z,y) € R x R2, where L is large.

Using the Information Distortion method discussed in
Section III, we found optimal soft clusterings that iden-
tified synonymous classes of stimulus-response pairs.
Stimulus features are represented as waveforms of the
mean airflow velocity immediately preceding the elicited
spike pattern codewords. The response space was taken
to be all pairs of ISIs with T' < 30ms, preceded by
at least D = 30ms of silence. This was done with the
intent of analyzing only well-isolated codewords, which
are assumed to be independent by this selection process.

Figure 1 illustrates the application of the algorithm to
uncovering the stimulus-response relation in an identified
cell in the cricket cercal sensory system (cell 10-2,
nomenclature as in [38]). The stimulus classes are rep-



resented by their class-conditioned means. We suppress
showing confidence intervals for the class conditioned
means for reasons of visualization clarity. Each condi-
tional mean has two channels (Panels A and B).
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Fig. 1. A quantization to nine classes of the stimulus-response pairs
of cell 10-2 in the cricket cercal sensory system. Panels A and B show
the two channels of the conditional means of the air flow stimulus
for each class. Panel C depicts the two dimensional response space of
all pairs of ISIs in the range [0, 30]ms x [0, 30]ms color-coded by
their membership in particular classes. The color labels are consistent
among the panels.

The optimal information-based soft clustering pro-
duced response classes that were physiologically con-
sistent, in the sense that responses that had similar ISIs
were clustered together. Since there was not an explicit
similarity criterion for either the stimuli, or the response,
this structure is an important emergent property of
the algorithm that reflects the underlying structure of
the biological system. The stimulus classes are clearly
discriminable (Panel A), and associated with features
of the clustered responses. For example, the mean of
class 2 (green) has two prominent downward excursions
separated by about 15 ms, which is the average ISI
separation of responses combined in this class. The
second trough of the stimulus is consistently related to
the second ISI in the response. In panel C, the classes
starting with a short first ISI (horizontal axis) are 4, 3,
9 and 2 in order of increasing second ISI (vertical axis).
These four classes effectively break the stimulus into a
set of discriminable events (Panel A). This sequence also
demonstrates the main topic of symmetry in this article:
the labels of the clusters are arbitrary. Permuting the
labels of the clusters of responses does not effect the
discovered relationship between the stimuli and these
clusters of responses (this symmetry does not refer to
properties of neurons or of the stimulus space).

The information theoretic clustering approach was
also used to directly address questions about the con-
sistency of the neural code between individuals of the
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same species. This extends the approach taken in [21]
to select a limited set of neural activity classes and test
for similarity across individuals. The quantization was
performed on 36 identified 10-2 cells, and 40 identified
10-3 cells (nomenclature as in [38]). 10-3 cells have
functionality similar to that of 10-2 cells with directional
selectivity offset by 90°. In Figure 2 we investigate
the position of the boundary between class 4 of the
neural responses and the neighboring class 7 across a
set of individual crickets. This boundary, indicated by the
vertical black line near 5.75ms for cell 10-2 in Figure 2,
can be seen between the light blue and black points
in panel C of Figure 1. The standard deviation of the
boundary is less than 1 ms across the set of individuals!
That is, this particular class is very well preserved in
the cricket population we study. This directly addresses
universal coding behavior at the level of individual
response codewords.
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Fig. 2.  The top panel shows the summary for cell 10-2 from
36 different individuals; the bottom panel shows cell 10-3 from 40
different individuals. For each animal, the normalized histogram of
the first ISI for the neural responses in classes 4 and 7 was calculated.
The mean of these distributions is given (solid blue line), as well as
2 standard deviations around the mean (dashed blue line). The solid
black vertical line represents the mean time coordinate of the boundary
between classes 4 and 7, the dashed black vertical lines indicate 1
standard deviation around the mean. In both cells, class 4 (shortest
first doublets) is consistently preserved with a precision of about 1 ms
between different individuals!

C. Conclusions

The general goal of this section was to demonstrate
the application of the Information Distortion method to
resolving the neural coding problem. The essential basis
for this approach was to conceptualize a neural coding
scheme as a collection of stimulus-response classes akin
to a dictionary or codebook, with each class correspond-
ing to a neural response codeword and its corresponding
stimulus feature in the codebook. The analysis outlined



here enabled the derivation of such a neural codebook,
by quantizing stimuli and neural responses into small
reproduction sets and optimizing the quantization to
minimize the Information Distortion function.

The major advantage of this analytical approach over
other current approaches is that it yields the most in-
formative approximation of the encoding scheme given
the available data. That is, it gives a representation that
preserves the most mutual information between stimulus
and response classes. Moreover, the cost function (which
is intrinsic to the problem) does not introduce implicit
assumptions about the nature or linearity of the encoding
scheme, nor does the maximum entropy soft clustering
introduce additional implicit constraints to the problem.

A major thrust in this area is to find algorithms
through which the relevant stimulus space and the corre-
sponding neural symbols of a neuron or neural ensemble
can be discovered simultaneously and quantitatively,
making few assumptions about the nature of the code or
relevant features. The analysis presented in the following
sections of this manuscript enables this derivation of a
neural codebook by optimizing the Information Distor-
tion function.

IIT. ANALYTIC FORMULATION

How can we characterize a relationship between inputs
and outputs X <« Y, defined by the joint distribution
p(X,Y), in which both X and Y are large spaces?
We approach this problem by clustering (quantizing) the
stimulus and response spaces to smaller reproduction
spaces S and T [20], [43]. The joint probability p(S,T)
between the reproduction stimulus and response spaces,
S « T, induces an approximation of the original
relationship by

p(s,t) =Y alsl)q(tly)p(, ).

z,y

In this section we introduce the Information Bottle-
neck and Information Distortion methods, which deter-
mine an optimal soft clustering ¢*(T'|Y") of the response
space Y to a small reproduction space T' by optimizing
an information-based distortion function [10], [11]. In
general the stimulus clustering ¢(S|X) can be opti-
mized independently [20]. In this manuscript we do not
explicitly cluster the stimulus space, but set S = X
(¢(S|X) is the identity), and consider only the one-sided
quantization of Y, so that p(X,Y") is approximated by

p(s,t) = q(tly)p(e,y).

The soft clustering q(T'|Y") is a conditional probability
which assigns each of the K elements in the large space
Y to each of the N classes in the small space T" (N <<
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K) with some level of uncertainty. The space of valid
conditional probabilities A € RVK is

N
A= {q(TIY) 1) altly) =1 and q(tly) >0V t,y} :
t=1
The Information Bottleneck method finds an optimal
soft clustering ¢*(T'|Y’) by solving a rate distortion
problem of the form
mingea I(Y; T)

R[(Io) = I(X,T) Z IO (1)

where Iy > 0 is some information rate. The function
R;(Ip) is referred to as the relevance-compression func-
tion in [44]. The mutual information, I(X;T), is a
convex function of ¢(T'|Y")

p(X,T)

Bxrlog ()

B . >, a'p(z,y)
= > d'pla,y)log <p(x) Eyp(y)qt> :

z,y,t

I(xX;T) =

Here, so that the action of the group of symmetries
is clear, the soft clustering ¢ := ¢(T|Y) has been
decomposed into sub-vectors ¢* = ¢(t|Y’) € RE so that
g= ()" (@7 .. (")) e RVE.

The Information Distortion method determines an
optimal soft clustering by solving the maximum entropy
problem
maxgen H(T|Y)

)= “yxiry > 1 @

The conditional entropy H(T|Y') of the classes T' given
the neural responses, is a concave function of ¢(T'|Y)
H(T|Y) = —Eyrlogq(T|Y)

= = py)g'log(q')

Both problems (1) and (2) are of the form

maxgea G(q)

Rlho):="pig) > 1y )
where
N N
G(a) =) _g(¢") and D(q) = d(q"), 4)
t=1 t=1

and the real valued functions g and d are sufficiently
smooth. This type of problem also arises in Rate Dis-
tortion Theory [8], [13] and the Deterministic Annealing
approach to clustering [14].

The form of G and D indicates that permuting the
sub-vectors ¢ does not change the value of G and D.
In other words, G and D are invariant to the action of
SN,

G(g(TY)) = Gla(y(T)]Y)) = G(v(¢(T|Y)))



(and similarly for D(gq)) where 7 acts on T by rela-
beling the classes ¢ € {1,...,N}. In the language of
equivariant bifurcation theory [45], G and D are said to
be Sy-invariant, where Sy is the algebraic group of all
permutations on N symbols [46], [47].

The method of annealing has been used to find solu-
tions to optimization problems of the form (3) [9]-[12],
[14], [17]. The annealing problem is

ma (G(q) + BD(q)) o)

where the non-negative annealing parameter 3, a func-
tion of Iy for B > 0, is the Lagrange multiplier for
the constraint D(q) > Iy in the optimization problem
(3). The reciprocal of the annealing parameter is usually
referred to as temperature, in analogy to physical an-
nealing. After starting at go at By = 0, for which G(q)
is maximal, one continues this solution as ( increases
(temperature decreases) to [Omax, creating a sequence
(g, Br) that converges to (¢*, Bmax)- We will show that
a solution ¢* of the annealing problem (5) is always a
solution of the optimization problem (3) for Iy = D(¢*).
However, a solution of (3) is not necessarily a solution
of (5), although the stationary points (critical points or
the set of possible solutions) of (3) and (5) are the same
when (3 > 0 (see section IV-B).
The annealing problem corresponding to (1) is [9],
[10], [44]
max (—I(Y;T) + SI(X;T)), (6)
and the annealing problem for (2), in analogy with
Deterministic Annealing [14], is

max (HT|Y) + BI(X;T)) (7)

[11], [12], [17], [48].

The following basic annealing algorithm produces a
solution, ¢*, of the annealing problem (5) (and of the
optimization problem (3) for some Ij) by starting at a
maximum gy of G(q) (at Sy = 0), and then continuing
this solution as 3 increases from 0 to (pax, Creating a
sequence (qx, Ok) that converges to (¢, Bmax)-

Algorithm 3.1 (Annealing):  Let

qo be the maximizer of max G(q)
geA

and let By = 0, Bmax > 0. For k& > 0, let (gx, Ok)
be a solution to the annealing problem (5). Iterate the
following steps until S = Bpax for some K.
1) Perform -step: Let k41 = O+, where s, > 0.
2) Take ql(€0+)1 = qr + 7n, where 1 is a small pertur-
bation, as an initial guess for the solution g4 at

Bre+1-
3) Solve maxgea (G(q) + Br+1D(g)) to get the

maximizer gy1, using initial guess g, /.
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The purpose of the perturbation in step 2 of the algorithm
is due to the fact that a solution g1 may get “stuck”
at a suboptimal solution gi. The goal is to perturb q,(jzl
outside of the basin of attraction of g so that in step 3,
we find gr41 # g

A. An Example: The Four Blob Problem

To illustrate the behavior of the annealing solutions,
consider the method of annealing applied to (7), for
B € [0,2], where p(X,Y) is a discretization of a
mixture of four well separated Gaussians, presented by
the authors in [11], [12] (Figure 3). In this model, we
assume that X € {x;}?2, represents a range of possible
stimulus properties and that Y € {y;}32, represents a
range of possible neural responses. There are four modes
in p(X,Y’), where each mode corresponds to a range of
responses elicited by a range of stimuli. For example, the
stimuli {z;}11, elicit the responses {y;}>2,, with high
probability, and the stimuli {z;}37,, elicit the responses
{y;}28,, with high probability. One would expect that
the maximizer ¢* of (7) will cluster the neural responses
{y;}2, into four classes, each of which corresponds
to a mode of p(X,Y’). This intuition is justified by
the Asymptotic Equipartition Property for jointly typical
sequences [8].

The optimal clustering ¢* for N = 2, 3, and 4 is shown
in panels (b)—(d) of Figure 3. The clusters can be labeled
by T € {1,...,N}. When N = 2 as in panel (b), the
optimal clustering ¢* yields an incomplete description
of the relationship between stimulus and response, in
the sense that responses {y;}57, are in class 2 and the
responses {y;}>2,¢ are in class 1. The representation is
improved for the N = 3 case shown in panel (c) since
now {y; 11, are in class 3, while the responses {y; }3" 5
are still clustered together in the same class 2. When
N =4 as in panel (d), the elements of Y are separated
into the classes correctly. The mutual information in (e)
increases with the number of classes approximately as
log, N until it recovers about 90% of the original mutual
information (at N = 4), at which point it levels off.

The results from annealing the Information Distortion
problem (7) for N = 4 are given in Figure 4. The
behavior of D(q) = I(X;T) as a function of 3 can be
seen in the top panel. Some of the optimal clusterings
qy, for different values of ) are presented on the bottom
row (panels 1 — 6). Panel 1 shows the uniform clustering,
denoted by ¢ 1, which is defined componentwise by
a1 (t|y) := % for every ¢ and y. The abrupt symmetry
breaking transitions as 3 increases (depicted in panels
1 —2,2 — 3 and 5 — 6) are typical for annealing
problems of the type (5) [9]-[12], [14].

The action of Sy (where N = 4) on the clusterings
q can be seen in Figure 4 in any of the bottom panels.
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The Four Blob Problem from [11], [12]. (a) A joint probability p(x,y) between a stimulus set X and a response set Y, each with

52 elements. (b—d) The optimal clusterings ¢*(t|y) for N = 2, 3, and 4 classes respectively. These panels represent the conditional probability
q(t|y) of a response being classified to a class ¢ = v. White represents g(v|y) = 0, black represents ¢(v|y) = 1, and intermediate values are
represented by levels of gray. Observe that the data naturally splits into 4 clusters because of the 4 modes of p(z,y) depicted in panel (a). The
behavior of I(X;T) with increasing N can be seen in (e). The dashed line is I(X;Y"), which is the least upper bound of I(X;T).

The action of Sy permutes the numbers on the vertical
axis which merely changes the labels of the classes
{1,..., N}. Due to the form of G and D given in (4),
the value of the annealing cost function (5) is invariant
to these permutations.

%8 J 1 l 12 \ 1l;4 \ % \ 18 J 2
k==

Fig. 4. The bifurcations of the solutions (¢*, 3) to the Information
Distortion problem (7) initially observed by Dimitrov and Miller in
[11]. For a mixture of 4 well-separated Gaussians, the behavior of
D(q) = I(X; T) as a function of 3 is shown in the top panel, and
some of the solutions ¢* (T'|Y’) are shown in the bottom panels.

The bifurcation diagram in Figure 4 raises some
interesting questions. Why are there only 3 bifurcations
observed? In general, are there only N — 1 bifurcations
observed when one is clustering into N classes? In
Figure 4, observe that ¢ € R*€ = R20%, Why should
we observe only 3 bifurcations to local solutions of
the annealing problem (5) in such a large dimensional
space? What types of bifurcations should we expect:
pitchfork, transcritical, saddle-node, or some other type?
At a bifurcation, how many bifurcating branches are
there? Are the bifurcating branches subcritical (“turn
back™) or supercritical? When does a bifurcating branch
contain solutions of the optimization problem (3) and the
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Fig. 5. A graph of R(Ip) (3) for the Information Distortion problem
2).

corresponding annealing problem (5)? Do bifurcations of
solutions to the annealing problem (5) reveal properties
(such as convexity) of the original cost function R(Ij)
in (3)? How do the bifurcations of solutions to the
annealing problem (5) relate to bifurcations of solutions
to the optimization problem (3), which has no explicit
dependence on the Lagrange multiplier (3?

To help answer this last question, one can solve the
optimization problem (3) directly by annealing in . As
in Algorithm 3.1, in step 1, one can initially set Iy = 0
and then increment by ;41 = I + si; use the same
initial guess in step 2; and now solve (3) in step 3. Using
this method, we found solutions of (3) for a sequence of
Iy. We plot R(Iy) over this sequence in Figure 5.
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Fig. 6.  The bifurcations of stationary points to the Information
Distortion problem (7) which exhibit symmetry breaking from Sy —
S3 — S2 — S1 (color scheme is purple — blue — black — cyan),
for which Figure 4 only shows solutions.

B. Results in this contribution

For any annealing problem of the form (5) that satis-
fies some regularity conditions, this paper answers many
of the questions just posed about the bifurcations.

1) There are N — 1 symmetry breaking bifurcations
observed when continuing from the initial solution
q1 because there are only N — 1 subgroups in
the symmetry breaking chain from Sy — 5
(Theorem 6.2), for example Sy — Sy_1 —

. Sg — Sl.

2) The annealing solutions in Figure 4 all have
symmetry Sps for some M < N. There exist
other branches with symmetry S,, x S, when
m +n = N (Figure 6 and Theorem 6.2). In the
Four Blob problem, these solutions are suboptimal
since they yield mutual information values below
the envelope curve depicted in the figure.

3) Symmetry breaking bifurcations are generically
pitchforks (Theorem 6.3) and derivative calcula-
tions predict whether the bifurcating branches are
subcritical or supercritical (Theorem 6.5), as well
as determine optimality (Theorem 6.7). Symme-
try preserving bifurcations are generically saddle-
nodes (Theorem 6.9).

4) The relationship between the bifurcations of so-
lutions to the optimization problem (3) and the
annealing problem (5) is given in Figures 4 and
5. The Lagrange multiplier 3 is a function of I
for 5 > 0: turning Figure 4 sideways shows this
functional relationship. In fact, the bifurcations of
all stationary points to (3) is much more compli-
cated (see Figure 17). The curve R(Iy) in Figure
5 is non-increasing and continuous (Lemma 4.2)
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and envelopes R(Ip|q) over all stationary points ¢
of (3). Any curve below the envelope corresponds
to clusterings of the data which are not solutions
of the optimization problem (3).

5) A local solution to the annealing problem (5) does
not always continue through a symmetry breaking
bifurcation (Theorem 8.1). This would explain
why, in practice, solving (5) after bifurcation in-
curs significant computational cost [12], [14]. A
solution of the annealing problem (5) is always a
solution of the original optimization problem (3).
The converse is not true.

6) Bifurcations of solutions to the annealing problem
(5) dictate the convexity of the curve (3) (Lemma
8.2). In particular, a subcritical bifurcation of the
annealing solutions to (5) at 5(I}) implies that the
curve R(Iy) changes convexity in a neighborhood
of I (Corollary 8.3). This can be compared to the
rate distortion curve in information theory,

mingea I(Y;T)

Rrp(lo) := D(q) > I,

When D(q) is linear in g, then the rate distortion
curve is non-increasing, convex, and continuous
[8], [13]. This convexity result does not generalize
to either the Information Bottleneck (1) or the
Information Distortion (2) since D(g), in both
these cases, is not linear, although both of these
curves, under mild regularity conditions, are non-
increasing and continuous (Lemma 4.2).

IV. MATHEMATICAL PRELIMINARIES

This section is divided into four parts. First, we
define notations used throughout the rest of this paper.
Secondly, we present some key results from the theory
of constrained optimization. In the third part we apply
the theory to the optimization problem (3) and the
corresponding annealing problem (5). And finally, we
give a primer on bifurcation theory in the presence of
symmetries.

A. Notation

Let [Y| =K <ooand T € {1,..., N} so that |T| =
N < oo. There is no further restriction placed on N (i.e.
N can be larger than K). Recall that the K x N matrix
defining the conditional probability mass function of the



random variable T'|Y, is

qa(ly1)  q(1ly2) q(yx)
2| 2|y 2
L(T1Y) = q( !y) q( Iy ) q( I:yK)
q¢(Nly1) q(Nly2) ... a(Nlyk)
q(Y)" (¢H)”
B @)t | | ()T
A(NY)T ()T
where (¢¥)7 = q(T = v|Y) is the 1 x K row

of ¢(T'|Y). The following notation will also be used
throughout the rest of this contribution:

x¥ = the " K x 1 vector component of x €
RNE 5o that
z=(x"HT )T .. )T
q := the vector form of ¢(T'|Y)7,

a= (""" (" . @)

e =q(T =v]Y =y).

qr = the uniform conditional probability on T'|Y
such that ¢ L (TY') = + for every T and Y.

1, = n X n identity matrix when n > 0.

V.f = the gradient of a differentiable scalar func-
tion f(z) with respect to the vector argument
x.

d}f := the multilinear form of the n dimensional

array of the n'" derivatives of the scalar
function f. For example, d®f[y:,y2,ys] =

33
ik Triomam Wlily2lslusle

B. The Two Optimization Problems

In section III, we considered two different constrained
optimization problems, a problem with a nonlinear con-
straint (3)

maxgea G(q)
D(q) > Io

and the annealing problem (5)

max (G(q) + 6D(q)) -
qEA
Let us compare the respective Lagrangians, and the
necessary and sufficient conditions for optimality for
each of these problems.
The equality constraints from the optimization prob-
lem (3) and the annealing problem (5) are the same:

{ci(@)}ice = {Z vk — 1}

v k=1
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Assigning Lagrange multipliers {\ }/_, to the K equal-
ity constraints (0 is an annealing parameter), the La-
grangian L£(g, A, 3) for the annealing problem (5) with
respect to the equality constraints is

K N
G(a) +BD(q) + Y _ M (Z Quk — 1) : (8)
k=1 v=1

Thus, A € RX is the vector of Lagrange multipliers
A = (M, A2, ..., \g)T. The gradient of the Lagrangian
is

VL
Vq7>\£(q,)\,ﬂ) = ( v?\ﬁ ) )

where V,L = V,G + V,D(q) + A and A =

()\T AT )\T)T € RVE, The gradient VL is a
vector of the K equality constraints
>, —1
v | = e :
> Qz;K -1

Since we only consider equality constraints, the first
order necessary conditions for optimality, the Karush-
Kuhn-Tucker (KKT) conditions [49], are satisfied at
(¢*, A*,3*) if and only if V, xL(g*, A", %) = 0. A soft
clustering ¢* € A is a stationary point of the annealing
problem (5) for some G* if there exists a vector A* such
that V, A L(g*, \*, 6*) = 0 for the Lagrangian £ defined
in (8).

The Jacobian of the constraints for the annealing
problem is

ZU qu1 — 1
Z,/ qv2 -1
J1 = dyVaL=d, .
Zy QK — 1
= (Ix Ik Ix ),
N blocks

which has full row rank. Since the constraints are linear,
then a stationary point is a solution of the annealing
problem (5) if d?(G(q*) + BD(q*)) is negative definite
on ker J; [49].

Only the optimization problem (3) is encumbered with
the non-linear constraint D(q) — Iy > 0. Assigning the
Lagrange multiplier (3 to this constraint, we see that the
Lagrangian in this case is

K N
£ = Glg) + BD@) — ) + 3 A (Z Goi — 1) |
k=1 v=1

This shows that the gradient of the Lagrangian is the
same for the optimization problem (3) and the annealing
problem (5), Vg L = V4 L.



The Jacobian of the constraints for the optimization
problem (3) is

Zy qul — 1
ZV qu2 — 1
JQ((]) = quM;L = dq
ZV dQvK — 1
D(q) — Io

N < VDj(ch)T )

which is a function of ¢, and, for generic D(q), of full
row rank. By the theory of constrained optimization, a
stationary point ¢* of the annealing problem (5) is a
local solution of (3) for some I if d*(G(q*) + 3D(q*))
is negative definite on ker J, [49].

If (¢*, A\*,3*) is a solution of the optimization prob-
lem (3) for some Iy, then by the KKT conditions, 3* is
unique and non-negative. This shows that the optimal 3
can be written as a function of I, 5(Ip). For 5* > 0, the
KKT conditions are satisfied at (¢*, \*, 3*) if and only if
Vqﬁ,\,gﬁ(q*, A*, 5*) = 0. That is, the constraint D(¢*)—
Iy is active and equal to zero. Thus, if (¢*, \*,5*) is a
stationary point of the annealing problem (5) for 3* > 0,
then for Iy = D(q*), (¢*,\*,5*) satisfies the KKT
conditions for the optimization problem (3).

We have just proved the following theorem.

Theorem 4.1: Suppose that ¢* € A is a stationary
point of the annealing problem (5) for some 3 > 0 such
that J(¢*) has full row rank.

1) If d?(G(q*) + BD(q*)) is negative definite on

ker J; then ¢* is a solution of (3) (for Iy = D(q*))
and (5).

2) If d*(G(q*) + BD(q*)) is negative definite on
ker J>(g*), then ¢* is a solution of (3) for Iy =
D(q").

3) Conversely, if ¢* is a local solution of (5) for
some (%, then there exists a vector of Lagrange
multipliers A* so that V, »L(¢*, \*, 3*) = 0 and
d*(G(q*) + B*D(q*)) is non-positive definite on
ker J;.

4) If ¢* is a solution of (3) for some I, then there
exists a vector of Lagrange multipliers (\*, 3*)
so that V, \L(q*,\*,3*) = 0 and d*(G(q*) +
B*D(gq*)) is non-positive definite on ker Ja(g*).

The fact that every solution of the annealing problem
(5) is also a solution of the optimization (3) follows
from the observation that ker J; contains ker J2(q*): if
w satisfies Jo(¢*)w = 0, then J;w = 0. However, there
may be solutions of (3) which are not annealing solutions
of (5). This is illustrated numerically for the Information
Distortion problem (7) in section VIII-A.

Now let us consider for what values of I, the opti-
mization problem (3) has a solution. Clearly, one nec-

11
essary condition is that Iy < maxgea D(q) = Imax. In
fact, R(Ip) is a non-increasing curve, and, when defined
as in (1) or (2), continuous. This is what we prove next.

Lemma 4.2: The curve R(Iy) is non-increasing on
Iy € [0, I;max], and is continuous if the stationary points
q* of G(q) (i.e. V,G(q*) = 0) are not in Qy, for Iy > 0,
where

Qr, :={q€ A[D(q) = In}

Proof: If I > I, then Q;, C Qj,, which shows
that R(I;) < R(I3). To prove continuity, take an
arbitrary Iy € (0, Inax). Let

Mj, == {y |y = G(q) where g € Qy, }

be in the range (in R) of the function G(q) with the
domain Qjp,. Given an arbitrary € > 0, let MIE0 be an ¢
neighborhood of M, in R. By assumption (4), G(q) is
continuous on A, and so the set G~ (M7 ) is a relatively
open set in A. Because by definition G(Qp,) = Mj,, we
see that

Qy, C GTH(Mj,). ©)

Furthermore, since VG(q) # 0 for ¢ € Qy,, then, by
the Inverse Mapping Theorem, G~'(Mjf ) is an open
neighborhood of Qj,.

The function D(q) is also continuous in the interior
of A. Observe that Q7, = D 1([Iy, I;max]) is closed,
and thus Qj, is closed and hence compact. Thus, by
(9) G71(Mj)) is a relatively open neighborhood of a
compact set Qp,. Therefore, since D(q) is continuous,
there exists a & > 0 such that the set

IntQr,ss = D (I + 6, Imax]) N A
is a relatively open set in A such that
Qry CIntQpy 45 C G™H(Mj,).
It then follows that

| max G(q) — HQlaXG(q)| < e

Qry+s Iy

which means that

|R(D(q)) — R(Ip)| < € whenever D(q) — Iy < 4.

C. An Overview of Bifurcation Theory with Symmetries

In this section, the general terminology and concepts
related to studying bifurcations of dynamical systems
with symmetries is reviewed. The dynamical system we
will study, whose equilibria are stationary points of the
optimization problem (3)), in the sequel is the gradient
flow of the Lagrangian. For a detailed treatment, see
Golubitsky et al. in [45].



Consider the system of ordinary differential equations

@ = f(x,0)

where f : V x & — V is sufficiently smooth for
some Banach space V, * € V, and § € R is a
bifurcation parameter. An equilibrium or steady state of
the differential equation is a zero of f. An equilibrium
(z,0) is linearly stable if all of the eigenvalues of the
Jacobian, dg f(x,3), have a negative real part. If some
eigenvalue has a positive real part, then the equilibrium is
unstable. A bifurcation point is an equilibrium (x*, 5*)
where the number of equilibria changes as (3 varies in
a neighborhood of §*. At a bifurcation, the Jacobian
dg f(x*, %) is singular, (i.e. dgf(x*,3*) has a zero
eigenvalue). Otherwise, the Implicit Function Theorem
could be used to find a unique solution x(() in a
neighborhood of (x*, 3*). The bifurcating directions are
in the kernel of the Jacobian, defined as

ker dg f(x*, 8%) :={w € V : dp f (™, 5" )w = 0}.

An equilibrium (x*,5*) is a singularity of f if
dz f(x*, B*) is singular. A singularity is a possible bi-
furcation point, since it satisfies the necessary condition
for a bifurcation.

Let " be a compact Lie group which acts on V' (Sy
is a specific case of such a group). The vector function
f is I-invariant if

f(x,8) = f(yz, B)

for every v € I'. f is I'-equivariant if

vf(=, B) = f(yz, B)

for every v € I'. The isotropy subgroup > C T of x € V
is defined as

Y={yel :yx=u}.

In other words, « has symmetry .. The fixed point space
of a subgroup ¥ C I is

Fix(¥):={x € V:yx = forevery v € X}.

A symmetry breaking bifurcation is a bifurcation for
which the isotropy group of the bifurcating equilibria is a
proper subgroup of the group which fixes the bifurcation
point. A symmetry preserving bifurcation is one for
which the symmetry of the bifurcating equilibria is the
same as the group which fixes the bifurcation point.

The Equivariant Branching Lemma, attributed to Van-
derbauwhede [50] and Cicogna [51], [52], relates the
subgroup structure of I' with the existence of sym-
metry breaking bifurcating branches of equilibria of
& = f(x, ). For a proof see [45] p.83.

Theorem 4.3 (Equivariant Branching Lemma): Let f
be a smooth function, f : V x & — V which is I'-
equivariant for a compact Lie group I', and a Banach
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space V. Let ¥ be an isotropy subgroup of I' with
dim(Fix(X)) = 1. Suppose that Fix(T') = {0}, the
Jacobian df(0,0) = 0, and the crossing condition
d%,f(0,0)zo # 0 is satisfied for ¢y € Fix(X). Then
there exists a unique smooth solution branch (txg, 3(t))
to f = 0 with isotropy subgroup .

Remark 4.4: For an arbitrary I'-equivariant system
where bifurcation occurs at (x*, 3*), the requirement in
Theorem 4.3 that the bifurcation occurs at the origin is
accomplished by a translation. Assuring that the Jacobian
vanishes, d f(0,0) = 0, can be effected by restricting
and projecting the system onto the kernel of the Jacobian.
This transform is called the Liapunov-Schmidt reduction
(see [53)).

Definition 4.5: The branch (txg, 5(t)) is transcritical
if 3’(0) # 0. If 8'(0) = 0 then the branch is degenerate.
If #(0) = 0 and $”(0) # O then the branch is a
pitchfork. The branch is subcritical if for all nonzero
t such that |t| < € for some ¢ > 0, t3'(t) < 0. The
branch is supercritical if t3'(t) > 0.

Subcritical bifurcations are sometimes called first or-
der phase transitions or jump bifurcations. Supercritical
bifurcations are also called second order phase transi-
tions.

An Example: Pitchforks and Saddle-nodes: To illus-
trate some of the concepts just introduced, let us consider
the following Zs-equivariant differential equation

i = f(z,8) = fa +a° — 2°

whose equilibria are shown as a function of 3 in Figure
7 (see also [54]). This simple problem illustrates both
types of bifurcations which we expect to see for any
Sn-equivariant annealing problem of the form (5) such
that (4) holds.
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Fig. 7. The bifurcation diagram of equilibria of ¢ = f(z,8) =
Bz + 23 — 2%, A subcritical pitchfork bifurcation occurs at (z =
0,8 = 0), and saddle-node bifurcations occur at (% %, —%). The
branches drawn with dots are composed of unstable equilibria, and the
branches drawn with a solid line are composed of stable equilibria.

The group Zy = {—1, 1} acts on a scalar by multipli-



cation by either -1 or 1. Equivariance is established since
—f = f(-=z,8). For all 8, x = 0 is an equilibrium.
Since d,f = 3 + 322 — 52%, then (z = 0,8 = 0)
is a singularity. Observe that x = 0 is the only scalar
invariant to the action of Z3 (i.e. Fix(Zz) = {0}) and
¥ = {1} C Z; is an isotropy subgroup with a one
dimensional fixed point space, Fix(X) = . Since the
crossing condition d%_, f(0,0) = 1 # 0 is satisfied, then
the Equivariant Branching Lemma gives the existence of
a bifurcating solution emanating from (z = 0,5 = 0),
with direction xy = 1. Parameterizing the bifurcating
branch as (t,3(t)), we have that

Bty =t — 2

for t # 0. As a consequence of the Z, symmetry, we
actually have two bifurcating branches, one for positive
t, and one for negative ¢. Since 5'(0) = 0, then the
bifurcation at the origin is degenerate, and 3/(0) = —2
implies that the bifurcation is in fact a subcritical pitch-
fork bifurcation.

The bifurcating branches emanating from the origin
are unstable since the Jacobian d,f(z, ) < 0 for all

|z < \/g and 3 < 0. As |z| increases, the higher order
quintic term of f eventually dominates and causes the
branches to turn around and become stable at the saddle-
node bifurcations at (z = +4/3,08 = —1%).

The methodology we have applied in this simple
example is how we will proceed to analyze bifurcations

of stationary points to arbitrary annealing problems of
the form (5) when (4) holds.

V. SYMMETRIES

Why do the optimization problem (3) and the anneal-
ing problem (5) have symmetry? How can we capitalize
on this symmetry to solve these problems? These are the
questions which are addressed in this section.

The symmetries of the optimization problems (3) and
(5) arise from the structure of ¢ € A and from the form
of the functions G(g) and D(q) given in (4): permuting
the sub-vectors ¢” does not change the value of G and
D: this is the symmetry, Sy-invariance.

We will capitalize upon the symmetry of Sy by
using the Equivariant Branching Lemma to determine
the bifurcations of stationary points, which includes local
annealing solutions, to (5)

max (G(q) + 6D(q)) -

qen
As we pointed out in section IV-B, this also yields the
bifurcation structure of stationary points of the optimiza-
tion problem (3) with respect to Ij.

In this section we lay the groundwork necessary
to give the bifurcation structure for a larger class of

constrained optimization problems of the form
max F
may (g,8)

as long as I’ satisfies the following:
Assumption 5.1: The function F'(g,3) is of the form

N
F(q,8) =Y f(q".B)

for some smooth scalar function f, where the vector g €
A C RVE is decomposed into N sub-vectors ¢” € RE.

The annealing problem (5) satisfies Assumption 5.1
when

F(q,0) = G(q) + 8D(q),

and G and D are of the form given in (4). This
includes the Information Bottleneck problem (6), and the
Information Distortion problem (7).

It is straightforward to verify that any F' satisfying
Assumption 5.1 has the following properties.

(10)

1) F is Sy-invariant, where the action of Sy on ¢
permutes the sub-vectors ¢” of q.

2) The NK x NK Hessian d*F is block diagonal,
with N K x K blocks.

The rest of this section is divided into three parts.
In the first part, we define the gradient flow of the
Lagrangian, whose equilibria are stationary points to the
annealing problem (5), and show how the symmetries
manipulate the form of its Jacobian (i.e. the Hessian of
the Lagrangian). Secondly, we classify the equilibria of
the gradient flow according to their symmetries. Thirdly,
we give a detailed description of the kernel of the
Hessian at a bifurcation. This space is determined by
considering the reduced problem: one only needs to
compute the one dimensional kernel of a single block
of d*F(q*). The form of the larger kernel, as well as
the many bifurcating directions, follows from applying
the symmetries.

A. The Gradient Flow

We now formulate a dynamical system whose equilib-
ria correspond to the stationary points of the annealing
problem (5). This system is the gradient flow of the
Lagrangian.

With F(q,3) = G(q) + 8D(q) as in (10) such that
G and D satisfy (4), the Lagrangian of the annealing
problem (5), which we derived in (8), can be written as

K N
L(g, A B) = F(a,0) + D M (Z Quk — 1) :
k=1 v=1

The gradient of the Lagrangian is

VL V.F+ A
VE = V(IJ\L((L)‘HB) = < viﬁ ) = < 1 + )a

VL



where A = (AT AT .. MT)T The (NK+K)x (NK+
K) Hessian of the Lagrangian is
> , (1D

*F(q,8) JI
2 32 _ B 1
d E(Q) T dq,/\‘c(%)‘aﬂ) - < Jl 0
where 0 is K x K. The NK x NK matrix d’F is the
block diagonal Hessian of F',

B 0 ... 0
) ) 0 B .. 0
d°F(q) = d F(q,8) = : : : ,
0 0 Bn

where B, = d%f(q", 3) (see Assumption 5.1) are K x K
matrices for v =1,..., N.

The dynamical system whose equilibria are stationary
points of the optimization problem (3) and the annealing
problem (5) can now be posed as the gradient flow of
the Lagrangian

(1

[0, 00). Recall that equilibria of (12) are points

€ RVE+K where

) = VL(g, )\, 3) (12)

7 N\
>

*
~_-M

VL(g", A", 8) = 0.

The Jacobian of this system is the Hessian d>£(q, A, 3)
from (11).

The methodology we applied to the simple example
in IV-C is how we will proceed to analyze bifurcations
of equilibria of the gradient flow (12). The Equivariant
Branching Lemma gives the existence of branches of
equilibria at symmetry breaking bifurcations. At such a
bifurcation, we will show that 8'(0) = 0, so that the
bifurcations are degenerate. When 3”(0) # 0, then the
bifurcations are pitchforks, and the sign of 3”(0) deter-
mines whether the bifurcating branches are subcritical
or supercritical. We will determine the stability of these
equilibria by considering the eigenvalues of the Hessian
d*L(q,\, ).

Yet, by Theorem 4.1, it is the Hessian d?F(q*,[3)
which determines whether a given equilibrium is a solu-
tion of the optimization problem (3) or of the annealing
problem (5). We will show how stability relates to
optimality in the optimization problems (3) and (5) in
section VIII-A.

B. Egquilibria with Symmetry

Next, we categorize the equilibria of the gradient
flow (12) according to their symmetries, which allows
us to determine when we expect symmetry breaking
bifurcations versus symmetry preserving bifurcations.
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Recall that ¢ = ((¢")7, ..., (¢¥)T)T is the vector form
of the soft clustering ¢(T'|Y") of the responses Y into
the classes T = {1,..., N}. Let {¢;}]_, be a partition
of the classes of T such that ¢ = ¢" if and only if
v, € Uj. That is, U NUy, = () for j # k and U_, U; =
{1,...,N}. If M; := |U;| is the order of U; (so that
Zle M; = N), then we have that ¢ has isotropy group

S]yjl X SM2 X ... X SMI,

where Sjs, acts on ¢ by permuting the vector sub-
components ¢” for every v € U,;. For example, in
bottom panel 2 of Figure 4, N = 4, U; = {1},
U = {2,3,4}, and ¢*> = ¢ = ¢*. So ¢ has isotropy
subgroup S; X Ss, or, more simply, S3. In panels 3,
4 and 5, Z/{l = {1}, UQ = {2,4} and Z/{3 = {3},
and the associated clustering ¢ has isotropy group So.
It is clear from Assumption 5.1 that if ¢ = ¢", then
d*>f(q") = d*>f(q"): the v and n'" blocks of d*>F(q)
are equal. So, d?F(q) has M; blocks, B, for v € U;,
that are equal for each +.

Suppose that (¢*, A\*, 5*) is a singularity such that
g* has isotropy group Sps, X Sar, X ... X Sur,. By
definition, d2£(q*) is singular. Additionally, only one
of the following is also true:

1) d*F(q*) is singular.

2) d?F(q*) is nonsingular.

In the first case we expect to get a symmetry breaking
bifurcation (Theorem 6.2). In the second case we get a
symmetry preserving bifurcation (Theorem 6.9).

Let us investigate case 1 and assume that d*£(q*)
is singular, and that d?F(q*) is singular, with only M;
singular blocks B, for v € U;. To ease the notation we
set

U:=U;, M:=M; and R := qu.
J#i
To distinguish between singular blocks B, v € U and
non-singular blocks B, v € R. We will write

B:=B, forv elU. (13)

The type of symmetry breaking bifurcation we get
from a singular equilibrium (¢*, A*, 8*) only depends
on M, the number of blocks B which are singular. This
motivates the following definition.

Definition 5.2: An equilibrium (¢*, \*, 3*) of the gra-
dient flow (12) is M-singular (or, equivalently, ¢* is M-
singular) if:

D Ul=M.

2) ¢” = q" for every v,n € U (i.e. ¢ € Fix(Sn)).

3) For B, the M block(s) of the Hessian defined in

(13),

ker B has dimension 1 with basis vector v € R (14)



4) The N — M block(s) of the Hessian {B, },cr are
nonsingular.
5) The matrix
A:=BY B, +MIx (15)
VER

is nonsingular. When M = N, R is empty, and in
this case we define A = Ng.

We wish to emphasize that when d?F'(¢*) is singular,
that the requirements 3-5 in Definition 5.2 hold gener-
ically [31]. The technical requirement 5 is crucial for
a symmetry breaking bifurcation to occur. We will see
later that the matrix A becomes singular at symmetry
preserving bifurcations.

From Assumption 5.1, it is clear that £(q, A, ) and
F are Sy-invariant, and that VL(g, A\, 3) and VF are
Sn-equivariant.

It is straightforward to show that every block of the
Hessian of the Information Bottleneck cost function (6)
is always singular. At a bifurcation point (¢*, \*,3*)
which is in Fix(Sys), the M blocks of d*F(q*) =
d?* (—I(Y;T) + BI(X;T)) referred to in requirement
3 of Definition 5.2 have a two dimensional kernel, re-
quirement 4 is not met, and the matrix A in requirement
5 is not even defined. A similar theory to that presented
here, which projects out the “perpetual kernel,” explains
the bifurcation structure of solutions for the Information
Bottleneck problem (6). Some details will be discussed
in section VIII-B.

C. The Kernel of the Hessian d*L(q*)

Here, we see how the symmetry of ¢* and F' eases
the computation of multiple equilibria (¢*, A*, 3*) of
the gradient system (12) at a bifurcation. As reviewed
in section IV-C, the Jacobian d?L(q*) from (11) is
singular, and the bifurcating branches are tangent to
ker d2L(q*) C RNEFTK To describe these bifurcating
branches when ¢* is M-singular, we need only work
with a reduced space, the kernel of B from (14), which
is a one dimensional subspace of #*% with basis vector
v. By the symmetry, this one vector explicitly determines
the larger spaces ker d?F'(¢*) and ker d®£(q*) (Theorem
5.3), and yields the bifurcating branches (Lemma 5.5).

Intuitively, it is the vector v € ker(B) which specifies
how each of the K responses of Y ought to split at a
bifurcation in order to increase the value of ' on A. It
is the symmetry which specifies how the responses are
explicitly assigned to the classes, and these assignments
are the bifurcating directions.

We first determine a basis for kerd?F(g*) at an
M-singular ¢*. Recall that in the preliminaries, when
x € RVE we defined z¥ € RE to be the vt
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vector component of . Using this notation, the linearly
independent vectors {v;}£, in RV can be defined by

vo._
o= {

where 0 € RX. Since q* is M-singular, then
dim(ker d*F(q*)) = M, which implies that {v;}},
is a basis for ker d?F(q*). For example, consider the
bifurcation where symmetry breaks from S; to S in
Figure 4 (see panels 2 and 3 in the bottom row). At this
bifurcation, M = N —1 =3, R = {1}, U = {2,3,4},
and d?>F(q*) is three dimensional with basis vectors

V1 = (OvaaOaO)Tv Vo = (O,O,UT70)T,
vs == (0,0,0,v1)T

v if v is the i*" uniform class of U

0 otherwise (16)

where 0 is 1 x K.
The basis vectors of kerd?F(q*) can be used to
construct a basis for ker d2£(q*) when M > 1. Let

-(3)-(%)

fori =1,..., M —1 where 0 € R¥. Using (11), it is easy
to see that d?L(q*)w; = 0, which shows that {w;} are
in ker d?£(q*). Thus, if d*F(q*) is singular and ¢* is
M -singular for 1 < M < N, then d?L(q*) is singular.

The fact that the vectors {w, } are linearly independent
is straightforward to establish. To show that they actually
span ker d?L(q*) (and so are a basis) relies on the
assumption that ¢* is M -singular, which assures that the
matrix A = BY_ B, '+ M1k, introduced in Definition
5.2, is nonsingular.

We have the following Theorem. The proof of the first
two parts is above, and a proof of the third part can be
found in [31].

Theorem 5.3: If ¢* is M-singular for some 1 < M <
N, then

1) The vectors {v;}M, defined in (16) are a basis for

ker d®F(q*).

2) If d®F(q*) is singular then d>£(q*) is singular.

3) The vectors {wi}fifl defined in (17) are a basis

for ker d?L(q*).

Observe that the dimensionality of ker d*£(q*) is one
less than ker d?F(g*). This insight suggests that when
dimker d>F(g*) = 1, then d?£(g*) is nonsingular. This
is indeed the case.

Corollary 5.4: If ¢* is 1-singular, then d?L(q*) is
nonsingular.

a7

D. Isotropy Groups

The isotropy group of an equilibrium ¢ =
()T, ..., (@)T)T of the gradient system (12) is a
subgroup of Sy which fixes g. If ¢ = ¢" for all of
the M classes v, € U, then Sy C Sy is the isotropy



Fig. 8. The lattice of the isotropy subgroups Sy < Sy for N =4
and the corresponding basis vectors of the fixed point spaces of the
corresponding groups.

group of ¢, where Sy freely permutes the sub-vectors
q” if v € U, but holds fixed the sub-vectors ¢ if v € R.

The isotropy groups of (g, A) for the soft clusterings
q pictured in Figure 4 are clear. In panel 1 of the bottom
row, U = {1,2,3,4}, and the isotropy group is Ss. In
panel 2, U = {2,3,4} and the isotropy group is S3. In
panels 3 and 4, U/ = {2, 4} and the isotropy group is Ss.

Restricted to ker d>£(g*), the fixed point space of
the subgroup Sp;—1 C Sy is one dimensional (see
Corollary 5.6 and Figure 8). Golubitsky and Stewart [55]
show that all of the isotropy subgroups in Sj; with one
dimensional fixed point spaces are of the form S, X S,
where m+n = M. The following Lemma which follows
from this result will allow us to use the Equivariant
Branching Lemma (Theorem 4.3 and Remark 4.4) to
ascertain the existence of explicit bifurcating solutions.

Lemma 5.5: Let M = m + n such that M > 1 and
m,n > 0. Let U,,, be a set of m classes, and let U/, be a
set of n classes such that U,,, \U,, = 0 and U,, UU,, = U.
Now define @ (,, ) € RV such that

Zv  if v el
—v ifvel,
0 otherwise

~U
u(m,n) =

where v is defined as in (14), and let

(] m,n
U(m,n) = < (0 ) )

where 0 € R Then the isotropy subgroup of W(m,n) 1S
Sy X S,, where S,,, acts on u” when v € U,,, and S,
acts u” when v € U,,. The fixed point space of S, X .S,
restricted to ker d2£(q*) is one dimensional.

Without loss of generality, one can assume that U,
contains the first n classes of I/, and that U, contains
the other m classes. Now it is str%ghtforward to verify
that u =" w4+ 2 M ), confirmin

(m,n) i=1 Wi T 3y 2 j=n+y1 Wi» g
that w,, ) € ker d*£L(¢*) as claimed.

(18)

+1

Fig. 9. A bifurcating solution from the soft clustering ¢ =
(@7, (@, (@7, (@")T)T € Fix(S3) at B ~ 1.1339 (panel
3 in the bottom row of Figure 4) where S3 acts on g by freely
permuting the three sub-vectors g2, ¢3, ¢*. Note that t is a scalar.
The bifurcating direction is @ = (0, —v7, 20T, —vT)T € Fix(S2),
which is invariant under S2 permuting @? and @*. The new soft
clustering g + tu after the bifurcation has isotropy group Sa.

Letting m = 1 and n = M — 1 yields the following
Corollary.
Corollary 5.6: Let w;, € RVX such that

(M —1)v if vis the k™" class of U
wy = —v if v # k is any other class of U
0 otherwise

where v is defined as in (14), and let

(%)

where 0 € RX. Then the isotropy subgroup of wy is
Sayr—1. The fixed point space of Sj;_1 restricted to
ker d?£(q*) is one dimensional.

Figure 8 gives the lattice of isotropy subgroups of Sy
when N = 4, and the corresponding basis vectors of the
fixed point spaces.

Figure 9 depicts a soft clustering ¢ € Fix(S3) where
Sy acts on ¢ = ((¢")",(¢>)",(¢*)", (¢")")" by per-
muting the three sub-vectors ¢2, ¢, ¢*. Also depicted is
a vector @ = (0, —vT 20T —vT)T € Fix(S,) where

S, permutes @” and at,

19)

VI. BIFURCATIONS

There are two types of bifurcations of equilibria in any
dynamical system with symmetry: symmetry breaking
bifurcations and symmetry preserving bifurcations. We
next address each of these bifurcation types for the flow
(12), and conclude with a generic picture of the full
bifurcation structure.

Equilibria of the gradient flow of the Lagrangian (12)
are stationary points of the optimization problem (3) and
of the annealing problem (5). Thus, this section gives the
bifurcation structure of these stationary points.

A. Symmetry Breaking Bifurcations

We have laid the groundwork so that we may ascertain
the existence of explicit bifurcating branches of equilib-

ria of (12)
(1) =vewrn.



from an equilibrium (g,* , A*, 6*) when ¢* is M -singular
for M > 1 (Theorem 6.2). We will show that these
symmetry breaking bifurcations are always degenerate
(Theorem 6.3), that is, #'(0) = 0. If 87(0) # 0,
which is a generic assumption, then these bifurcations
are pitchforks. We will provide a condition, called the
bifurcation discriminator, which ascertains whether the
bifurcating branches with isotropy group S, x S, are
subcritical or supercritical (Theorem 6.5). Lastly, we also
provide a condition which determines whether branches
are stable or unstable (Theorem 6.7).

Throughout this section we assume that (¢*, \*, 5*) is
an M -singular point for M > 1. The reduced problem,
finding the vector v € R in the kernel of the M singu-
lar blocks B of d?F'(q*), specifies how the data Y ought
to split. Thus d?F(q*) and d?L(g*) is both singular. The
vectors w; € RVEHE are constructed from the vector v,
and they form a basis for ker d2£ which has dimension
M — 1. The vectors u(y, ) € RVETE are particular
vectors in ker d2£ which have isotropy group S, x S,,.
Since these belong to ker d?L, they are in the span of
the vectors w; and hence are also constructed using the
vector v. The vectors w,, ,,) determine which classes of
T the data is split into.

1) Crossing Condition: Before presenting the ex-
istence theorem for bifurcating branches, it is first
necessary to address when the crossing condition
(“d%mf(0,0) # 07), required by Theorem 4.3, is sat-
isfied. Observe that when F(q,@ = G(q) + BD(q)

as in (10), then dg(d’L) = 0

problems of the form (5), we have shown [31] that the
crossing condition in Theorem 4.3 is satisfied if and only
if

. For annealing

vl d*D(q*)v; # 0 (20)

where v; is any of the basis vectors of ker d?F(¢*) (see
(16)). This result is illuminating: if d®>D(q*) is either
positive or negative definite on ker d>F(q*), then the
crossing condition is satisfied. We have the following
Theorem.

Theorem 6.1: Suppose that ¢* is M-singular for 1 <
M < N.

1) If d®D(q*) is either positive or negative definite
on ker d?F(q*), then (¢*, \*,3*) is a singularity
of the gradient flow of the Lagrangian (12) if and
only if (¢*, \*,8*) is a bifurcation point.

2) If d?G(q*) is either positive or negative definite
on ker d?F(q*), then (¢*, \*,3*) is a singularity
of (12) if and only if (¢*, \*, 3*) is a bifurcation
point.

Proof: The first part of the Theorem follows
from the claim that the crossing condition is equiv-
alent to (20). To prove the second part, observe

I(X;T)

Fig. 10. Bifurcation diagram of stationary points of (7) when N = 4.
Figure 4 showed an incomplete bifurcation diagram for this same
scenario since the algorithm in that case was affected by the stability of
the branches. The panels illustrate the sequence of symmetry breaking
bifurcations from the branch (g1 ,A,3) with symmetry Sy, to a

branch with symmetry S3 (blue),Nthen to Sz (black), and finally, to
S1 (cyan).

that if k € kerd?F(q*), then d*F(¢*)k = 0 im-
plies that k" d>G(¢*)k + 5*k" d*D(¢*)k = 0. Since
E'd?G(¢* )k < 0 (or kTd?>G(¢*)k > 0), then
E'AD(¢*)k > 0 (or k' AD(¢*)k < 0). Now apply
the first part of the Theorem. O

By Theorem 6.1, for annealing problems where G(q)
is strictly concave, d?D(q) is positive definite on
ker d®F(q*), so every singularity is a bifurcation point.
For the Information Distortion problem (7), G(q) =
H(T|Y) is strictly concave, so every singularity of
d?L(q*) is a bifurcation. For the Information Bottleneck
problem (6), G(q) = —I(Y;T) is concave, but not
strictly concave, and D(q) = I(X;Y’) is convex, but
not strictly convex.

2) Explicit Bifurcating Branches: By Lemma 5.5 and
the Equivariant Branching Lemma, we have the follow-
ing existence theorem.

Theorem 6.2: Let (¢*, A*, 3*) be an equilibrium of
the gradient flow (12) such that ¢* is M-singular for
1 < M < N, and the crossing condition (20) is

satisfied. Then there exists ”JLV,[ !! bifurcating solutions,

q*
)\*
fined in (18), for every pair (m, n) such that M = m+n
and m,n > 0, each with isotropy group isomorphic to
Sy, X ;5). Of these solutions, there are M of the form

;]\* + tuy, B* 4+ 5(t) |, where uy is defined in
(19), for 1 < k < M, each with isotropy group Sp;_1.
Figure 8 depicts the lattice of subgroups of Sy of the
form Sy; for 1 < M < N, as well as the M bifurcating
directions from a bifurcation at (¢*, \*, 3*) guaranteed
by Theorem 6.2. Observe that EV u” = 0, which is true
for any vector in ker d2£(q*) by (17). This assures that
for small enough ¢, ¢* + ta is in A.

+ tU(,n), B+ B(L) |, where u(y, ,) is de-



040 T T T T T
0.35 e
03l /
e
025
£ oz
" oast
01f
005 I ‘
, . , , f , . . .
1y 11 12 ) 13 14 15 \1.6 17 vis
1 2 3 4 5
)_ h E ﬁ

Fig. 11. Symmetry breaking bifurcations from the branch (g1 , A, 3)
with symmetry Sy to branches which have symmetry So X Sa.

Figure 9 depicts a symmetry breaking bifurcating
solution from ¢ € Fix(S3) to (¢ + t@) € Fix(S2) at
B* = 1.1339.

Figures 6 and 10 show some of the bifurcating
branches guaranteed by Theorem 6.2 when N = 4
for the Information Distortion problem (7) (see section
VII for details). The symmetry of the clusterings shown
depict symmetry breaking from Sy — S3 — Sy — S;.

Figure 11 depicts symmetry breaking from Sy to So X
S5. The first bifurcation occurs at 3* = 1.0387, as does
the symmetry breaking bifurcation from Sy to S5 given
in Figure 10. The subsequent two bifurcating branches
given in Figure 11 correspond to bifurcations at g* =
1.1339 and (* = 1.3910.

Theorem 6.2 does not exclude the existence of other
bifurcating directions with symmetry other than Sy;_1 or
Sm % Sy, (consider for example the symmetry S, x.Sp xS,
where a + b + ¢ = M). To our best knowledge, for
the Information Distortion, Information Bottleneck, and
Deterministic Annealing methods, such bifurcating solu-
tions have never been observed [10], [11], [14]. However,
rigorous results in this direction are still lacking.

3) Pitchfork Bifurcating Branches: Suppose that a bi-
furcation occurs at (¢*, \*, 5*) where ¢* is M-singular.
This section examines the structure of the bifurcating

branches
q*
A*

whose existence is guaranteed by Theorem 6.2. The
proofs to the results which follow rely on the explicit
computation of the derivatives of the Liapunov-Schmidt
reduction referred to in Remark 4.4. We will cite the
Theorems, and the interested reader is referred to [31]
for the proofs.

Theorem 6.3: If ¢* is M-singular for 1 < M < N,
then all of the bifurcating branches (21) guaranteed by
Theorem 6.2 are degenerate (i.e. 5'(0) = 0).
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Fig. 12. A close up, from Figure 10, of the branch with S symmetry
(in black) which connects the S3 symmetric branch below (blue branch
in the lower left) to the S; symmetric branch (cyan branch in the
upper right). The soft clusterings on the suboptimal S> symmetric
branch (lower black branch) are investigated further in Figure 15. By
Theorem 6.3, the symmetry breaking bifurcations from S3 — Sg and
from Sz — Sy are degenerate, and, since 3"/(0) # 0, a pitchfork.

From Definition 4.5, the sign of 3”(0) determines
whether a bifurcating branch (21) is a pitchfork and
subcritical (5”(0) < 0) or a pitchfork and supercriti-
cal (5”(0) > 0). Without further restrictions on ((t),
B3"(0) # 0 generically, as in the case study presented in
section II-B, and the four blob Gaussian mixture model
in section III-A. Thus, symmetry breaking bifurcations
are generically pitchforks. Next, a condition is given
which determines the sign of 5”(0) for the bifurcating
branches with a given isotropy group.

Definition 6.4: The bifurcation discriminator of the
bifurcating branches (21) with isotropy group S,, x S,
is

C(q*7/6*7m7n) = 3E - d4f['U,’U,'U,'U],

where
= _ g (7. _malmtn)
= = b'B (IK m2—mn+n2A b
b = dffv,v].

The matrix B~ is the Moore-Penrose generalized inverse
[56] of a block of the Hessian (13), A= B>" . B, '+
M Ik from (15), and v is the basis vector of ker(B) from
(14).

When ¢* = g¢i is N-singular, then A7l =
%I k., and so in this case the bifurcation discriminator
C(Q% ,B%,m, n) is

mn

T H— 4
3(1m2_mn+n2>b B b d*flv,v,v,v]. (22)



The discriminator ((¢*,3*,m,n) is defined purely
in terms of the constitutive function f of F(¢,5) =
Zf,vzl f(g”, B) (see Assumption 5.1). This follows since
the blocks of d?F(q*) are written as B, = d*f(q", 3),
A is a function of these blocks, and B = d?f(q",3)
for v € U. The fourth derivative d*f[v,v,v,v] in
¢(q*, 5%, m,n) can be expressed as

8qyr6qusaqyta%ﬂu

r[vls[v]i[v]u

r,8,t,u€yY
and the vector b has ' component
DF(q O°F(q, ")
= [d3 = s
ble =l olle = 3 3qyraqy58qyt o

r,s€Y

The next theorem shows that the sign of 5”(0) is
determined by the sign of {(¢*, 3%, m,n).

Theorem 6.5: Suppose ¢* is M-singular for 1 < M <
N and that d>D(q*) is positive definite on ker d>F(q*).
If {(¢*,5*,m,n) < 0, then the bifurcating branches
(21) guaranteed by Theorem 6.2, are pitchforks and
subcritical. If {(q*,5*, m,n) > 0, then the bifurcating
branches are pitchforks and supercritical.

This theorem is in contrast to the behavior of generic
S invariant functions, such as the model for speciation
in [57], [58], where the symmetry breaking bifurcations
are transcritical. The difference is due to the constraints
imposed by ¢ € A and the form of F' = G + 3D given
in Assumptions 5.1.

A result similar to Theorem 6.5 holds when d?D(q*)
is negative definite on ker d?F(q*), but now ¢ < 0
predicts supercritical branches, and ¢ > 0 predicts
subcritical branches.

In section VI-A1, we showed that for the Information
Distortion problem (7), the condition in Theorem 6.5 that
d>D(q*) be positive definite on ker d?F(g*) is always
satisfied for every singularity. Thus, for the Information
Distortion, Theorem 6.5 can always be applied to deter-
mine whether pitchforks are subcritical or supercritical.
To calculate ((¢*, 5*,m,n) for the Information Distor-
tion problem, we have the following Lemma.

Lemma 6.6: For the Information Distortion problem

D, [ flrst = &qwgﬁ is equal to

1 r r s
1 %tp(zgj ), 5 p(yr)p(y )p(ytZ) 4
1I12 dur (ZJ p(yj)qyj)
P(%i,yr)P(Ti,ys)P(T4,yt)
i (Z p(a:,,y,)q,,,)2

is equal to

where A =

. The expression

(@ lvetn =
2 _ p(yr)pys)p(y)p(yu) \ o plyr)
n2 (6 (B (>, p(yi)qvs)? > e )

— P(xi,Yr)P(%i,ys)P(2i,Ye ) P(Ti Yu)
Where B - ZZ (ZJ p(xivyj)quj)3
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Proof: Direct computation of the derivatives of
G(q) = H(T|Y) and D(q) = I(X; T). a
Consider the bifurcation at (q%,)\*,ﬂ* = 1.0387)
in Figure 10 where symmetry breaks from Sy to Ss.
The value of the discriminator at this bifurcation is
C(q%, 1.0387,1,3) = —.0075 (see section VII for de-
tails), which predicts that this bifurcation is a pitchfork
and subcritical. Figure 13, a close up of the bifurcation
diagram at this bifurcation, illustrates the subcritical
bifurcating branch.
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Fig. 13. A close-up of Figures 6 and 10 at 3* ~ 1.0387. Illustrated

here is a subcritical pitchfork bifurcation from the branch (g1, (), a

break in symmetry from S4 to S3. This was predicted by the fact
that ¢(g1,1.0387,1,3) < 0. It is at the symmetry preserving saddle

node at 45 = 1.0375 that this branch changes from being composed
of stationary points to local solutions of the problem (7) (see section
VIII-A).

4) Stability: We now address the stability of the bifur-
cating branches. We will relate the stability of equilibria
to optimality in the optimization problem (3) and the
annealing problem (5) in section VIII-A.

As illustrated in section IV-C, to ascertain stability,
one determines whether or not d?L, evaluated at the
equilibria on a bifurcating branch, has positive eigen-
values (d2£ is a symmetric matrix, so it only has real
eigenvalues). The next theorem, whose proof is in [31],
provides a condition to determine when this occurs.

Theorem 6.7: Suppose ¢* is M-singular for 1 < M <
N and that d2D(q*) is positive definite on ker d?F(q*).
All of the subcritical bifurcating branches (21) guar-
anteed by Theorem 6.2 are unstable. If the bifurcating
branch is supercritical and if

M—
0(q*, 5%, m,n) : 291—292—93)>0



then the branch consists of unstable solutions. The

component functions of 6 are

0, = d'Llwy,wy,u,ul,
Oy = d*Llwy,u, L™ d*Llwy,u]],
03 = d*Llwy,wy, L™ d>Llu,u]],

where all of the derivatives are taken with respect to
(g, ), L™ is the Moore-Penrose inverse of L, and wy,
is a basis vector from (17).

The expression 0(q*, 5*,m,n) from Theorem 6.7 can
be simplified to a form which only uses derivatives of
the constituent functions f of F' (as we did in Definition
6.4),

n2
6, = ( —|—n> d* flv, v, v, v]
m
0, = bTB_ (a1[K+a2A_1)b
03 = bT37 (CL3[K + a4A71) b

where a; are scalars which depend only on m and n.
By Theorem 6.7, the subcritical bifurcating branch
depicted in Figure 13 is unstable.

B. Symmetry Preserving Bifurcations

We now turn our attention to bifurcations which are
not symmetry breaking bifurcations of equilibria of (12),

(4

We show that, generically, these bifurcations are saddle-
node bifurcations, which we have illustrated numerically
in Figure 13 for the Information Distortion problem (7).

In contrast to the conditions which led to a symmetry
breaking bifurcation in section VI-A, where d?F(q*) had
a high dimensional kernel (see Definition 5.2), for a sym-
metry preserving bifurcation, d?F(q*) is (generically)
nonsingular.

) = VLA 5,

Lemma 6.8: At a generic symmetry preserving bifur-
cation (¢*, \*, 3*), the Hessian d*>F(q*) is nonsingular.
Proof: If d*F(q*) is singular, then at least one of

the blocks B, is singular. If there are multiple blocks
equal to B,, then Theorem 6.2 implies that ¢* undergoes
a symmetry breaking bifurcation. Thus B, is the only
block that is singular, and now Corollary 5.4 shows that
d?L is nonsingular. This leads to a contradiction since
we assume that a bifurcation takes place at ¢*. O
If (¢*,\*,0*) is a singularity of the gradient flow
(12) such that d>F(q*) is nonsingular, then ker d?£(q*)
looks very different than the form of ker d>£(q*) when
symmetry breaking bifurcation occurs (see section V-C).
In fact, when d?F(q*) is nonsingular, it can be shown
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Fig. 14. A hierarchical diagram showing how the singular points of
d?L and d?F affect the bifurcating branches of stationary points of
the optimization problem (3) and stationary points of the annealing
problem (5).

[31] that kerd?L(q*) is one dimensional, with basis
vector

_ _ _ T
w = ((B1 1v)T, (By 11;)T, ,(Bleu)T, f'uT) ,

where {B,}}_, are the blocks of d>F(¢*), and v is in
ker A, where A = B) Bl + MIg (see (15)).
At a symmetry breaking bifurcation, the matrix A is
generically nonsingular.

Now we provide a sufficient condition for the exis-
tence of saddle-node bifurcations. The first assumption
given in the following theorem is satisfied generically at
any symmetry preserving bifurcation (Lemma 6.8), the
second assumption is a crossing condition, and the third
condition assures that 5”(0) # 0.

Theorem 6.9: [31] Let w € kerd?L(q*). Suppose
that (¢*, \*, %) is a singularity of the gradient system
12) such that:

1) The Hessian d?F(q*) is nonsingular.

2) The dot product w” VD(q")

Y o
3) &Lw,w,w] # 0.
Then, generically, (¢*, \*, 3*) is a saddle-node bifurca-
tion.

C. Generic Bifurcations

We have described the generic bifurcation structure of
stationary points to problems of the form

max(G(g) + BD(q))

as long as G+ D = Zf,\;l f(¢”, ). Symmetry break-
ing bifurcations are pitchforks, and symmetry preserving
bifurcations are saddle-nodes. The type of bifurcation
which occurs depends on three types of singular points,



which depend on d2L(q*), d?F(q*), and the matrix
A=BY ,.xr B, ' + MIk (see (15)) which we have
depicted in Figure 14.

The first type of singular point is where the M >
1 blocks B, of d’F, for v € U, are singular. By
Theorem 5.3, d?£ must be singular. Generically, the
blocks, {B,},er, of d*F are nonsingular, and A =
BY,cr By + MIk is nonsingular. Theorem 6.2
shows that this is the type of singularity that exhibits
symmetry breaking bifurcation.

The second type of singular point is a special case
in which no bifurcation occurs. If only a single block,
B,, of d*F is singular (i.e. M = 1), and if the generic
condition that the corresponding A is nonsingular holds,
then we show in Corollary 5.4 that d2£ is nonsingular.
Thus, generically, no bifurcation occurs for this case.

The third type of singular point is when d2£ is
singular, but when d?F is nonsingular. In this case, the
matrix A must be singular [31]. This singular point man-
ifests itself as a saddle-node bifurcation (Theorem 6.9).
Figure 14, which summarizes the preceding discussion,
indicates how the singular points of d*>£ and d?F affect
the bifurcations of equilibria of the flow (12).

Another way to categorize the bifurcations of the
annealing solutions to (5) is to consider the deriva-
tives of D(q). The second condition in Theorem 6.9,
which guarantees the existence of a symmetry pre-
serving saddle-node bifurcation, is equivalent to requir-

ing that ( VOD > ¢ range(d?L(q*)). For symmetry
breaking bifurcations, VOD € range(d*L(q")).

In fact, whenever d>£(q*) is nonsingular, by the Im-
plicit Function Theorem, taking the total derivative of

VarL(g, A, ) = 0 shows that is always in

VD
0
range(d?L(g*)). Furthermore, equation (20) shows that
the crossing condition depends on d2D, and Theorems
6.5 and 6.7 show that d> D influences whether bifurcating
branches are subcritical or supercritical, as well as stable

or unstable.

VII. NUMERICAL RESULTS

We created software in MATLAB® to implement
pseudo-arclength continuation to numerically illustrate
the bifurcation diagram of stationary points to the opti-
mization problem (3) and the annealing problem (5) as
guaranteed by the theory of section VI.

This continuation scheme, due to Keller [59]-[61],
uses Newton’s method to find the next equilibrium,
(@r+15 Met1s Bry1)s from (gx, Ag, Bi) by allowing both
(¢, \) and (3 to vary. The advantage of this approach
over Algorithm 3.1 is twofold. First, the step size in /3,
APr+1 = Br+1 — Bk, changes automatically depending
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N 2 3 4 5 6

¢(qa,B*) | 0.0006 | -0.0010 | -0.0075 | - 0.0197 | -.0391
N

TABLE I
THE BIFURCATION DISCRIMINATOR: NUMERICAL EVALUATIONS OF
THE BIFURCATION DISCRIMINATOR
¢(qa,B*):=¢(qa,B* = 1.038706,m =1,n =N —1)AS A
FUNéVTION OF N FOZE THE FOUR BLOB PROBLEM (SEE FIGURE 3A)
WHEN I IS DEFINED AS IN (7). A SUPERCRITICAL BIFURCATION IS
PREDICTED WHEN N = 2, AND SUBCRITICAL BIFURCATIONS FOR
N € {3,4,5,6}.

on the “steepness” of the curve VL = 0 at (qx, Ak, Ok)
and so this method allows for continuation of equilibria
around a saddle-node bifurcation. Secondly, this algo-
rithm is able to continue along unstable branches.

All of the results presented here are for the Informa-
tion Distortion problem (7),

ane%(H (q) + BI(q))

where p(X,Y’) is the mixture of four Gaussian blobs
introduced in Figure 3, and we optimally cluster the
responses 1" into N = 4 clusters.

Figures 6 and 10 are analogous to Figure 4, using
the same mixture of Gaussians p(X,Y’) and the same
Information Distortion cost function. The difference is
that Figure 4 was obtained using the Basic Annealing
Algorithm, while we used the continuation algorithm
in Figures 6 and 10. The continuation algorithm shows
that the bifurcation structure is richer than shown in
Figure 4. In Figure 6 we show bifurcating branches
which emanate from the uniform S, invariant branch
(q%,)\,ﬂ) at /* ~ 1.0387, 1.1339, and 1.3910. In
the bottom row of Figure 10, panels 1-5 show that the
clusterings along the branches break symmetry from Sy
to S3 to So, and, finally, to S;. An “*” indicates a
point where d?F'(q*) is singular, and a square indicates
a point where d?L(q*) is singular. Notice that there
are points denoted by “*” from which no bifurcating
branches emanate. At these points a single block of d?F
is singular, and, as explained by Corollary 5.4, d*L(q*)
is nonsingular, and so no bifurcation occurs. Notice that
there are also points where both d?£(q*) and d*>F(q*)
are singular (at the symmetry breaking bifurcations) and
points where just d?£(q*) is singular (at the saddle-node
bifurcations). These three types of singular points are
depicted in Figure 14.

Figure 11 illustrates symmetry breaking from Sy to
So x Ss. The clusterings depicted in the panels are not
found when using an algorithm which is affected by the
stability of the equilibria (such as the Basic Annealing
Algorithm).

Theorem 6.5 shows that the bifurcation discriminator,
¢(q*, 0%, m,n), can determine whether the bifurcating
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solution branch (g1 , A, 8) (which has symmetry S4) at 3* =~ 1.0387,

as in Figure 10, but now we investigate further the branches which have
So symmetry.

branches guaranteed by Theorem 6.2 are subcritical
(¢ < 0) or supercritical (¢ > 0). We considered the
bifurcating branches from (q%,)\*,ﬁ* ~ 1.0387) with
isotropy group S3. The numerical results obtained by cal-
culating C(q%,ﬂ*, 1,N —1) for N =2,3,4,5 and 6 at
B* ~ 1.0387 are shown in Table I. Supercritical branches
are predicted when N = 2. Subcritical branches with
symmetry Sy_; are predicted when N > 2. The
subcritical bifurcation predicted by the discriminator for
the Information Distortion problem (7) for N = 4 is
shown in Figure 13. This change from supercritical to
subcritical branches as IV increases is discussed in more
detail in section VIII-B.

Figure 15 explores some of the soft clusterings on one
of the secondary branches after symmetry breaks from
S3 to Ss.

Figure 16 illustrates clusterings along branches which
bifurcate from ¢* = gy at G > pB* = 1.0387 at the
first bifurcation (see Figure 6). By Theorem 4.1, these
branches do not give solutions of (7) after a bifurcation.
However, we cannot at the moment reject the possibility
that these branches continue to a branch that leads to a
global maximum of both the optimization problem (3)
and the annealing problem (5) as # — Bmax-

Now let us examine how the bifurcations of stationary
points to the annealing problem (5), given with respect
to the annealing parameter (, yields the bifurcation
structure of stationary points of the optimization problem
(3) with respect to Iy. Figure 5 depicts a realization of
the curve R(Iy) which we produced by solving (3) for G
and D as defined for the Information Distortion problem
2),
maxgen H(T|Y)

for different values of I, using the data set from a
mixture of four Gaussians given in Figure 3. Although
it appears that the curve is concave, this is not the case,
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Fig. 16. Depicted here are bifurcating branches with S3 symmetry

from the ¢ 1 branch at the 3 values 1.133929 and 1.390994 shown

in Figure 6. The bottom panels show some of the clusterings along
these branches.
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Fig. 17. The bifurcation diagram of stationary points to the problem
(2) with respect to Ip.

which we show in section VIII-B. The curve Ry is an
envelope for the full structure of all stationary points of
(2), which we give in Figure 17. All curves below this
envelope correspond to clusterings of the data which are
not maxima of the optimization problem (3).

In section IV-B, we showed that at a solution ¢* of the
optimization problem (3) for some I, that the Lagrange
multiplier 3 for the constraint D(q) > I is unique and
non-negative, 5 := ((Ilp) > 0. For solutions ¢* where
B(Iy) > 0, D(¢*) = Iy. When solving (2) for each
Iy (as we did to produce Figure 5), we computed the
corresponding Lagrange multiplier 3(1j), which is the
subcritical curve shown in Figure 13. Turning the Figure
sideways shows 3 as a function of Iy. The existence
of the subcritical bifurcation indicates that 3 is not
a one-to-one function of Iy. To produce the bifurca-
tion diagram depicted in Figure 17, we simply plotted
G(q) = H(T|Y) versus Iy = D(q) = I(X;T) for the
stationary points (¢, A, 3) we found when annealing in



[ as in Figure 6.

VIII. CONSEQUENCES OF THE BIFURCATIONS

We have provided a theoretical analysis of the bifur-
cation structure of stationary points for the optimization
problem (3) with respect to Iy, and for the corresponding
annealing problem (5) with respect to the Lagrange
multiplier 5. In this section, we turn our attention to
consequences of these bifurcations.

First, we relate how the structure and stability of
bifurcating branches affects the optimality of station-
ary points in the problems (3) and the corresponding
annealing problem (5). In the second part, we address
implications for the convexity of the curve R(Iy) in (3),
which includes the rate distortion curve from Information
Theory.

A. Stability and Optimality

We now relate the stability of the equilibria (¢*, \*, 5)
in the flow (12) with optimality of the stationary points
q* in each of the optimization problem (3) and the
corresponding annealing (5).

First, we give a general theorem which determines
when equilibria (¢*, \*,3) are not annealing solutions
of (5). We will show that, if a bifurcating branch
corresponds to an eigenvalue of d£(q*) changing from
negative to positive, then the branch consists of station-
ary points (¢*, 5*) which are not annealing solutions of
(5). By Theorem 4.1, positive eigenvalues of d2£(q*)
do not necessarily show that ¢* is not an annealing
solution of (5), unless the projection of the corresponding
eigenvector is in ker J;. For example, consider the
Information Distortion problem (7) applied to the Four
Blob problem presented in Figure 3. In this scenario,
for the equilibrium (¢*, \*,3) of the gradient system
(12), d*L(q*) always has at least K = 52 positive
eigenvalues, even when d?F(q*) is negative definite. In
fact, for arbitrary annealing problems of the form (5) and
for any data set (X,Y), d2£(q%) always has at least
K positive eigenvalues.

Theorem 8.1: For the bifurcating branch (21) guar-
anteed by Theorem 6.2, uw is an eigenvector of

d2L( f]\* ) + tu, 8* 4 5(t)) for sufficiently small .

Furthermore, if the corresponding eigenvalue is positive,
then the branch consists of stationary points which are
not annealing solutions to (5).

Proof: We first show that u is an eigenvector of
d’L(q* +ta, \*, 3+ ((t)) for small ¢. Let Q = < f]\
so that

F(Q,B) :=VL(G" +q,\" + X, 6"+ ).
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Thus, a bifurcation of solutions to F(Q,5) = 0
occurs at (0,0). For v € S, x S, F(tu,f) =
F(tyu, B) = vF(tu, 5), where the first equality follows
from Lemma 5.5, and the second equality follows from
Sn-equivariance. Hence, F(tu, ) is in Fix(Sp, x Sp),
which is one dimensional with basis vector w, showing
that F(tu,8) = h(t,B)u for some scalar function
h(t,3). Taking the derivative of this equation with
respect to ¢, we get

doF (tu, B)u = dih(t, 5))u, (23)

which shows that u is an eigenvector of d2L(q* +
ta, \*, 3 + B(t)), with corresponding eigenvalue § =
dih(t,3). Using (11) and letting d?F := d*F(q* +
ta, 0+ B(t)), we see that (23) can be rewritten as

(T ) (8)=<(5).

which shows that d2F'& = €4 and Ja = 0. Thus, @ €
ker J is an eigenvector of d*F(q* + ta, 3+ 3(t)) with
corresponding eigenvalue &. If £ > 0, the desired result
now follows from Theorem 4.1. O

Theorem 8.1 can be used to show that the subcritical
bifurcating branch depicted in Figure 13 is not composed
of solutions to the annealing problem (7). The condition
in Theorem 8.1 is easy to check when using continuation
along branches, since the Hessian d2£(q*) is available
from the last iteration of Newton’s method (see section
VII).

At first glance, the fact that the stationary points
on the subcritical branch in Figure 13 are not solu-
tions of (7) may be worrisome, since we showed in
Lemma 4.2 that Ry (Ip) in (2) is continuous for all
Iy € [0,max4en D(q)]. By the continuity of Ry, for
these Iy, there is a solution ¢* of (7) and a vector of
Lagrange multipliers (A*, 3*) such that (¢*, \*, 3*) is
a stationary point of the annealing problem (5) (KKT
conditions).

However, recall from Theorem 4.1 that there may be
solutions of the optimization problem (3) which are not
solutions of the corresponding annealing problem (5).
Thus, Theorem 8.1 does not address when a stationary
point is not optimal for problems of the form (3).
Theorem 4.1 indicates how to check for optimality in
this case explicitly: a stationary point ¢* is optimal for
(3) if the Hessian d*F(q*) = d*(G(q*) + BD(q")) is
negative definite on ker J>(¢*), and it is not optimal if
d?>F(q*) is not non-positive definite on ker Jy(q*).

We next illustrate stationary points of the Information
Distortion problem (7) which are not solutions of (2).
Consider the subcritical bifurcating branch of stationary
points of (7) at 8 ~ 1.038706 depicted in Figure 13.



By projecting the Hessian d?(G(q*) + BD(q*)) onto
ker J; and also onto ker J5(q.1 ), we determined that (see
Figure 13):
1) The clusterings on the “flat” branch (g 1, () before
the bifurcation at 3 =~ 1.038706 are solutions to
both (2) and (7).

2) The clusterings on the “flat” branch (¢, 3) after
the bifurcation at 3 ~ 1.038706 are not solutions
of either (2) or (7).

3) The clusterings on the subcritical bifurcating
branch are solutions of (2) but are not solutions
of (7).

4) After the branch turns at the saddle-node , the
associated clusterings are now solutions of both
(2) and (7).

Clearly, the existence of subcritical bifurcations is
tied to the existence of saddle-node bifurcations, where
the branches turn around and regain optimality in the
annealing problem (5). Generally speaking, the generic
existence of saddle-node bifurcations (Theorem 6.9) is
why annealing does not (necessarily) give a globally
optimized clustering of the data for the optimization
problem (3) and the corresponding annealing problem
(5). It is possible that the global maximum at 3, is not
connected to the maximum at 3 = 0, but that it vanishes
in a saddle-node bifurcation at some finite (. If saddle-
nodes were not possible, then the global optimizer would
be connected by a continuation of stationary points to
the uniform solution used as a starting point for the
annealing problem.

Using the Information Distortion, Information Bottle-
neck, and Deterministic Annealing, the solutions corre-
sponding to the symmetry breaking chain from Sy —
Sy—1 — ... — 57 are observed to be optimal, while
branches with symmetry S,, x S,, are suboptimal [10],
[11], [14]. This is in contrast to a model of speciation
given in [57], [58]. We do not have a general theoretical
result which explains this difference.

B. Convexity of the Rate Distortion Curve

We have proved the generic existence of saddle-node
bifurcations of stationary points to annealing problems
of the form (5). We illustrated subcritical pitchfork and
saddle-node bifurcations for the Information Distortion
problem (7) in Figure 13. A natural question arises in the
mind of the information theorist: Are there implications
for the rate distortion curve, defined in [8], [13] as

mingea I(Y;T)

Bro(Do):="piy 1) < Dy

(24)

where D(Y,T) is a distortion function. This constrained
problem is of the form (3), where G(q) = —I(Y;T).
We now investigate the connection between the existence
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of saddle-node bifurcations and the convexity of the rate
distortion function for D(Y,T) = I(X;Y)—I(X;T).
This is precisely the relevance-compression function, R,
defined in (1), in which the constant I(X;Y") is ignored.
Observe that there is a one-to-one correspondence be-
tween Ip and Dy via Iy = I(X;Y) — Dy. For the
Information Distortion problem the analogous function
is Ry, defined in (2).

It is well known that if the distortion function
D(Y,T) is linear in g, then Rgp(Dy) is continuous,
strictly decreasing and convex [8], [13]. Since the dis-
tortion D(Y,T) = I(X;Y) — I(X;T) is not a linear
function of ¢, the convexity proof given in [8], [13] does
not generalize to prove that either (1) or (2) is convex.
This is why we proved the continuity of both (1) and (2)
using other means in Lemma 4.2.

In [10], [44], using variational calculus, it is shown
that % = —(. Since (§ is a function of Iy (KKT
conditions), then it seems reasonable to consider /3’ (/p)
where ((Ip) is differentiable. We have the following
Lemma.

Lemma 8.2: If the functions R;(Iy), Ru (), and
B(1y) are differentiable, then,

dR d’R dB(1o)
i, —B(Ip) and d—lg =i

The relationship between the bifurcations of the sta-
tionary points of the annealing problem (5) and the
convexity of the curves Ry (1) and Ry (1) is now clear:

Corollary 8.3: If there exists a saddle-node bifurca-
tion of solutions to the Information Bottleneck prob-
lem (6) at Iy = I*, then Ry(Iy) is neither concave,
nor convex in any neighborhood of I*. Similarly, the
existence of a saddle-node bifurcation of solutions to
the Information Distortion problem (7) at Iy = I*
implies that Ry ([y) is neither concave, nor convex in
any neighborhood of *.

Proof: The result follows from Lemma 8.2 and
the fact that %I{JU) changes sign at the saddle-node
bifurcation at Iy = I'*. O

Since we have explicitly shown the existence of
saddle-node bifurcations for the Information Distortion
problem (7) (see (8 = 1.0375, D(q) = .0302) in Figure
13), then the Corollary shows that Ry in Figure 5 is
neither concave nor convex. The convexity of Ry (lp)
changes at (Iy = .0302, Ry = 1.9687).

Bachrach et al. [62] show that whenever N > K + 1,
that R;(Iy) is convex. By Corollary 8.3, this shows that
when solving (6) for A C RVE when N > K + 1,
that saddle-node bifurcations of stationary points can
not exist: only supercritical bifurcating branches are
possible.

As mentioned in the preliminaries, we have assumed
no constraint in the number of clusters N. Letting N >



K allows each of the K objects of Y to be classified into
its own class, so that there is potentially no compression
of the data. One way to find the soft clustering which
maximizes either the optimization problem (3) or the
annealing problem (5) is by brute force, and to explicitly
consider ¢ € A C RVK for N > K. For the problem
in Figure 3, this is at least a 522 dimensional space.
Another, more computationally feasible approach is to
anneal as is done in [9], [44]. This amounts to “space
jumping”, where one first considers N = 2 clusters (i.e.
g € A C R%2K), and then larger N after each bifurcation
is detected. At N = 2 before jumping, the bifurcation in
R2K is a break of symmetry from Sy to S;. Once the
number of potential clusters is increased (to, say, N =
4), the bifurcation, now imbedded in R*¥, corresponds
to a break in symmetry from either Sy to Se x Ss or
from S, to S5, depending on how the newly introduced
clusterings in 14X are defined.

Let us consider the brute force approach, where we
explicitly consider the bifurcations, when N > K, and
let us compare this to the bifurcations when N < K,
such as with the numerical results we presented in
section VII, where we set N = 4. Finding clusterings
g € A C RVK for such an N < K can be construed
as an additional constraint. Perhaps when computing the
bifurcation structure for N > K, the subcritical bifur-
cations and the saddle-nodes will not occur for general
annealing problems of the form (5), mere mathematical
anomalies, and not possible when N is large enough, as
is the case for the Information Bottleneck.

The argument which Bachrach et al. use to show
convexity of R; [62] relies on the explicit form of
G(q)=-1(Y;T)=H(T|Y)— H(Y) and a geomet-
ric proof given by Witsenhausen and Wyner in [63]. This
argument does not hold for the Information Distortion
curve Ry, since in this case G(q) = H(T|Y), and
therefore Witsenhausen’s result does not apply.

In fact, the saddle-nodes and subcritical bifurcations
which we have shown explicitly for the Information
Distortion at N = 4 still occur when N > K, which
is what we show next.

Consider the bifurcation of stationary points to the
Information Distortion problem (7) at 5* ~ 1.0387
from the uninformative branch (q%,)\*, B3) depicted in
Figure 13. This is a bifurcation point for any N. In
Table I, we computed the discriminator ((g 1 B8 =
1.0387,m = 1,n = N — 1) when N € {2,3,4,5,6}.
When N = 2, the branch is supercritical (since { > 0)
, but for N = 3, the branch becomes subcritical, and
then becomes “more” subcritical as N increases (i.e.
¢ = (”(0) becomes more negative). This trend continues
for arbitrarily large N. To prove this, we note that
¢(qy,B*,m,n) depends on B = d’f, b=d>f, and on
d* f (see Definition 6.4), all of which depend on g1 only
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through N, which follows from the following Lemma.

Lemma 8.4: For the Information Distortion problem

(D,

anl
d" f(q

%): (N —1)»1 )

Proof: Direct computation using the derivatives in

n—1
0" flae,) = Sord" S

N—-1

1
2

Lemma 6.6. o
By Lemma 8.4, we have that
2
2 - _ — _ = p—
d f(q%) = B% = NB%

. NZ
3 _ _

d f(q%)f b% = b%.

The subscripts show whether the matrices are evaluated
at gy for N > 2 or at g 1 Substituting these into (22),
and noting that B% and B% have the same eigenpairs,
then we can write ((q 1, (6%, m,n) in terms of functions
of q 1 for arbitrarily large IV, as

N3 mn T "

s (3 (1‘ mz_mn+nz> byByby —d f<qzs>)-

This shows that if d*f(gz) < 0 and if 3b:£BZb% >
2

|d* f(q1)] as in the case for the Information Distortion at
3% = 1.0387, then form = 1,n = N—1and N = 2, the
branch with symmetry Sy_1 = 57 is supercritical. But
for N large enough, the N —1 bifurcating branches with
symmetry Sy_1 (Theorem 6.2) will become subcritical
pitchforks. In a similar scenario, it could be that branches
switch from subcritical to supercritical as /N increases.

We have demonstrated that even for the case N > K,
subcritical pitchforks and saddle-nodes exist for the
Information Distortion. Thus, a potential advantage for
using the Information Bottleneck over the Information
Distortion method (or any annealing scheme (5)) for
clustering data is that for N > K + 1, one is guar-
anteed that only supercritical bifurcations exist, and no
saddle-nodes. This is relevant for the computationalist,
since the existence of subcritical bifurcations and saddle-
nodes can incur significant computational cost when one
attempts to find optimal clusterings when using the Basic
Annealing Algorithm 3.1.

IX. CONCLUSIONS

We have argued that the minimal set of assumptions
that constrain the neural coding problem is that it has
to be stochastic on a fine scale (due to inherent noise
in the neural processing), but deterministic on a large
scale (because of the evolutionary enforced need for a
consistent response). Therefore a general model for the
neural code, which is the correspondence between the
inputs and the outputs, is a stochastic map. This map,
however, becomes (almost) deterministic, when viewed



on a coarser scale, that is, as a map from clusters of
inputs to clusters of outputs. This model of a neural
code has a clear advantage over other models of not
needing any additional assumptions on the character of
the code. In this sense it is the most general such model.
There are two main challenges of this approach. First, we
needed to find an algorithm that would find the optimal
deterministic “skeleton” of the stochastic coding map,
or, equivalently, the optimal soft clustering of the set of
inputs and the set of outputs that best approximates the
(almost) deterministic code. The second challenge is the
need for large data sets that contain the rare signals and
responses in sufficient number for the stochastic map to
be well represented by the data. This second challenge
is not particular to our approach. More importantly, our
method allows iterative refinement of the coarse groups
as more data becomes available and so it scales well
with data availability.

The optimality criterion for the best soft clustering
comes from information theory. We seek clusters of
inputs and outputs such that the induced relationship be-
tween the two clustered spaces preserves the maximum
amount of the original mutual information between the
inputs and outputs. It has been shown that the globally
optimal solution is deterministic [12] and that the com-
binatorial search for the solution is NP-complete [64]
and therefore computationally not feasible for large data
sets. The lack of a fast algorithm that would compute the
global maximum of the mutual information cost function
led to the implementation of annealing as the standard
algorithm for such optimization problems [9]-[11], [14].

Even though the implementation is straightforward
and annealing usually finds biologically feasible solu-
tions, our goal was to understand the annealing algorithm
in more detail, the reasons for this success, and the
potential for failure.

Using bifurcation theory with symmetries we have
shown that the soft clustering which optimizes the cost
function of interest is not an annealing solution after
a subcritical bifurcation. Thus, although the curve of
optimal solutions to the cost function is continuous with
respect to the annealing parameter, the curve of anneal-
ing solutions is discontinuous at a subcritical bifurcation.
However, since the annealing procedure is guaranteed to
find a local solution eventually, the subcritical branch
must turn and become optimal at some later saddle-node
bifurcation, which we have shown occur generically for
this class of problems.

We also discuss the number and the character of
refinements that the annealing solutions undergo as a
function of the annealing parameter. Generically oc-
curring symmetry breaking pitchforks are in contrast
to the symmetry breaking transcritical bifurcations of
solutions to an Sy invariant model for speciation in
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[57], [58]. For the Information Distortion, Information
Bottleneck, and Deterministic Annealing methods, the
solutions corresponding to the symmetry breaking chain
from Sy — Sny_1 — ... — Sp are observed to be
locally optimal, while branches with symmetry .S, X .S,
are not [10], [11], [14]. This is another difference with
the model of speciation given in [57], [58].

Previously we have shown that the annealing solution
converges to a deterministic local maximum [12]. The
main problem of whether the globally optimal solution
can always be reached by the annealing process from
the uniform solution remains open. This is because
we can not rule out either the existence of saddle-
node bifurcations which do not connect to the original
uniform solution, or the existence of locally sub-optimal
bifurcating branches which do connect the uniform
solution to the global one. To our best knowledge,
for the Information Distortion, Information Bottleneck,
and Deterministic Annealing methods, such bifurcating
branches have never been observed [10], [11], [14],
although rigorous results are still lacking. We hasten to
add that proving that the globally optimal solution can
always be reached by the annealing process from the
uniform solution would be equivalent to an NP = P
statement and therefore such a proof is unlikely. Despite
this, the relatively straightforward annealing problem can
be a fruitful method for approaching /N P-hard problems.
Although each iteration of annealing is more compu-
tationally intensive than the cost function evaluation
needed by the combinatorial search to solve the N P-
hard deterministic clustering, the overall complexity of
the locally optimal annealing solution branch grows only
linearly with the number of classes. We have shown
here that there are only N — 1 bifurcations for N
clusters. Compare this to the combinatorial explosion
of the size of the search space in the deterministic
clustering. Thus, even though we believe it unlikely
that it can be proven that a branch of locally optimal
annealing solutions connects from the uniform solution
to the global deterministic optimum in all cases, the
profoundness of such a result should still encourage work
in this area.

In addition our results can be of interest for Informa-
tion Theory. In contrast to rate distortion theory where
the rate distortion curve is always convex, the analogous
function for the Information Bottleneck and Information
Distortion methods is non-convex when a saddle-node
bifurcation occurs. The difference stems from the fact
that both in the Information Bottleneck and Information
Distortion methods the distortion function is the mutual
information, which is a non-linear function of the quan-
tizer. In Deterministic Annealing and Rate Distortion
theory, the distortion function is an expectation of a pair-
wise distance function and hence linear in the quantizer.



Future work

Future works involves expanding these analytic results
in two directions. We would like to extend the results
from the current one-sided clustering or quantization to
joint quantization of both stimulus and response spaces
[20]. Joint quantization, which clusters both sides of a
system jointly, has a cost function that is invariant to
(Sym x Sy), where Sy acts on the space of clustered
stimuli, and Sy acts on the space of clustered responses.
This added complexity poses different challenges in the
analytic development. Initial observations in this area
show that the simplest symmetry breaking is of the kind
Sy X Sy — Sm—1 X Sy—1 and not for example to
Sy X Sy—1 or Spr—1 X Sy. This is easy to understand
intuitively - if either soft clustering is uniform, the cost
function does not increase as no classes are resolved.
However, subsequent bifurcations of the joint problem
are not well understood. Specifically, we do not know
at what stages a finer quantization of one space occurs
relative to the other and why. Multi-quantization, another
extension of the Information Bottleneck problem [65],
[66], used for network analysis, has an even richer sym-
metry structure, with the cost function being invariant
under the symmetry group ), .S;, and its bifurcation
structure is completely unknown.

The approach could be further extended as a model of
brain development. It shows a very definite and dramatic
way in which parts of the sensory world that were pre-
viously unresolved can be separated into discriminable
portions, by taking a part of a system that is uniform in
its properties and splitting it into portions that perform
different functions, while maximizing the information
between the sensory environment (X) and the neural
representation (Y'). This is similar to the latest ideas
of how a portion of the brain, previously dedicated to
the same task, bifurcates into distinct parts delegated to
different tasks [67], [68]. This is accomplished by the du-
plication of a homeobox gene which causes a replication
of a whole neural subsystem, which that gene regulates.
For example, it is hypothesized that the multitude of
primate visual cortices [69] emerged in this manner.
Applying the distortion-based methods described here
to questions about evolutionary development of brain
structures could provide firm quantitative foundations
to such theories of brain evolution. If, for instance,
the Right Fusiform Gyrus (RFG) area and the Inferior
Temporal (IT) cortex emerged by duplication of a single
cortical region, both cortices likely performed the same
function of visual object recognition. Given enough time
and evolutionary pressure, they eventually bifurcated to
the current state, in which the IT cortex performs general
visual object recognition, while the RFG is specialized
to face discrimination.

More generally, specific realizations of this general
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method have been used in very diverse fields with the
same goal in mind: break down a complex system into
simpler components in a manner that is consistent with
the structure of the complex system, then study the
components separately. This is essentially the process
of reductionism, used successfully in the sciences, but
posed here in a formal manner, and supplied with tools
that can automate it. This implies that the distortion
based procedures outlined here could be used as a
general system identification and analysis methodology.
These methods are general enough to be used for models
of arbitrary input-output systems: quantize to a simpler
system, characterize the simpler system, then refine the
quantization for a finer description.
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