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Abstract

In this paper we investigate the bifurcations of solutions to a class of constrained optimization prob-
lems. This study was motivated by annealing problems which have been used to successfully cluster data
in many different applications. Solving these problems numerically is challenging due to the size of the
space being optimized over, which depends on the size and the complexity of the data being analyzed.
The type of constraints and the form of the cost functions make them invariant to the action of the
symmetric group on N symbols, SN , and we capitalize on this symmetry to describe the bifurcation
structure. We ascertain the existence of bifurcating branches, address their stability, and compare the
stability to optimality in the constrained problem. These theoretical results are used to explain numerical
results obtained from an annealing problem used to cluster data.

1 Introduction

This paper analyzes bifurcations of solutions to constrained optimization problems of the form

max
q∈∆

F (q, β) = max
q∈∆

(
N∑

ν=1

f(qν , β)

)
. (1)

as a function of a scalar parameter β. The scalar function f is sufficiently smooth, and the constraint space
∆ ⊂ RNK is a convex set of valid discrete conditional probabilities. A vector q ∈ ∆ can be decomposed into
N subvectors qν ∈ RK . The form of F implies that it is SN -invariant: the value of F (q, β) does not change
under arbitrary permutations of the vectors qν .

This type of problem arises in Rate Distortion Theory [7, 20], the Deterministic Annealing approach to
clustering [34], the Information Bottleneck approach to clustering [37, 41, 38], and the Information Distortion
method [9, 10, 16] for determining neural coding schemes. In these cases, which originally motivated the
study of (1), F has the form F = G(q) + βD(q), giving the annealing problem

max
q∈∆

(G(q) + βD(q)) , (2)

where β is a homotopy or annealing parameter which is non-negative, and G and D are each of the form
given in (1). We will motivate the importance of these annealing problems by presenting the Information
Distortion approach to solving the neural coding problem in section 1.1, and the Information Bottleneck
approach to clustering in section 1.2.

From the mathematical point of view, problem (2) represents an optimization problem with both equality
and inequality constraints. It presents challenges numerically, since in applications it leads to optimization
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in hundreds to thousands of dimensions and is also very interesting from the theoretical point of view. In
neural applications the problem one needs to solve is the problem

max
q∈∆

D(q) (3)

where D(q) is the mutual information function. It has been shown that this problem is NP complete [28].
The problem (2) is used as a very effective scheme to get a (local) solution of the problem (3). The function
G(q) usually has a single maximum. Starting at this maximum when β = 0 and then continuing the solution
as β →∞ produces a solution of (3). This procedure is common to all annealing problems. As β increases
from 0 to ∞ the optimal solution undergoes a series of rapid changes, which we relate to bifurcations of the
equilibria of a gradient flow of the corresponding Lagrangian of (1).

The general problem (1) has some special features. It has an integer parameter N , and the function F
is SN -invariant. The SN symmetric vector fields on RN were studied in Golubitsky and Stewart [18] and
in a series of papers by Stewart [39], Stewart, Elmhirst and Cohen [5, 40], Elmhirst [14, 15], and Dias and
Stewart [8] in a model of speciation in evolution. They have characterized expected symmetry breaking
bifurcations and computed stability of the primary branches. There are several notable differences between
our problems, which we will comment upon throughout the paper. Most importantly, the space on which
the group SN acts in our case, is essentially the vector space RNK , while in the speciation model it is RN .
The immediate consequence is that the function f in (1) is not constrained in any way by the action of SN .
Therefore, the invariant theory for SN , developed in Golubitsky and Stewart [18], is not applicable to our
case. On the other hand, the form (1) of our functions rules out quadratic terms of the form (qν)T qη, for
ν 6= η, in function F , which are generically present in SN invariant vector fields on RN [18, 40].

An additional difference is that our problem is constrained and therefore we will work with the Lagrangian
which incorporates these constraints. There is an interesting parallel on this point with the speciation
problem. If SN acts on RN , then RN admits an isotypic decomposition V0⊕V1 where V0 is a one dimensional
subspace consisting of multiples of (1, 1, . . . , 1) and V1 = {x ∈ RN | x1 + . . . + xN = 0}. If at the bifurcation
the kernel of the Jacobian lies in V1, then one observes a symmetry breaking bifurcation. If this kernel lies
in V0 then one observes a symmetry preserving bifurcation. In our case, at a symmetry breaking bifurcation,
we observe that all of the bifurcating directions u satisfy u1 + . . .+uN = 0, but this time each ui ∈ RK . This
is a consequence of enforcing the constraint q ∈ ∆. We will show that at a symmetry preserving bifurcation
the constraints are active and so the bifurcating direction is in the span of vectors perpendicular to parts of
the constraint space.

Our results differ in several aspects from those obtained by Stewart and collaborators. Most importantly,
we show that the quadratic part of the Liapunov-Schmidt reduction at a symmetry breaking bifurcation
vanishes, while in the speciation model, the quadratic part is generically nonzero [18, 40]. This implies that
symmetry breaking bifurcations of (1) are generically degenerate and pitchfork-like. As explained above,
since the restrictions imposed by the action of SN on our system are less severe than in the speciation
model, we did not obtain a stability result for bifurcating branches as general as that of Elmhirst [14, 15].
However, we provide a bifurcation discriminator in terms of the function f , which determines whether the
pitchfork-like bifurcation is subcritical or supercritical. We also derive several results about the stability of
these bifurcating branches.

Our numerical observations suggest that the stable branches of solutions follow a predictable pattern as
the bifurcation parameter β increases. In particular, the symmetry of the stable branch follows the pattern
SN → SN−1 → . . . → S2 → S1 as β →∞. More precisely, there are intervals [an, bn] for n = 1, . . . , N , such
that 0 = aN , an < an−1, bn < bn−1 for all n, b1 = ∞, with the property that if β ∈ [an, bn] then the branch of
stable equilibria has symmetry Sn. Notice that two consecutive intervals [an, bn] and [an−1, bn−1] can overlap,
since it is possible to have multiple branches stable for the same value of β due to existence of subcritical
bifurcations. We do not observe numerically stable branches with symmetry Sm × Sn for m > 1, n > 1 and
m + n = N , which play a crucial role in the speciation model, where they represent the assignment of m
members of the original population to one new species and n members to another new species. We do not
have an analytic explanation of this discrepancy since we do not have a complete characterization of the
stability of the bifurcating branches for (1).

The paper is organized in the following way. In the rest of the introduction, we present problems from
neuroscience and computer science which motivate our study. In subsection 1.3 we illustrate an optimization
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procedure to solve problem (2) on a simple data set which exhibits the observed bifurcation structure.
Preliminaries occupy section 2. Section 3 is devoted to preparations for application of the theory of SN -
equivariant bifurcations. We define the generic class of problems which we investigate, introduce the gradient
flow of the Lagrangian of (1), discuss the action of the group SN on ∆, and perform the Liapunov-Schmidt
reduction. Sections 4, 5, and 6 are the central part of the paper. In section 4 we present existence theorems for
bifurcating branches, and we derive a condition which determines whether branches with a given symmetry
are supercritical or subcritical. In section 5 we explain why we observe only a limited number of bifurcations.
We will show that if an equilibrium of the gradient flow has trivial symmetry, then generically it can undergo
only a saddle-node bifurcation. This result is a consequence of the interplay between the SN -equivariant
flow and the geometry of the space ∆. We put the results from sections 4 and 5 together in section 6. In
section 7 we present some numerical illustrations of our results.

1.1 The neural coding problem

How does an organism’s sensory system represent information about environmental stimuli? The Information
Distortion method [9, 10, 16] attempts to decipher the neural code by solving a problem of the form (2). We
consider the neural encoding process in a probabilistic framework [1, 25, 33]. Let X be a random variable
(possibly continuous) of inputs or environmental stimuli. Let Y be a random variable of K < ∞ outputs
or of neural responses, from either a single sensory neuron, or a neural ensemble. The relationship between
the stimulus and response is given by the joint probability p(X, Y ), which we call a neural code. We seek to
describe this probability distribution.

One of the major obstacles facing neuroscientists as they try to describe the neural code is that of
having only limited data [24]. The limited data problem makes a nonparametric determination of p(X, Y )
impossible [30], and makes parametric estimations tenuous at best. One way to make parametric estimations
more feasible is to optimally cluster the neural responses Y into N classes, Z = {νi}N

i=1, and then to fit a
Gaussian model to p(X|ν) for each class ν. This is the approach used by the Information Distortion method
[9, 10, 16] to find a neural coding scheme [11, 12]. The optimal clustering q∗(Z|Y ) of the neural responses
is obtained by minimizing the information distortion measure DI ,

min
q∈∆

DI(q), (4)

where ∆ is the convex set of discrete conditional probabilities,

∆ :=

{
q(Z|Y ) |

∑

ν∈Z
q(ν|y) = 1 and q(ν|y) ≥ 0 ∀y ∈ Y

}
.

That is, the clustering of the neural responses Y to the classes Z is allowed to be stochastic, and it is defined
by the N × K matrix q(Z|Y ). Before explicitly defining DI , we first introduce the concept of the mutual
information between X and Y , denoted by I(X; Y ), which is the amount of information that one can learn
about X by observing Y [7],

I(X; Y ) = EX,Y log
p(X, Y )

p(X)p(Y )
,

where EX,Y denotes expectation with respect to (X, Y ). The information distortion measure can now be
defined as

DI(q) = I(X; Y )− I(X; Z),

which can be shown [16] to be the expected Kullback-Leibler divergence [26]

DI(q(Z|Y )) = EY,ZKL(p(X|Y )||p(X|Z)).

Thus, to minimize DI , one must assure that the mutual information between the stimuli X and the clusters
Z is as close as possible to the mutual information between X and the original neural responses Y . Since
I(X;Y ) is a fixed quantity, if we let Deff := I(X;Z), then the problem (4) can be rewritten as

max
q∈∆

Deff (q). (5)
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Observe that we write Deff as a function of the clustering q, where we write q(Z = ν|Y = yk) as qνk,

Deff (q) = I(X;Z) = EX,Z log
p(X, Z)

p(X)p(Z)

=
∑

ν,k,i

qνkp(xi, yk) log
( ∑

k qνkp(xi, yk)
p(xi)

∑
k p(yk)qνk

)
. (6)

As we have mentioned in the introduction, the problem (5) is NP -complete [28]. Furthermore, since
Deff is convex and ∆ is a convex domain [16], there are many local, suboptimal maxima on the boundary of
∆, which makes solving (5) difficult using many numerical optimization techniques. To deal with this issue,
the Information Distortion method introduces a strictly concave function, H(q), to maximize simultaneously
with Deff , which serves to regularize the problem (5) [34],

max
q∈∆

H(q) constrained by Deff (q) ≥ I0, (7)

where I0 > 0 is some minimal information rate. The function H(q) := H(Z|Y ), the conditional entropy of
the classes given the neural responses, is a function of q(Z|Y )

H(Z | Y ) = −EY,Z log q(Z|Y )

= −
∑

ν,k

p(yk)qνk log(qνk). (8)

Thus, of all the local solutions q∗ to (5), we choose the ones which satisfy (7) and maximize the entropy.
Using the entropy as a regularizer, as in the Deterministic Annealing approach to clustering [34], is justified
by Jayne’s maximum entropy principle, which states that among all clusterings that satisfy a given set
of constraints, the maximum entropy clustering does not implicitly introduce additional constraints in the
problem [23].

Using the method of Lagrange multipliers, the problem (7) is commonly rewritten as

max
q∈∆

(H(q) + βDeff (q)) , (9)

for some β ∈ [0,∞), whose solutions are always solutions of (7). This is a problem of type (2), where
G = H(q) has a unique maximum.

1.2 Rate Distortion and Clustering

The second source of motivation for study of problem (2) is from Rate Distortion Theory [7]. Rate Distortion
Theory provides a rigorous way to determine how well a particular set of code words (or centers of clusters)
Z = {νi} represents the original data Y = {yi} by defining a cost function, D(Y ;Z), called a distortion
function. The basic question addressed by Rate Distortion Theory is that, when compressing the data Y ,
what is the minimum informative compression, Z, that can occur given a particular distortion D(Y ;Z) ≤ D0

[7]? This question is answered for independent and identically distributed data by the Rate Distortion
Theorem [7], which states that the minimum compression is found by solving the minimal information
problem

min
q∈∆

I(Y ;Z) constrained by D(Y ;Z) ≤ D0 (10)

where D0 > 0 is some maximum distortion level.
The Information Bottleneck method is a clustering algorithm which has used this framework for document

classification, gene expression, neural coding [35], and spectral analysis [38, 41, 37]. It uses the information
distortion measure DI , defined in section 1.1. This leads to an optimal clustering q∗ of the data Y by solving

min
q∈∆

I(Y ;Z) constrained by DI ≤ D0.
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Since I(X; Y ) is fixed, this problem can be rewritten as

max
q∈∆

−I(Y ; Z) constrained by Deff ≥ I0.

Now the method of Lagrange multipliers gives the problem

max
q∈∆

(−I(Y ; Z) + βDeff (q)) , (11)

for some β ∈ [0,∞), which is of the form given in (2). In this case, G = −I(Y ; Z) is not strictly concave,
and has uncountably many maxima. In fact, the Hessian d2F (q, β) = d2(−I(Y ;Z) + βDeff ) is singular for
every value of (q, β)

1.3 Annealing

In order to motivate our study of the bifurcation structure of (1) we now numerically illustrate the annealing
procedure for a simple data set. These results [10, 16] served as the starting point of our effort to both
improve the numerical algorithm used to obtain these solutions and to understand the underlying structure
of the bifurcations.

A basic annealing algorithm, various forms of which have appeared in [10, 16, 34, 38, 41], can be used to
solve (2) (which includes the cases (9) and (11)) for β ∈ [0,∞).

Algorithm 1 (Basic Annealing) Let

q0 be the maximizer of max
q∈∆

G(q)

and let β0 = 0, βmax > 0. For k ≥ 0, let (qk, βk) be a solution to (2). Iterate the following steps until
βK = βmax for some K.

1. Perform β-step: Let βk+1 = βk + dk where dk > 0.

2. Take q
(0)
k+1 = qk + η, where η is a small perturbation, as an initial guess for the solution qk+1 at βk+1.

3. Optimization: solve
max
q∈∆

(G(q) + βk+1D(q))

to get the maximizer qk+1, using initial guess q
(0)
k+1.

The purpose of the perturbation in step 2 of the algorithm is due to the fact that a solution qk+1 may get
”stuck” at a suboptimal solution qk. The goal is to perturb q

(0)
k+1 outside of the basin of attraction of qk.

The algorithm which we use to illustrate our results in section 7 is more sophisticated [31, 32]. We use
numerical continuation algorithms based on pseudo-arclength continuation [2, 13] applied to the gradient
flow of the Lagrangian. While the basic algorithm can only find local maxima of (2), the continuation
algorithm can track any stationary point of (2), which are equilibria of the gradient flow.

We now examine the results of the Basic Algorithm applied to (9) with the synthetic data set p(X, Y ),
shown in Figure 1(a). This distribution was drawn from a mixture of four Gaussians as the authors did in
[10, 16]. In this model, we may assume that X = {xi}52i=1 represents a range of possible stimulus properties
and that Y = {yi}52i=1 represents a range of possible neural responses. There are four modes in p(X, Y ), where
each mode corresponds to a range of responses elicited by a range of stimuli. For example, the stimuli {xi}11i=1

elicit the responses {yi}52i=39 with high probability, and the stimuli {xi}37i=24 elicit the responses {yi}38i=22 with
high probability. One would expect that the maximizer q∗ of (9) will cluster the neural responses {yi}52i=1 into
four classes, each of which corresponds to a mode of p(X, Y ). This intuition is justified by the Asymptotic
Equipartition Property for jointly typical sequences [7]. For this analysis we used the joint probability
p(X, Y ) explicitly to evaluate H(q) + βDeff (q), as opposed to modelling p(X, Y ) by p(X, Z) as explained in
section 1.1. The Basic Annealing Algorithm was run for 0 ≤ β ≤ 2.

The optimal clustering q∗(Z|Y ) for N = 2, 3, and 4 is shown in panels (b)–(d) of figure 1. We denote
Z by the natural numbers, Z ∈ Z = {1, ..., N}. When N = 2 as in panel (b), the optimal clustering q∗
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Figure 1: The Four Blob Problem from [10, 16]. (a) A joint probability p(X,Y ) between a stimulus set X
and a response set Y , each with 52 elements. (b–d) The optimal clusterings q∗(Z|Y ) for N = 2, 3, and 4
classes respectively. These panels represent the conditional probability q(ν|y) of a response y being classified
to class ν. White represents q(ν|y) = 0, black represents q(ν|y) = 1, and intermediate values are represented
by levels of gray. Observe that the data naturally splits into 4 clusters because of the 4 modes of p(X, Y )
depicted in panel (a). The behavior of the effective distortion Deff = I(X;Z) with increasing N can be
seen in (e). The dashed line is I(X; Y ), which is the least upper bound of I(X; Z).

yields an incomplete description of the relationship between stimulus and response, in the sense that the
responses {yi}37i=1 are in class 2 and the responses {yi}52i=38 are in class 1. The representation is improved
for the N = 3 case shown in panel (c) since now {yi}11i=1 are in class 3, while the responses {yi}37i=12 are still
lumped together in the same class 2. When N = 4 as in panel (d), the elements of Y are separated into
the classes correctly. The mutual information in (e) increases with the number of classes approximately as
log2 N until it recovers about 90% of the original mutual information (at N = 4), at which point it levels
off.

The action of SN on the clusterings q can be seen in Figure 1 in any of the panels (b)–(d). Permuting
the numbers on the vertical axis just changes the labels of the classes Z = {1, ..., N}, and does not alter the
effective clustering of the data Y . The SN -invariance of the cost function (9) is based upon the observation
that the action of SN on q does not affect the value of the cost function.

It has been observed that the solutions (q, β) of (2), which contain the sequence {(qk, βk)} found in step
3 of Algorithm 1, undergo bifurcations as β increases [34, 10, 16, 41, 38]. The explicit form of some of these
solutions about bifurcation points for the Information Distortion problem (9) are given in Figure 2. The
behavior of Deff as a function of β can be seen in the top panel. Some of the solutions {(qk, βk)} for different
values of βk are presented on the bottom row (panels 1 – 6). Panel 1 shows the uniform clustering, denoted
by q 1

N
, which is defined componentwise by

q 1
N

(ν|yk) :=
1
N

for every ν and k. One can observe the bifurcations of the solutions (1 through 5) and the corresponding
transitions of Deff . The abrupt transitions (1 → 2, 2 → 3) are similar to the ones described in [34] for a
different distortion function. One also observes transitions (4 → 5) which appear to be smooth in Deff even
though the solution from qk to qk+1 seems to undergo a bifurcation.

Figure 2 illustrates the breakdown in symmetry, referred to in the introduction by the chain of subgroups

S4 → S3 → S2 → S1,

which we tend to observe numerically when annealing with an algorithm which is affected by the stability
of the solution branches. The first solution branch, (q 1

N
, β) shown in panel 1 of Figure 2, has symmetry of
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Figure 2: The bifurcations initially observed by Dimitrov and Miller in [10] of the solutions (q∗, β) to the
Information Distortion problem (9). For the data set in Figure 1(a), the behavior of Deff = I(X;Z) as a
function of β is shown in the top panel, and some of the solutions q(Z|Y ) are shown in the bottom panels.

the full group S4. In other words, q 1
N

is invariant to relabelling of all 4 classes. After bifurcation occurs on
this branch, we see in panel 2 a solution with symmetry S3. In panels 3 and 4, we illustrate solutions with
symmetry S2. The clusterings q depicted in panels 5 and 6 are no longer invariant to permutations of the
class labels, and so we say that these have symmetry S1.

The bifurcation structure outlined in Figure 2 raises some interesting questions. Why are there only
3 bifurcations observed? In general, are there only N − 1 bifurcations observed when one is clustering
into N classes? In Figure 2, observe that q ∈ R4K = R208. Why should we observe only 3 bifurcations
to local solutions of H + βDeff in such a large dimensional space? What types of bifurcations should we
expect: pitchfork-like, transcritical, saddle-node, or some other type? At a bifurcation, how many bifurcating
branches are there? What do the bifurcating branches look like: are they subcritical or supercritical? What
is the stability of the bifurcating branches? In particular, from bifurcation of a solution, is there always a
bifurcating branch which contains solutions of the original optimization problem?

These are the questions which motivated this paper.

2 Preliminaries

2.1 Notation

The following notation will be used throughout the paper:

Y := a random variable with realizations from a finite set Y := {y1, y2, ..., yK}.
K := |Y| < ∞, the number of elements of Y, the realizations of the random variable Y .

Z := a random variable with realizations from the set of classes Z := {1, 2, ..., N}.
N := |Z|, the total number of classes.

q(Z|Y ) := the K × N matrix, p(Z|Y ), defining the conditional probability mass function of the random
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variable Z|Y , written explicitly as



q(1|y1) q(1|y2) q(1|y3) ... q(1|yK)
q(2|y1) q(2|y2) q(2|y3) ... q(2|yK)

...
...

...
...

q(N |y1) q(N |y2) q(N |y3) ... q(N |yK)


 =




q(1|Y )T

q(2|Y )T

...
q(N |Y )T


 =




(q1)T

(q2)T

...
(qN )T


 , (12)

where qν := q(Z = ν|Y ) is the transpose of the 1×K row of q(Z|Y ) corresponding to the class ν ∈ Z.

q := the vectorized form of q(Z|Y )T , written as

q = ((q1)T (q2)T ... (qN )T )T .

qνk := q(Z = ν|Y = yk), the component of q corresponding to the class ν ∈ Z and the element yk ∈ Y.

q 1
N

:= the uniform probability mass function on Z|Y such that q 1
N

(ν|yk) = 1
N for every ν and k.

xxxν := the νth K × 1 vector component of xxx ∈ RNK , so that xxx = ((xxx1)T (xxx2)T ... (xxxN )T )T .

In := n× n identity matrix.

2.2 Equivariant Branching Lemma

In this section, we present the Equivariant Branching Lemma, an existence theorem for bifurcating branches
from solutions of systems which have symmetry. Consider bifurcations of equilibria of some dynamical
system,

ẋxx = φ(xxx, β), (13)

where φ : V × R → V for some Banach space V . If φ is G-equivariant for some compact Lie group G,
then the Equivariant Branching Lemma relates the subgroup structure of G with the existence of bifurcating
branches of equilibria of (13). This theorem is attributed to Vanderbauwhede [42] and Cicogna [3, 4].

Theorem 2 (Equivariant Branching Lemma) ([19] p.83) Assume that

1. The smooth function φ : V × R → V from (13) is G-equivariant for a compact Lie group G, and a
Banach space V .

2. The Jacobian dxxxφ(000, 0) = 000.

3. The group G acts absolutely irreducibly on ker dxxxφ(000, 0) so that dxxxφ(000, β) = c(β)I for some scalar
valued function c(β).

4. The derivative c′(0) 6= 0.

5. The subgroup H is an isotropy subgroup of G with dimFix(H) = 1.

Then there exists a unique smooth solution branch (txxx0, β(t)) to φ = 000 such that xxx0 ∈ Fix(H), and the
isotropy subgroup of each solution is H.

Definition 3 [19] The branch (txxx0, β(t)) is transcritical if β′(0) 6= 0. If β′(0) = 0 then the branch is
degenerate. The branch is subcritical if for all nonzero t such that |t| < ε for some ε > 0, tβ′(t) < 0. The
branch is supercritical if tβ′(t) > 0.

Definition 4 The branch (txxx0, β(t)) is pitchfork-like if β′(0) = 0 and β′′(0) 6= 0.
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3 A Gradient Flow with Symmetries

We now lay the groundwork necessary to determine the bifurcation structure of local solutions to (1). We
first formally define the class of problems we investigate. The choice of this class is motivated by application
to the Information Distortion method (9). In that problem, the variables are conditional probabilities.
The collection of variables q(Z|Y ), which can be represented as a matrix (12), satisfies the constraints∑

ν q(ν|yk) = 1 for all yk. These can be viewed as sums in the columns of q(Z|Y ). This motivates the
following definitions.

Let Σ be a unit positive simplex in RN

Σ := {x ∈ RN | x1 + . . . + xN = 0, xi ≥ 0},
and let ∆ = ΣK be a product of K copies of Σ. We write q = ((q1)T (q2)T . . . (qN )T )T where each qν ∈ RK

represents a collection of ν components in all K copies of Σ.
Let G be the set of all maps from ∆ to R, at least C4 on Int(∆), and continuous on ∆, which factors as

a sum of maps over Σ

G := {g ∈ C4(Int(∆)×R+,R) | g(q, β) =
N∑

ν=1

f(qν , β),

where R+ is the nonnegative real line and β is a scalar parameter. The problem (2) is a special case of
(1) that is of great interest in applications. We formulate the genericity result below for both problems and
therefore we need the following class of functions. Let H be a set of functions

H := {g ∈ C4(Int(∆),R) | g(q) =
N∑

ν=1

f(qν),

where f : RK → R. Let X := H×H. Each pair of functions (G,D) ∈ H ×H defines a function

F0(q, β) := G(q) + βD(q), β ≥ 0. (14)

Clearly, F0 ∈ G and ⋃

(G,D)∈X
(G + βD) ⊂ G.

In other words, the set of problems parameterized by G is larger then that parameterized by X . Most of the
results we prove holds for the class G, but a few depend on special dependence on β in (14).

For the problem (1)
max
q∈∆

F (q, β),

where F =
∑N

ν=1 f(qν , β), which includes as a special case the annealing problem (2), F has the following
properties:

1. F (q, β) is an SN -invariant, real valued function of q, where the action of SN on q permutes the
component vectors qν , ν = 1, . . . , N , of q.

2. The NK ×NK Hessian d2
qF (q, β) is block diagonal, where each K ×K block is d2f(qν) = d2

qν F , for
some ν.

The Lagrangian of (1) with respect to the equality constraints from ∆ is

L(q, λ, β) = F (q, β) +
K∑

k=1

λk

(
N∑

ν=1

qνk − 1

)
. (15)

The scalar λk is the Lagrange multiplier for the constraint
∑N

ν=1 qνk − 1 = 0, and λ ∈ RK is the vector of
Lagrange multipliers λ = (λ1, λ2, ..., λK)T . The gradient of the Lagrangian in (15) is

∇L := ∇q,λL(q, λ, β) =
( ∇qL
∇λL

)
,

9



where ∇qL = ∇F (q, β) + Λ and Λ =
(
λT , λT , ... λT

)T ∈ RNK . The gradient ∇λL is a vector of K
constraints

∇λL =




∑
ν qν1 − 1∑
ν qν2 − 1

...∑
ν qνK − 1


 . (16)

Let J be the Jacobian of (16)

J := dq∇λL = dq




∑
ν qν1 − 1∑
ν qν2 − 1

...∑
ν qνK − 1


 =

(
IK IK ... IK

)
︸ ︷︷ ︸

N blocks

. (17)

Observe that J has full row rank. The Hessian of (15) is

d2L(q) := d2L(q, λ, β) =
(

d2F (q, β) JT

J 000

)
, (18)

where 000 is K ×K. The matrix d2F is the block diagonal Hessian of F ,

d2F (q) := d2
qF (q, β) =




B1 000 ... 000
000 B2 ... 000
...

...
...

000 000 ... BN


 , (19)

where 000 and Bν = d2f(qν , β) are K ×K matrices for ν = 1, ..., N .
The dynamical system whose equilibria are stationary points of (1) can now be posed as the gradient

flow of the Lagrangian
(

q̇

λ̇

)
= ∇L(q, λ, β) (20)

for L as defined in (15) and β ∈ [0,∞). The equilibria of (20) are points
(

q∗

λ∗

)
∈ RNK+K where

∇L(q∗, λ∗, β) = 0.

The Jacobian of this system is the Hessian d2L(q, λ, β) from (18). As in [17], we define a singularity of (20)
to be an equilibrium (q∗, λ∗, β∗) such that ∇L(q∗, λ∗, β∗) = 000 and d2L(q∗, λ∗, β∗) is singular.

Remark 5 By the theory of constrained optimization [29], the equilibria (q∗, λ∗, β) of (20) where d2F (q∗, β)
is negative definite on kerJ are local solutions of (1). Conversely, if (q∗, β) is a local solution of (1), then
there exists a vector of Lagrange multipliers λ∗ so that (q∗, λ∗, β) is an equilibrium of (20) (this necessary
requirement is called the Karush-Kuhn-Tucker conditions) such that d2F (q∗, β) is non-positive definite on
kerJ .

3.1 A Generic problem

The results of this paper are valid for a generic (i.e. open and dense) subset of the set G as well as for
a generic subset of X . Even though the set G is defined in terms of the function F , the nondegeneracy
conditions, which define the generic set, are formulated in terms of the Hessian d2F . Therefore we first
define a set of admissible matrices and then require that the Hessian d2F is in this class at every critical
point of the Lagrangian L: points where ∇L = 000, which correspond to equilibria of (20).
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Let {Uj}l
j=1 be some partition (i.e. Uj ∩ Ui = ∅ for i 6= j and

⋃l
j=1 Uj = Z) of the set of classes

Z = {1, . . . , N}. Without loss of generality, we may assume that

U1 = {1, ..., M1}
U2 = {M1 + 1, ...,M1 + M2}

...

Ul = {
l−1∑

j=1

Mj + 1, ...,

l∑

j=1

Mj}

where Mj := |Uj | is the number of elements of Uj , so that
∑l

j=1 Mj = N .

Definition 6 Consider the class T of NK ×NK block diagonal symmetric matrices U , where each square
block Bi, i = 1, . . . , N has size K, and Bi = Bk if and only if i, k ∈ Uj for some j. We denote by B̄j a block
common to the class Uj, i.e B̄j = Bi for all i ∈ Uj. If all matrices B̄i, for i 6= j are nonsingular, we define
the matrix Aj for each j = 1, . . . , l by

Aj := B̄j

∑

i/∈Uj

B−1
i + MjIK . (21)

If U1 = Z, so that all of the blocks Bi are identical, then we define A1 = NIK .
Let W ⊆ T be a class of matrices such that U ∈ W if and only if the following conditions are satisfied:

1. At most one of the matrices B̄1, . . . , B̄l is singular.

2. If B̄j is singular then Aj is non-singular.

3. If any matrix B̄j is singular, or any matrix Aj is singular, the multiplicity of its zero eigenvalue is 1.

We are ready for our genericity result.

Theorem 7

1. There is an open and dense set V ⊂ X = H×H such that if (G,D) ∈ V then the Hessian

d2G(q) + βd2D(q) ∈ W

for every critical point (q, λ, β) of L, i.e. a point where ∇L = 000.

2. There is an open and dense set A ⊂ G such that if F ∈ A then the Hessian

d2F (q, β) ∈ W

for every critical point (q, λ, β) of L.

Proof. We first sketch the idea of the proof to part 1. We start by showing that the set T \ W is a
collection of manifolds of at least codimension 2 in T . This implies that (T \ W)× [0,∞) is a collection of
manifolds of at least codimension 2 in T × [0,∞) Then we show that there is an open and dense set O ∈ X
such that if (G,D) ∈ X , the critical points (q, λ, β) of the corresponding Lagrangian L = L(G,D) forms a
finite collection of one dimensional manifolds in the space ∆× [0,∞). It follows that if (G,D) ∈ O, then the
set of matrices d2G(q) + βd2D(q) that are evaluated at a critical point (q, λ, β) of the Lagrangian L forms
a collection of one dimensional manifolds in the space T × [0,∞). For an open and dense subset V ⊂ O,
these manifolds have an empty intersection with (T \ W) × [0,∞), which consists of manifolds of at least
codimension 2. This implies that for (G,D) ∈ V ⊂ X , the matrices d2G(q) + βd2D(q) that are evaluated at
a critical point (q, λ, β) of the Lagrangian L, belong to W.
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To show that the set T \ W is a collection of at least codimension 2 manifolds in T , we start by
characterizing the set T \W. Let

Jij := {U ∈ T | B̄j and B̄i are singular};
Ii := {U ∈ T | B̄i is singular and Ai is singular};

Ki := {U ∈ T | B̄i is singular with multiplicity ≥ 2}
Li := {U ∈ T | Ai is singular with multiplicity ≥ 2}

Clearly
T \W ⊂

⋃

ij

Jij ∪
⋃

ij

Iij ∪
⋃

i

Ki ∪
⋃

i

Li.

Observe that Jij = {U ∈ T | det(B̄j) = 0 and det(B̄i) = 0} and Ii = {U ∈ T | det(B̄i) = 0 and det(Ai) =
0} and so for any pair i, j these are at least codimension 2 submanifolds in T . Similarly, Ki = {A ∈
T | B̄i has a two dimensional kernel} and Li are at least codimension 2 submanifolds of T . Therefore T \W
is a subset of a collection of at least codimension 2 submanifolds of T .

Let Υ : X → C3(RNK+K+1,RNK+K) be a continuous function associating

(G,D) 7→ ∇q,λL,

where ∇q,λL is a function of (q, λ, β) and so the extra dimension in the domain of the map is the domain of
β. By the Transversality theorem [21], for a typical (i.e. one which belongs to an open and dense set in a
strong topology) f ∈ C3(RNK+K+1,RNK+K), the inverse image f−1(0) is a collection of one-dimensional
manifolds. Since Υ is continuous, the inverse image of an open and dense set in C3(RNK+K+1,RNK+K) is
open and dense in X . We call this set O. Taking (G,D) ∈ O and f = Υ(G, D) then f−1(0) is the set of
critical points of the Lagrangian L and this set forms a collection of one-dimensional manifolds in ∆× [0,∞).
Therefore for (G,D) ∈ O the set of matrices d2G(q) + βd2D(q), evaluated at a critical point (q, λ, β) of the
Lagrangian L, forms a finite collection of one dimensional manifolds in the space T × [0,∞).

Note that T \ W × [0,∞) is at least codimension 2 in T × [0,∞) and for (G,D) ∈ O and the set of
matrices d2G(q) + βd2D(q), evaluated at a critical point (q, λ, β) of the Lagrangian L, is a collection of
one-dimensional manifolds in T × [0,∞). Hence there is an open and dense subset V ⊂ O such that for
(G,D) ∈ V , the intersection of T \ W × [0,∞) and the set of matrices d2G(q) + βd2D(q), evaluated at a
critical point (q, λ, β) of the Lagrangian L, is empty.

The proof of 2 is analogous to the proof of 1. We replace the set X by the set G and instead of (G,D) ∈ O
we need to consider F ∈ O. 2

From this point on we will use the term “generic” always to refer to the set A in Theorem 7, unless
otherwise noted.

We now consider bifurcations of equilibria of the gradient flow (20) for a generic function F (q, β). The
potential bifurcation points are singularities: points (q∗, λ∗, β∗) where ∇L(q∗, λ∗, β∗) = 000 and d2L(q∗, λ∗, β∗)
is singular.

Assume that (q, λ) is an equilibrium with a partition {Uj}l
j=1 of the set Z such that qi = qk if and only

if i and k belong to same partition set Uj . For example, in panel 2 of Figure 2, U1 = {1}, U2 = {2, 3, 4}, and
q2 = q3 = q4. The Hessian d2F (q∗) evaluated at such a point q has equal blocks, Bi = Bj , if i, k ∈ Uj . What
happens if such an equilibrium becomes a singularity of (20)? By Theorem 7, then there are two cases:

1. Either there is exactly one j such that B̄j is singular; or

2. All B̄j are nonsingular.

We assume without loss of generality that j = 1. We will show that in the first case, when B̄1 is singular
and |U1| > 1, we get a symmetry breaking bifurcation (Theorem 17). Generically, |U1| 6= 1 at a singularity
(Corollary 12). In the second case we get a symmetry preserving bifurcation (Theorem 29).

We start considering the first case. To ease the notation we set

U := U1, M := M1 and R :=
l⋃

j=2

Uj .
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Thus,
U = {1, ..., M} and R = {M + 1, ..., N}.

We need to distinguish between singular blocks Bν , ν ∈ U and non-singular blocks Bν , ν ∈ R. We will
write

B := B̄1 = Bν for ν ∈ U , (22)

Rν := Bν for ν ∈ R. (23)

The type of symmetry breaking bifurcation we get from a singularity (q∗, λ∗, β∗) only depends on the
number of blocks B which are singular. This motivates the following definition.

Definition 8 An equilibrium of (20) (q, λ, β), where q1 = q2 = . . . = qM , is M -singular if |U| = M and B
is singular.

If (q, λ, β) is an M -singular equilibrium of (20), we will say that q is M -singular. By Theorem 7, for a
generic F , the following properties hold if q is M -singular:

1. q1 = q2 = . . . = qM .

2. For B, the M block(s) of the Hessian defined in (22),

kerB has dimension 1 with basis vector vvv ∈ RK (24)

3. The N −M block(s) of the Hessian {Rν}ν∈R, defined in (23), are nonsingular.

4. The matrix A = B
∑

ν R−1
ν + MIK is nonsingular. When M = N , then R is empty, and A = NIK .

3.2 The Kernel of the Hessian d2L(q∗) at an M-singular q∗

We first determine a basis for ker d2F (q∗) at an M -singular q∗. Recall that in the preliminaries, when
xxx ∈ RNK , we defined xxxν ∈ RK to be the νth vector component of xxx. We now define the linearly independent
vectors {vvvi}M

i=1 in RNK by

vvvν
i :=

{
vvv if ν = i ∈ U
000 otherwise (25)

where 000 ∈ RK , and vvv is defined in (24). For example, if N = 3 with U = {1, 2} and R = {3}, then
vvv1 := (vvvT ,000,000)T and vvv2 := (000, vvvT ,000)T . This shows the following:

Lemma 9 If q∗ is M -singular, then {vvvi}M
i=1 as defined in (25) is a basis for ker d2F (q∗).

Now, let

wwwi =
(

vvvi

000

)
−

(
vvvM

000

)
(26)

for i = 1, ..., M − 1 where 000 ∈ RK . From (18), it is easy to see that {wwwi} are in ker d2L(q∗), which proves
the following Lemma.

Lemma 10 If d2F (q∗) is singular at an M -singular q∗ for 1 < M ≤ N , then d2L(q∗) is singular.

Next we give an explicit basis for ker d2L(q∗).

Theorem 11 If q∗ is M -singular for 1 < M ≤ N , then {wwwi}M−1
i=1 from (26) are a basis for ker d2L(q∗).
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Proof. To show that {wwwi} span ker d2L(q∗), let kkk ∈ ker d2L(q∗) and decompose it as

kkk =
(

kkkF

kkkJ

)
(27)

where kkkF is NK × 1 and kkkJ is K × 1. Hence

d2L(q∗, λ∗, β)kkk =
(

d2F (q∗, β∗) JT

J 000

)(
kkkF

kkkJ

)
= 000

=⇒ d2F (q∗, β)kkkF = −JTkkkJ

JkkkF = 000 . (28)

Now, from (17) and (19), we have



B1 000 ... 000
000 B2 ... 000
...

...
...

000 000 ... BN


kkkF = −




kkkJ

kkkJ

...
kkkJ


 . (29)

We set

kkkF := (xxxT
1 xxxT

2 . . . xxxT
N )T , (30)

and using the notation from (22) and (23), then (29) implies

Bxxxη = −kkkJ for η ∈ U (31)
Rνxxxν = −kkkJ for ν ∈ R .

It follows that xxxν = R−1
ν Bxxxη for any η ∈ U . By (28), we have that

∑N
i=1 xxxi = 000 and so

∑
ν∈R xxxν +

∑
η∈U xxxη = 000 (32)

=⇒ ∑
ν∈RR−1

ν Bxxxη̂ +
∑

η∈U xxxη = 000

where η̂ is some fixed class in U . By (31), for every η ∈ U , xxxη can be written as xxxη = xxxp + dηvvv where
xxxp ∈ {000} ∪ (RK \ kerB), dη ∈ R, and vvv is the basis vector of kerB from (24). Thus,

B
∑

ν∈R
R−1

ν B(xxxp + dη̂vvv) + B
∑

η∈U
(xxxp + dηvvv) = 000

⇔ (B
∑

ν∈R
R−1

ν + MIK)Bxxxp = 000

⇔ Bxxxp = 000

since A = B
∑

ν∈RR−1
ν + MIK is nonsingular. This shows that xxxp = 000. Therefore, xxxη = dηvvv for every

η ∈ U . Now (31) shows that kkkJ = 000 and so

xxxν = 000 for ν ∈ R. (33)

Hence kkk =
(

kkkF

000

)
where kkkν

F =
{

dνvvv if ν ∈ U
000 if ν ∈ R from which it follows that kkkF ∈ (ker d2F (q 1

N
)) ∩ (ker J)

and so Lemma 9 gives

kkkF =
M∑

i=1

civvvi and JkkkF = J
(
c1vvv

T , c2vvv
T , ..., cMvvvT

)T
= 000.

Thus,
∑

i civvv = vvv
∑

i ci = 000, and so kkkF =
∑M−1

i=1 ci(vvvi − vvvM ). Therefore, the linearly independent vectors

{wwwi} = {
(

vvvi − vvvM

000

)
} span ker d2L(q∗). 2

Observe that the dimensionality of ker d2L(q∗) is one less than ker d2F (q∗). This insight suggests that when
dimker d2F (q∗) = 1, then d2L(q∗) is nonsingular. This is indeed the case.
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Corollary 12 If q∗ is 1-singular, then d2L(q∗) is nonsingular.

Proof. By Lemma 9, dim ker d2F (q∗) = 1 and we need to compute the dimension of ker d2L(q∗, λ, β). To
that end, following the proof of Theorem 11, we take an arbitrary kkk ∈ ker d2L(q∗, λ, β), and then decompose
kkk as in (27) and (30). The proof to Theorem 11 holds for the present case up until, and including (33),
xxxν = 000 for ν ∈ R. Since q∗ is 1-singular, we have |U| = 1 and so (32) becomes

∑
ν∈R xxxν + xxxη = xxxη = 000

which implies that kkk = 000. 2

3.3 Liapunov-Schmidt Reduction

To show the existence of bifurcating branches from a bifurcation point (q∗, λ∗, β∗) of equilibria of (20), the
Equivariant Branching Lemma requires that the bifurcation is translated to (000,000, 0), and that the Jacobian
vanishes at bifurcation. To accomplish the former, consider

F(q, λ, β) := ∇L(q + q∗, λ + λ∗, β + β∗).

To assure that the Jacobian vanishes, we restrict and project F onto ker d2L(q∗) in a neighborhood of
(000,000, 0). This is the Liapunov-Schmidt reduction of F [17],

r : RM−1 ×R → RM−1

r(xxx, β) = WT (I − E)F(Wxxx + U(Wxxx, β), β) (34)

where Wxxx + U(Wxxx, β) =
(

q
λ

)
. The (NK + K)× (NK + K) matrix I −E is the projection matrix onto

kerF(000, 0) = ker d2L(q∗) with ker(I − E) = range d2L(q∗). W is the (NK + K) × (M − 1) matrix whose
columns are the basis vectors {wwwi} of ker d2L(q∗) from (26) so that Wxxx is a vector in ker d2L(q∗). The vector
function U(Wxxx, β) is the component of (q, λ) which is in range d2L(q∗) such that EF(Wxxx+U(xxx, β), β) = 000,
U(000, 0) = 000, and

dxxxU(000, 0) = 000. (35)

The system defined by the Liapunov-Schmidt reduction, ẋxx = r(xxx, β), has a bifurcation of equilibria at
(xxx = 000, β = 0), which are in 1− 1 correspondence with equilibria of (20): (txxx, β(t)) is a bifurcating solution

of r(xxx, β) = 000 if and only if




q∗

λ∗

β∗


 +

(
tWxxx
β(t)

)
is a bifurcating solution of ∇L(q, λ, β) = 000. However, the

stability of these associated equilibria is not necessarily the same.
It is straightforward to verify the following derivatives ([17] p. 32), which we will require in the sequel.

The Jacobian of (34) is

dxxxr(xxx, β) = WT (I − E)d2
q,λL(q + q∗, λ + λ∗, β + β∗)(W + dxxxU(Wxxx, β)), (36)

which shows that

dxxxr(000, 0) = 000 (37)

since ker(I − E) = range d2L(q∗). The derivative with respect to the bifurcation parameter is

dβr(000, 0) = WT dβ∇L(q∗, λ∗, β∗). (38)

The three dimensional array of second derivatives of r is

∂2ri

∂xj∂xk
(000, 0) = d3L(q∗, λ∗, β∗)[wwwi,wwwj ,wwwk]

=
∑

ν,δ,η∈Z

∑

l,m,n∈Y

∂3F (q∗, β∗)
∂qνl∂qδm∂qηn

[vvvi − vvvM ]νl[vvvj − vvvM ]δm[vvvk − vvvM ]ηn

=
∑

l,m,n∈Y

∂3F (q∗, β∗)
∂qνl∂qνm∂qνn

(δijk[vvv]l[vvv]m[vvv]n − [vvv]l[vvv]m[vvv]n) , (39)
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where vvv is defined in (24). An immediate consequence of (39) is that ∂2ri

∂xi∂xi
(000, 0) = 0 for each i, and that

∂2ri

∂xj∂xk
(000, 0) = ∂2ri′

∂xj′∂xk′
(000, 0) if (i, j, k) 6= (i′, j′, k′). The four dimensional array of third derivatives of r is

∂3ri

∂xj∂xk∂xl
(000, 0) = d4L[wwwi,wwwj ,wwwk,wwwl] − d3L[wwwi,wwwj , L

−Ed3L[wwwk,wwwl]]

− d3L[wwwi,wwwk, L−Ed3L[wwwj ,wwwl]]
− d3L[wwwi,wwwl, L

−Ed3L[wwwj ,wwwk]]. (40)

where the derivatives of L are evaluated at (q∗, λ∗, β∗), and L− is the Moore-Penrose generalized inverse [36]
of d2L(q∗). Thus, E = LL−, so that

L−E = L−LL− = L−. (41)

The explicit basis (26) shows that ker d2L(q∗) ∼= {xxx ∈ RM :
∑

[xxx]i = 0} ∼= RM−1 is absolutely irreducible
[18]. Thus,

dxxxr(000, β) = c(β)IM−1, (42)

which assures that we can use Theorem 2.

3.4 The Action of SN

In this section we give the explicit representation of the action of SN on the dynamical system (20).
Let P be a subgroup of O(NK), the group of orthogonal matrices in RNK . We define P to be the group

of block permutation matrices which act on q ∈ RNK by permuting the vector components, qν , of q. For
example, for N = 3, the element ρ13 (which permutes classes 1 and 3) and the element ρ123 (which maps
class 1 to 2, class 2 to 3, and class 3 to 1) in P are

ρ13 =




000 000 IK

000 IK 000
IK 000 000


 , ρ123 =




000 000 IK

IK 000 000
000 IK 000


 ,

where 000 is K ×K. The group Γ ⊂ O(NK + K) that acts on (q, λ) ∈ RNK ×RK , and on ∇L is

Γ :=
{(

ρ 000T

000 IK

)
| for ρ ∈ P

}

where 000 is K ×NK. Observe that γ ∈ Γ acts on ∇L by

γ∇q,λL(q, λ) =
(

ρ 000T

000 IK

)( ∇qL
∇λL

)
=

(
ρ∇qL
∇λL

)

and on
(

q
λ

)
by γ

(
q
λ

)
=

(
ρq
λ

)
. Thus, γ ∈ Γ acts on q ∈ RNK as defined by ρ ∈ P but leaves the

Lagrange multipliers λ = (λ1, λ2, ..., λK)T fixed.
The next Lemma, which follows easily from the form of F given in (1), establishes SN -equivariance for

the gradient system (20).

Lemma 13 L(q, λ, β) is Γ-invariant, ∇L(q, λ, β) is Γ-equivariant, and ∇F is P-equivariant.

Given an equilibrium q with q1 = q2 = . . . = qM , we write that q ∈ Fix(SM ), which really implies that
(q, λ) is in the fixed point space of

ΓU :=
{(

ρ 000T

000 IK

)
|ρ ∈ PU

}
,

where 000 is K × NK. The subgroup PU ⊂ P fixes the subvectors qν if ν ∈ R, and freely permutes the
subvectors qη if η ∈ U = {1, ..., M}, so that PU and ΓU are isomorphic to SM . Observe that if U = Z, then
we are back to the case where q∗ = q 1

N
and ΓU = Γ.

Similarly, when we write that (q, λ) has isotropy group SM , this refers to the group ΓU .
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3.5 Isotropy Subgroups of SM

The isotropy groups of (q, λ) for the clusterings q pictured in Figure 2 are clear. In panel 2, the isotropy
group is S3, and in panels 3 and 4, the isotropy group is S2. It turns out that, restricted to ker d2L(q∗), the
fixed point spaces of these groups is one dimensional. In this section, we give all of the isotropy subgroups
of SM which, acting on ker d2L(q∗), have fixed point spaces of dimension 1.

For arbitrary M , the full lattice of subgroups is unknown [6, 27]. By [22, 27], the subgroups Sm×Sn are
maximal in SM when m + n = M and m 6= n, which makes them possible maximal isotropy subgroups of
SM . Golubitsky and Stewart ([18] p. 18) show that all of the isotropy subgroups in SM with one dimensional
fixed point spaces are of the form Sm × Sn, where m + n = M (in this case, m can be equal to n). The
following Lemma which follows from this result will enable us to use the Equivariant Branching Lemma
to show the existence of explicit bifurcating solutions, with isotropy group Sm × Sn, from an M -singular
solution q∗ of (20) for any 1 < M ≤ N .

Lemma 14 Let M = m + n such that M > 1 and m,n > 0. Let Um be a set of m classes, and let Un be a
set of n classes such that Um ∩ Un = ∅ and Um ∪ Un = U . Now define ûuu(m,n) ∈ RNK such that

ûuuν
(m,n) =





n
mvvv if ν ∈ Um

−vvv if ν ∈ Un

000 otherwise

where vvv is defined as in (24), and let

uuu(m,n) =
(

ûuu(m,n)

000

)
(43)

where 000 ∈ RK . Then the isotropy subgroup of uuu(m,n) is Σ(m,n) ⊂ ΓU such that Σ(m,n)
∼= Sm × Sn, where

Sm acts on uuuν when ν ∈ Um and Sn acts uuuν when ν ∈ Un. The fixed point space of Σ(m,n) restricted to
ker d2L(q∗) is one dimensional.

It is straightforward to verify that uuu(m,n) = −∑n
i=1 wwwi + n

m

∑M−1
j=n+1 wwwj , confirming that uuu(m,n) ∈

ker d2L(q∗) as claimed. Without loss of generality, one can assume that Um = {1, 2, ...,m} and Un =
{m + 1, ..., M}. This is because if U ′m and U ′n is another partition of U into m and n classes respectively,
and if the vector uuu′(m,n) has isotropy group Σ′(m,n)

∼= Sm × Sn which acts on the subvector components uuu′ν

for ν in U ′m and U ′n, then uuu′(m,n) = γuuu(m,n) for some element γ ∈ Γ. The vectors uuu′(m,n) and uuu(m,n) are said
to be in the same orbit of Γ [19],

Γu(m,n) := {γu(m,n)|γ ∈ Γ}.
Furthermore, uuu′(m,n) and uuu(m,n) have conjugate isotropy subgroups,

Σ′(m,n) = γΣ(m,n)γ
−1.

This is why we use the notation Σ(m,n) to specify the isotropy subgroups in Lemma 14 instead of the more
precise, but elaborate notation Σ(Um,Un).

Letting m = 1 and n = M − 1 yields the following Corollary.

Corollary 15 Let ûuu ∈ RNK such that

ûuuν =





(M − 1)vvv if ν = 1
−vvv if ν = 2, ...,M
000 otherwise

where vvv is defined as in (24), and let uuu =
(

ûuu
000

)
where 000 ∈ RK . Then the isotropy subgroup of uuu is Σ ⊂ ΓU

such that Σ ∼= SM−1. The fixed point space of Σ restricted to ker d2L(q∗) is one dimensional.

17
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Figure 3: The bifurcation structure of stationary points of (9) when N = 4. Figure 2 showed an incomplete
bifurcation structure for this same scenario since the algorithm in that case was affected by the stability
of the branches. The panels illustrate the sequence of symmetry breaking bifurcations from the branch
(q 1

N
, λ, β) with symmetry S4, to a branch with symmetry S3, then to S2, and finally, to S1.

Remark 16 We want to pause and collect information about our notation. Assume q∗ is an M -singular
point for M > 1 so that (q∗, λ∗, β∗) is a singularity of the flow (20) for a generic choice of F . Thus, the
Hessian d2F (q∗) has M blocks which are singular. The vector vvv ∈ RK is in the kernel of the singular block
B of d2F . The vectors wwwi ∈ RNK+K are constructed from the vector vvv, and they form a basis for ker d2L
which has dimension M − 1. The vectors u(m,n) ∈ RNK+K are particular vectors in ker d2L which have
isotropy group Sm × Sn. Since these belong to ker d2L they are in the span of the vectors wwwi and hence are
constructed using the vector vvv.

4 Symmetry Breaking Bifurcations

We have laid the groundwork so that in this section, we may ascertain the existence of explicit bifurcating
branches from symmetry breaking bifurcation of an M -singular q∗ at some β∗ and vector of Lagrange
multipliers λ∗ (Theorem 17). To accomplish this, the Equivariant Branching Lemma is applied to the
Liapunov Schmidt reduction r(xxx, β) (34) of ∇L at a singularity *** (q,∗ , λ∗, β∗), where ∇L defines the
dynamical system (20)

(
q̇

λ̇

)
= ∇L(q, λ, β).

We will show that these symmetry breaking bifurcations are degenerate (Theorem 18), that is, β′(0) = 0. If
β′′(0) 6= 0, which is a generic assumption, then symmetry breaking bifurcations are pitchfork-like. We will
provide a condition, called the bifurcation discriminator, which ascertains whether the bifurcating branches
with isotropy group Sm×Sn are pitchfork-like and either subcritical or supercritical (Theorem 20). We also
provide a condition which determines whether branches are stable or unstable (Theorem 21). Lastly, we
determine when unstable bifurcating branches contain no solutions to (1) (Theorem 26).
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Figure 4: Symmetry breaking bifurcations from the branch (q 1
N

, λ, β) with symmetry S4 to branches which
have symmetry S2 × S2.

4.1 Explicit Bifurcating Branches

In this section we use the Equivariant Branching Lemma to ascertain the existence of explicit bifurcating
branches from symmetry breaking bifurcation of an M -singular equilibrium of (20).

Theorem 17 Let (q∗, λ∗, β∗) be an equilibrium of (20) such that q∗ is M -singular for 1 < M ≤ N , and

the crossing condition c′(0) 6= 0 (see (42)) is satisfied. Then there exists bifurcating solutions,




q∗

λ∗

β∗


 +

(
tuuu(m,n)

β(t)

)
, where uuu(m,n) is defined in (43), for every pair (m, n) such that M = m+n, each with isotropy

group isomorphic to Sm × Sn.

Proof. Lemma 14, and the equations (37) and (42) show that the requirements of the Equivariant
Branching Lemma are satisfied, whose application proves the theorem. 2

Figure 3 shows some of the bifurcating branches guaranteed by Theorem 17 when N = 4 (see section
7). The symmetry of the clusterings shown depict symmetry breaking from S4 → S3 → S2 → S1. Figure
4 depicts symmetry breaking from S4 to S2 × S2. The first bifurcation in the figure, which occurs at
β∗ = 1.0387, coincides with the break from S4 to S3 symmetry given in Figure 3. The subsequent two
bifurcating branches given in Figure 4 correspond to bifurcations at β∗ = 1.1339 and β∗ = 1.3910.

4.2 Subcritical and Supercritical Bifurcating Branches

Suppose that a bifurcation occurs at (q∗, λ∗, β∗) where q∗ is M -singular. This section examines the structure
of the bifurcating branches

((
q∗

λ∗

)
+ tuuu, β∗ + β(t)

)
, (44)

whose existence is guaranteed by Theorem 17.
The next theorem shows that symmetry breaking bifurcations of equilibria of (20) are degenerate.
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Theorem 18 If q∗ is M -singular for 1 < M ≤ N , then all of the bifurcating branches (44) guaranteed by
Theorem 17 are degenerate, i.e. β′(0) = 0.

Proof. By Definition 4, we need to show that β′(0) = 0. Let xxx0 be defined so that uuu = Wxxx0 is a
bifurcating direction given in (43). Thus, the isotropy subgroup of xxx0, Σ, has a one dimensional fixed point
space. Since r(Fix(Σ)) ⊆ Fix(Σ), then r(txxx0, β) = h(t, β)xxx0, where r is the Liapunov-Schmidt reduction (34)
and h is a polynomial in t. By absolute irreducibility, r(000, β) = 000, and so h(0, β) = 0 ([19] p.84), from which
it follows that h(t, β) = tk(t, β). Thus

r(txxx0, β) = tk(t, β)xxx0.

Differentiating this equation with respect to t yields

dxxxr(txxx0, β)xxx0 = (k(t, β) + tdtk(t, β))xxx0. (45)

Using absolute irreducibility, this equation shows that k(0, 0) = c(0) = 0, and dβk(0, 0) = c′(0) 6= 0. By the
Implicit Function Theorem, we can take the total derivative of k(t, β) = 0,

dtk(t, β(t)) + dβk(t, β(t))β′(t) = 0, (46)

so that β′(0) = −dtk(t,β(t))
c′(0) . Differentiating (45) with respect to t and then evaluating at t = 0 shows that

β′(0) =
−d2

xxxr(000, 0)[xxx0,xxx0,xxx0]
2||xxx0||2c′(0)

(47)

where d2
xxxr(000, 0)[xxx0,xxx0,xxx0] =

∑
i,j,k

∂2r
∂[xxx]i∂[xxx]j∂[xxx]k

(000, 0)[xxx0]i[xxx0]j [xxx0]k (see (39)). This expression is similar to
the one given in [19] p.90. To show that d2

xxxr(000, 0) = 000, expand ri, the ith component of r, about xxx = 000,

ri(xxx, β) = ri(000, β) + dxxxri(000, β)Txxx + xxxT d2
xxxri(0, β)xxx +O(xxx3).

Absolute irreducibility gives
ri(xxx, 0) = c(0)xi + xxxT d2

xxxri(0, 0)xxx +O(xxx3).

By (39), ∂2ri

∂xi∂xi
(000, 0) = 0 for each i. Applying the equivariance relation Ar(xxx, 0) = r(Axxx, 0), where A is any

element of the group isomorphic to SM which acts on r in RM−1, shows that ∂2ri

∂xj∂xk
(000, 0) = 0 for every

i, j, k.
2

If β′′(0) 6= 0, which we expect to be true generically, then Theorem 18 shows that the bifurcation
guaranteed by Theorem 17 is pitchfork-like. We next show how to determine the sign of β′′(0).

Definition 19 The bifurcation discriminantor of the bifurcating branches (44) with isotropy group Sm×Sn

is

ζ(q∗, β∗,m, n) := 3Ξ− d4f [vvv,vvv,vvv,vvv],

where

Ξ := bbbT B−
(

IK − mn(m + n)
m2 −mn + n2

A−1

)
bbb

bbb := d3f [vvv,vvv].

The matrix B− is the Moore-Penrose generalized inverse of a block of the Hessian (22), A is defined in (21),
and vvv is defined in (24).

20



1.05 1.1 1.15 1.2 1.25 1.3 1.35 1.4 1.45

0.7

0.8

0.9

1

1.1

1.2

1.3

β

I(
X

;Z
)

Figure 5: A close up, from Figure 3, of the branch with S2 symmetry which connects the S3 symmetric
branch below to the S1 symmetric solution above. By Theorem 18, the symmetry breaking bifurcations from
S3 → S2 and from S2 → S1 are degenerate, and, since β′′(0) 6= 0, pitchfork-like.

When q∗ = q 1
N

is N -singular, then A−1 = 1
N IK , and so the bifurcation discriminator in this case simplifies

to

ζ(q 1
N

, β∗,m, n) = 3
(

1− mn

m2 −mn + n2

)
bbbT B−bbb− d4f [vvv,vvv,vvv,vvv].

We want to note that the discriminator ζ(q∗, β∗,m, n) is defined purely in terms of the constitutive
functions f of F (q, β) =

∑N
ν=1 f(qν , β) (see (1)). This follows since the blocks of d2F (q∗) are Bν = d2f(qν)

for ν = 1, ..., N , A is a function of these blocks, and B = Bν for ν = 1, ..., M .
Since the kernel of B is spanned by the vector vvv, the expression B−x in Definition 19 is not uniquely

determined. However, we made a choice of L− to be the Moore-Penrose inverse of d2L which leads to the
simplification in (41) by selecting L−x to be in the image of the projection E. Since d2L has the blocks B
on its diagonal, the choice of the inverse B− is affected by the requirement that L− satisfies (41). It follows
from the computation (48) that in order for (41) to hold, we must take B− to also be the Moore-Penrose
inverse of the block B.

The term d4f [vvv,vvv,vvv,vvv] in ζ(q∗, β∗,m, n) can be expressed as

d4f [vvv,vvv,vvv,vvv] :=
∑

r,s,t,u∈Y

∂4F (q∗, β∗)
∂qνr∂qνs∂qνt∂qνu

[vvv]r[vvv]s[vvv]t[vvv]u.

Notice that bbb is a vector, whose tth component is

[bbb]t =
∑

r,s∈Y

∂3F (q∗, β∗)
∂qνr∂qνs∂qνt

[vvv]r[vvv]s.
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Theorem 20 Suppose q∗ is M -singular for 1 < M ≤ N and c′(0) > 0 (see (42)). Then

sgnβ′′(0) = sgnζ(q∗, β∗,m, n).

In particular, if ζ(q∗, β∗, m, n) < 0, then the bifurcating branches (44) guaranteed by Theorem 17, are
pitchfork-like and subcritical. If ζ(q∗, β∗,m, n) > 0, then the bifurcating branches are pitchfork-like and
supercritical.

Proof. Since β′(0) = 0 (Theorem 18), then we need to compute β′′(0) to determine whether a branch
is subcritical or supercritical. Differentiating (46) shows that β′′(0) = − d2

t k(0,0)
dβk(000,0) . Twice differentiating (45)

and solving for d2
t k(0, 0) shows that

β′′(0) =
−d3

xxxr(000, 0)[xxx0,xxx0,xxx0,xxx0]
3||xxx0||2c′(0)

where Wxxx0 = uuu = uuu(m,n). Since c′(0) > 0, we need only determine the sign of the numerator. By (40) and
(41),

d3
xxxr(000, 0)[xxx0,xxx0,xxx0,xxx0] = d4L[uuu,uuu,uuu,uuu]− 3d3L[uuu,uuu, L−d3L[uuu,uuu]],

where the derivatives of L are evaluated at (q∗, λ∗, β∗). Using (43), the first term can be simplified as

∑
l,m,n,p∈Y

∑

ν,δ,η,ω∈Z

∂3F (q∗, β∗)
∂qνl∂qδm∂qηn∂qωp

[ûuu]νl[ûuu]δm[ûuu]ηn[ûuu]ωp

=
∑

l,m,n,p∈Y

(( n

m

)4 ∑

ν∈Um

∂3F (q∗, β∗)
∂qνl∂qνm∂qνn∂qνp

[vvv]l[vvv]m[vvv]n[vvv]p +
∑

ν∈Un

∂3F (q∗, β∗)
∂qνl∂qνm∂qνn∂qνp

[vvv]l[vvv]m[vvv]n[vvv]p

)

=
(

n4

m3
+ n

)
d4f [vvv,vvv,vvv,vvv].

To simplify the second term −3d3L[uuu,uuu, L−d3L[uuu,uuu]], let

yyy := d3L[uuu,uuu]

so that by (43),

yyyν =





( n
m )2d3f [v, v] if ν ∈ Um

d3f [v, v] if ν ∈ Un

0 otherwise
=





( n
m )2bbb if ν ∈ Um

bbb if ν ∈ Un

0 otherwise
.

The vector kkk := L−d3L[uuu,uuu] = L−yyy is a solution to the linear equation

Lkkk = d2Lkkk = yyy.

We decompose kkk as kkk =
(

kkkF

kkkJ

)
so that kkkF := (xxxT

1 xxxT
2 . . . xxxT

N )T . Now (18) shows that Lkkk = yyy is

equivalent to

Bxxxν = (
n

m
)2bbb− kkkJ for ν ∈ Um

Bxxxν = bbb− kkkJ for ν ∈ Un (48)
Rνxxxν = −kkkJ for ν ∈ R
N∑

ν=1

xxxν = 000.
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The first three equations can be solved to get kkkF in terms of kkkJ , so that xxxν = ( n
m )2B−bbb−B−kkkJ for ν ∈ Um,

xxxν = B−bbb−B−kkkJ for ν ∈ Un, and that xxxν = −R−1
ν kkkJ for ν ∈ R. To get kkkJ , we now use the last equation,

B

N∑
ν=1

xxxν =
∑

ν∈U
Bxxxν +

∑

ν∈R
Bxxxν = 000,

and then substitute in from the first three equations to get

AkkkJ = (B
∑

ν∈R
R−1

ν + MIK)kkkJ =
(

n2

m
+ n

)
bbb

since A = B
∑

ν∈RR−1
ν + MIK . This yields

kkkJ =
(

n2

m
+ n

)
A−1bbb

since A from (21) is generically nonsingular (Theorem 7).

Now we are ready to compute d3L[uuu,uuu, L−d3L[uuu,uuu]] = yyyTkkk = d3L[uuu,uuu]T
(

kkkF

kkkJ

)
, which is equal to

(
n4

m3
+ n

)
bbbT B−bbb−

(
n2

m
+ n

)
bbbT B−kkkJ .

Substituting in the expression for kkkJ shows that

d3L[uuu,uuu, L−d3L[uuu,uuu]] = bbbT B−
((

n4

m3
+ n

)
IK −

(
n2

m
+ n

)2

A−1

)
bbb.

We have shown that

sgnβ′′(0) = −sgn d3
xxxr(000, 0)[xxx0,xxx0,xxx0,xxx0]

= sgn
(
3d3L[uuu,uuu, L−d3L[uuu,uuu]]− d4L[uuu,uuu,uuu,uuu]

)

= sgn

(
3bbbT B−

((
n4

m3
+ n

)
IK −

(
n2

m
+ n

)2

A−1

)
bbb−

(
n4

m3
+ n

)
d4f [vvv,vvv,vvv,vvv]

)
.

Dividing by
(

n4

m3 + n
)

completes the proof. 2

Consider the bifurcation at (q 1
N

, λ∗, β∗ = 1.0387) in Figure 3 where symmetry breaks from S4 to S3.
The value of the discriminator at this bifurcation is ζ(q 1

N
, 1.0387, 1, 3) = −.053 (see section 7 for details),

which predicts that this bifurcation is subcritical. Figure 6, a close up of the bifurcation structure at this
bifurcation, illustrates the subcritical bifurcating branch.

The following result discusses stability of the bifurcating branches. Here we compare our results to those
of Golubitsky et al. in [19]. They showed that if dxxxQ(000, 0)[xxx0] has eigenvalues with a nonzero real part, where
Q(xxx, β) := 1

2d2
xxxr(000, β)[xxx,xxx] is the quadratic part of the Liapunov-Schmidt reduction r, then, generically, all

bifurcating branches guaranteed by the Equivariant Branching Lemma are unstable, regardless of the value
of β′(0). We cannot use this result in the present case since dxxxQ(000, 0)[xxx0] = d2

xxxr(000, 0)[xxx0], which we showed
in the proof of Theorem 18, is identically zero.

Theorem 21 Suppose q∗ is M -singular for 1 < M ≤ N and that c′(0) > 0. All of the subcritical bifurcating
branches (44) guaranteed by Theorem 17 are unstable. If

θ(q∗, β∗,m, n) :=
M−1∑

k=1

(θ1 − 2θ2 − θ3) > 0,

23



1.036 1.038 1.04 1.042 1.044 1.046 1.048

0

0.5

1

1.5

2

2.5

3

β

||q
* −

q 1/
N

||

Local Maximum of (9)
Stationary Point of (9)

Figure 6: The subcritical bifurcation from the solution branch (q 1
4
, β) with symmetry S4 to a branch with

symmetry S3 at β∗ = 1.0387. This was predicted by the fact that ζ(q 1
4
, 1.0387, 1, 3) < 0. The bifurcation

diagram is shown with respect to ||q∗ − q 1
N
||. It is at the saddle node that this branch changes from being

composed of stationary points to local solutions of the problem (9)

then the supercritical bifurcating branch consists of unstable solutions. The component functions of θ are

θ1 = d4L[wwwk,wwwk,uuu,uuu],
θ2 = d3L[wwwk,uuu, L−d3L[wwwk,uuu]],
θ3 = d3L[wwwk,wwwk, L−d3L[uuu,uuu]],

where all of the derivatives are taken with respect to (q, λ), and wwwk is a basis vector from (26).

Proof. Subcritical bifurcating branches are unstable ([19] p. 91). To determine the stability of supercrit-
ical branches, consider the Taylor series of r(xxx, β) about xxx = 000 up to cubic order

r(xxx, β) = c(β)xxx + Q(xxx, β) + T (xxx, β) +O(www4),

where Q and T are the quadratic and cubic terms respectively. Thus

trace(dxxxr(txxx0, β)) = (M − 1)c(β) + trace(dxxxQ(txxx0, β)) + trace(dxxxT (txxx0, β)) +O(t3).

Golubitsky et al. ([19] p. 93) show that trace(dxxxQ(txxx0, β)) = 0 for all β. Now substituting in the Taylor
expansion for c(β) = c(β(t)) about t = 0 shows that trace(dxxxr(txxx0, β(t))) is equal to

(M − 1)
(

c′(0)β′(0)t + (c′′(0)β′(0)2 + c′(0)β′′(0))
t2

2

)
+ trace(dxxxT (txxx0, β)) +O(t3)

= (M − 1)c′(0)β′′(0)
t2

2
+ trace(dxxxT (txxx0, β)) +O(t3)
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Since c′(0) > 0 and for supercritical branches β′′(0) > 0, then we have that dxxxr(txxx0, β(t)) must have
an eigenvalue with positive real part for sufficiently small t if trace(dxxxT (txxx0, β)) > 0. Since T (xxx, β) =
1
6d3

xxxr(000, β)[xxx,xxx,xxx], then dxxxT (txxx0, β) = 1
2 t2d3r(000, β)[xxx0,xxx0], so trace(dxxxT (txxx0, β)) =

∑
i,j,k

∂3rk(000,0)
∂xi∂xj∂xk

[xxx0]i[xxx0]j =
θ(q∗, β∗,m, n), where the last equality follows from (40). 2

Remark 22 The expression θ(q∗, β∗, m, n) from Theorem 21 can be simplified to a form which only uses
derivatives of the constituent functions f of F ,

θ1 =
(

n2

m
+ n

)
d4f [vvv,vvv,vvv,vvv]

θ2 = bbbT B− (
a1IK + a2A

−1
)
bbb

θ3 = bbbT B− (
a3IK + a4A

−1
)
bbb

where ai are scalars which depend only on m and n.

4.3 Application to Annealing

We now give some results which hold when F is an annealing problem as in (2)

F (q, β) = H(q) + βD(q).

First, we show that the crossing condition c′(0) 6= 0 in Theorem 17 can be checked in terms of the Hessian
of the function D. Furthermore, when G is strictly concave, then c′(0) is positive at any singularity of
(20), so that every singularity is a bifurcation. Lastly, we show how to explicitly compute the discriminator
ζ(q, β, m, n) for the Information Distortion problem (9).

A singularity of (20) at (q∗, λ∗, β∗) results in a bifurcation when d2D(q) is positive definite on ker d2F (q∗).
In particular, this condition holds when d2G(q∗) is negative definite on ker d2F (q∗).

Lemma 23 Let d2F (q∗, β∗), β∗ 6= 0, be singular, and such that d2G(q∗) is negative definite on ker d2F (q∗).
Then d2D(q∗) is positive definite on ker d2F (q∗).

Proof. If uuu ∈ ker d2F (q∗), then uuuT d2G(q∗)uuu + β∗uuuT d2D(q∗)uuu = 0. Since uuuT d2G(q∗)uuu < 0, then we get
uuuT d2D(q∗)uuu > 0. 2

Now we show that if d2D(q∗) is positive definite on ker d2F (q∗), then every singularity is a bifurcation
point.

Lemma 24 Suppose that q∗ is M -singular for 1 < M ≤ N . If (q∗, λ∗, β∗) is a singularity such that d2D(q∗)
is positive definite on ker d2F (q∗), then c′(0) > 0.

Proof. By (42), dxxxr(000, β) = c(β)IM−1. Now (36) gives

kkkT d2
q,λL(q∗, λ∗, β + β∗)(INK+K + dwwwU(000, β))kkk = c(β)‖kkk‖2. (49)

for some kkk ∈ ker d2L(q∗). By Theorem 11, an arbitrary kkk ∈ ker d2L(q∗) can be written as kkk =
(

kkkF

000

)

where kkkF ∈ ker d2F (q∗, β∗). Substituting this into (49), differentiating with respect to β, and using (35)
yields

c′(0) =
kkkT

F d2D(q∗)kkkF

||kkkF ||2 , (50)

which must be positive since d2D(q∗) is positive definite on ker d2F (q∗). Thus, an eigenvalue of dxxxr(000, β)
changes sign. 2

25



For the Information Distortion problem (9), G(q) = H(Z|Y ) is strictly concave and so d2G is negative
definite on ∆. By Lemmas 23 and 24, every singularity is a bifurcation point. Therefore the bifurcation dis-
criminator and Theorem 20 can always be applied to bifurcations of equilibria for the Information Distortion
problem (9). For the Information Bottleneck problem (11), G(q) = −I(Y ; Z) is concave, but not strictly
concave. In fact, d2F (q, β) = d2(−I(Y ;Z) + βDeff ) is singular for every value of (q, β) [32].

The following Lemma provides an explicit expression for the discriminant ζ(q∗, β∗,m, n) for the Infor-
mation Distortion problem (9), F = H(q) + βDeff (q), which we use for numerical calculations in section
7.

Lemma 25 For the Information Distortion problem (9), ∂3F
∂qνr∂qνs∂qνt

is equal to

1
ln2

(
δrst

p(yr)
q2
νr

+ β

(
p(yr)p(ys)p(yt)
(
∑

j p(yj)qνj)2
−

∑

i

p(xi, yr)p(xi, ys)p(xi, yt)
(
∑

j p(xi, yj)qνj)2

))
.

The expression ∂4F
∂qνr∂qνs∂qνt∂qνu

is equal to

2
ln2

(
β

(∑

i

p(xi, yr)p(xi, ys)p(xi, yt)p(xi, yu)
(
∑

j p(xi, yj)qνj)3
− p(yr)p(ys)p(yt)p(yu)

(
∑

j p(yj)qνj)3

)
− δrstu

p(yr)
q3
νr

)
.

Proof. Direct computation using (6) and (8). 2

4.4 Stability and optimality

In this subsection we relate the stability of equilibria (q∗, λ∗, β) in the flow (20) with optimality of q∗ in the
problem (1). In particular, if a bifurcating branch corresponds to an eigenvalue of d2L(q∗) changing from
negative to positive, then the branch consists of stationary points (q∗, β∗) which are not solutions of (1).
Positive eigenvalues of d2L(q∗) do not necessarily show that q∗ is not a solution of (1) (see Remark 5). For
example, consider the Information Distortion problem (9) and the Four Blob problem presented in Figure
1. In this scenario, for the equilibria (q∗, λ∗, β) of (20) such that (q∗, β∗) is a solution of (9), d2L(q∗) always
has at least 52 positive eigenvalues, even when d2F (q∗) is negative definite.

Theorem 26 For the bifurcating branch (44) guaranteed by Theorem 17, uuu is an eigenvector of d2L(
(

q∗

λ∗

)
+

tuuu, β∗+β(t)) for sufficiently small t. Furthermore, if the corresponding eigenvalue is positive, then the branch
consists of stationary points which are not solutions to (1).

Proof. We first show that uuu is an eigenvector of d2L(q∗ + tûuu, λ∗, β + β(t)) for small t. Let Q =
(

q
λ

)
so

that
F(Q, β) := ∇L(q∗ + q, λ∗ + λ, β∗ + β).

Thus, bifurcation of solutions to F(Q, β) = 000 occurs at (000, 0). For γ ∈ Σ := Σ(m,n), F(tuuu, β) = F(tγuuu, β) =
γF(tuuu, β), where the first equality follows from Lemma 14, and the second equality follows from equivariance.
Hence, F(tuuu, β) is in Fix(Σ), which is one dimensional with basis vector uuu, showing that F(tuuu, β) = h(t, β)uuu
for some scalar function h(t, β). Taking the derivative of this equation with respect to t, we get

dQF(tuuu, β)uuu = dth(t, β))uuu, (51)

which shows that uuu is an eigenvector of d2L(q∗+tûuu, λ∗, β+β(t)), with corresponding eigenvalue ξ = dth(t, β).
Using (18) and letting d̂2F := d2F (q∗ + tûuu, β + β(t)), we see that (51) can be rewritten as

(
d̂2F JT

J 000

)(
ûuu
000

)
= ξ

(
ûuu
000

)
,

which shows that d̂2Fûuu = ξûuu and Jûuu = 000. Thus, ûuu ∈ kerJ is an eigenvector of d2F (q∗ + tûuu, β + β(t)) with
corresponding eigenvalue ξ. If ξ > 0, the desired result now follows from Remark 5. 2

We used Theorem 26 to show that the subcritical bifurcating branch depicted in Figure 6 is not composed
of solutions to the constrained problem (9).
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5 Saddle-node Bifurcations

We now turn our attention to bifurcations which are not symmetry breaking bifurcations of equilibria of
(20),

(
q̇

λ̇

)
= ∇L(q, λ, β).

We show that, generically, these bifurcations are saddle-node bifurcations, which we have illustrated numeri-
cally in Figure 6 for the Information Distortion problem (9). A bifurcation which is not a symmetry breaking
bifurcation will be called a symmetry preserving bifurcation.

To analyze symmetry breaking bifurcations, we exploited the singular blocks of d2F (q∗). For the sym-
metry preserving case, we have the following relationship with d2F (q∗).

Lemma 27 At a generic symmetry preserving bifurcation (q∗, λ∗, β∗), the Hessian d2F (q∗) is nonsingular.

Proof. Assume that d2F (q∗) is singular. We will show that this assumption leads to the conclusion that
q∗ undergoes a symmetry breaking bifurcation or no bifurcation at all. If d2F (q∗) is singular, then at least
one of the blocks Bi is singular. If the corresponding partition set |Uj | > 1 (see Definition 6), then there are
multiple blocks equal to Bi, and so Theorem 17 implies that q∗ undergoes a symmetry breaking bifurcation.
If the corresponding partition set |Uj | = 1, then Bi is the only block that is singular by genericity, so d2L is
nonsingular by Corollary 12. This leads to a contradiction since we assume that bifurcation takes place at
q∗. 2

Theorem 28 Consider a singularity (q∗, λ∗, β∗) of (20) such that d2F (q∗) is nonsingular. Then

1. The matrices Aj are singular for all j.

2. The spaces kerAi = ker Aj for all i and j. Generically, these spaces are one dimensional.

3. Generically, dimker d2L(q∗) = 1.

4. The basis vector for kerAi is vvv if and only if the basis vector for ker d2L(q∗) is

www =
(
(B−1

1 vvv)T , (B−1
2 vvv)T , ... , (B−1

N vvv)T ,−vvvT
)T

(52)

Proof. By assumption d2L(q∗) is singular, but all blocks Bi are nonsingular. Take kkk ∈ ker d2L(q∗) and
decompose it as kkk = (kkkT

F , kkkT
J )T as in the proof to Theorem 11. Since d2F (q∗) is non-singular, we must have

kkkJ 6= 000. We follow the argument of Theorem 11 up until (31), which gets replaced by

Bηxxxη = −kkkJ for all η. (53)

It follows that xxxη = −B−1
η kkkJ for any η. By (28), we have that

N∑

i=1

xxxi = −
∑

η

B−1
η kkkJ = 0. (54)

Select now an index j of some block Bj of the Hessian d2F (q∗). Recall that for all ν ∈ Uj we have Bν = B̄j .
Let |Uj | = M . Then (54) can be written as

∑

η/∈Uj

B−1
η kkkJ +

∑

ν∈Uj

B−1
ν kkkJ =

∑

η/∈Uj

B−1
η kkkJ + MB̄−1

j kkkJ = 000.

This is equivalent to

B̄j

∑

η/∈Uj

B−1
η + MI


kkkJ = 0. (55)
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Since Aj = B̄j

∑
η/∈Uj

B−1
η + MI we conclude that Aj has nontrivial kernel spanned by kkkJ . Since j was

arbitrary, this proves (1). By genericity (Theorem 7), the kernel of Aj is one dimensional, which proves (2).
It follows from (53) that given kkkJ , the vector kkkF is determined uniquely. This proves (3). Finally, (53) and
(55) show that kkk has the form in (4). 2

Next, we provide a sufficient condition for the existence of saddle-node bifurcations. Observe that the first
assumption given in the following theorem is satisfied generically at any symmetry preserving bifurcation
(Lemma 27), the second assumption is a crossing condition, and the third condition assures that β′′(0) 6= 0.

Theorem 29 Suppose that (q∗, λ∗, β∗) is a singularity of (20) such that:

1. The Hessian d2F (q∗) is nonsingular.

2. The dot product wwwT

(
dβ∇F (q∗, β∗)

000

)
6= 0 for www defined in (52).

3.
∑N

ν=1 d3f [B−1
ν vvv, B−1

ν vvv, B−1
ν vvv] 6= 0.

Then, generically, (q∗, λ∗, β∗) is a saddle-node bifurcation.

Proof. To prove the theorem, we show that there is a unique solution branch
((

q∗

λ∗

)
+ tuuu, β∗ + β(t)

)

in a neighborhood of (q∗, λ∗, β∗) with β′(0) = 0 and β′′(0) 6= 0 [2]. By Theorem 28, generically, ker d2L(q∗)
has a single basis vector www of the form (52), so that any vector uuu ∈ ker d2L(q∗) can be written as uuu = x0www
for some nonzero scalar x0 ∈ R. The Liapunov-Schmidt reduction in this case is (compare with (34)),

r : R×R → R

r(x, β) := wwwT (I − E)F(wwwx + U(wwwx, β), β), (56)

where F(q, λ, β) = ∇L(q + q∗, λ + λ∗, β + β∗) and q = wwwx + U(wwwx, β). Thus

r(tx0, β) = h(t, β)x0

for some scalar function h(t, β), which can not be factored as we did in the proof to Theorem 18 since
(t = 0, β) is not a critical point of r: by assumption 2 above

dβr(0, 0) = dβh(0, 0)x0 = wwwT dβ∇L(q∗, λ∗, β∗) = wwwT

(
dβ∇F (q∗, β∗)

000

)

is nonzero (see (38)). Thus, the Implicit Function Theorem can be used to solve h(t, β) = 0 uniquely for
β = β(t) in a neighborhood of (t = 0, β = 0). This shows that there is a unique solution branch in a
neighborhood of (q∗, λ∗, β∗). Analogous to how we computed β′(0) in (47), we have that

β′(0) = − dth(0, 0)
dβh(0, 0)

= − dxr(0, 0)
dβh(0, 0)

= 0.

Similar to the computations we did in the proof to Theorem 20 we see that

β′′(0) = − d2
t h(0, 0)

dβh(0, 0)
=
−d2

xr(0, 0)[x0, x0, x0]
x2

0dβh(0, 0)
.

Calculating the derivative d2
xr(0, 0)[x0, x0, x0] as we did in (39), and the explicit form of www given in Theorem

28 show that sgn β′′(0) = sgn(−∑
ν d3f [B−1

ν vvv, B−1
ν vvv, B−1

ν vvv]), which we assumed was nonzero. 2
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Figure 7: A hierarchical diagram showing how the singular points of d2L and d2F affect the bifurcation
structure of equilibria of (20).

6 Bifurcation Structure

We have described the generic bifurcation structure of problems of the form (1)

max
q∈∆

F (q, β) = max
q∈∆

(
N∑

ν=1

f(qν , β)

)
.

The type of bifurcation which occurs depends on three types of singular points of d2L(q∗) and d2F (q∗),
which we have depicted in Figure 7.

The first type of singular point is where the M > 1 blocks Bi of d2F , for i ∈ U , are singular. By
Lemma 10, d2L must be singular. Generically, the blocks, {Bν}ν 6∈U , of d2F are nonsingular, and Ai =
Bi

∑
ν 6∈U B−1

ν + MIK is nonsingular. Theorem 17 shows that this is the type of singularity that exhibits
symmetry breaking bifurcation.

The second type of singular point is a special case in which no bifurcation occurs. If only a single block,
Bi, of d2F is singular (i.e. M = 1) , and if the generic condition that the corresponding Ai is nonsingular
holds, then we show in Corollary 12 that d2L is nonsingular. Thus, generically, no bifurcation occurs for
this case.

The third type of singular point is when d2L is singular, but when d2F is nonsingular. By Theorem 28,
it must be that all of the matrices Ai are singular. This singular point manifests itself as a saddle-node
bifurcation (Theorem 29). Figure 7, which summarizes the preceding discussion, indicates how the singular
points of d2L and d2F affect the bifurcations of equilibria of (20).

7 Numerical Results

We created software in MATLAB which implemented pseudo-arclength continuation [2, 13] to numerically
illustrate the bifurcation structure guaranteed by the theory of sections 4 and 5. All of the results presented
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N 2 3 4 5 6
ζ(q 1

N
, β∗,m, n) 0.0006 -0.0010 -0.0075 - 0.0197 -.0391

Table 1: The bifurcation discriminator: Numerical evaluations of the bifurcation discriminator ζ(q 1
N

, β∗ ≈
1.038706,m = 1, n = N−1) as a function of N for the four blob problem (see Figure 1a) when F is defined as
in (9). A supercritical bifurcation is predicted when N = 2, and subcritical bifurcations for N ∈ {3, 4, 5, 6}.

here are for the Information Distortion problem (9),

max
q∈∆

(H(q) + βDeff (q))

and for the Four Blob Problem introduced in Figure 1.
Figure 3 is analogous to Figure 1. It uses the same data set and the same cost function. The difference is

that Figure 1 was obtained using the Basic Annealing Algorithm, while we used the continuation algorithm
in Figure 3. The continuation algorithm shows that the bifurcation picture is richer than shown in Figure 1.
Panels 1-5 in Figure 3 show that the clusterings along the branches break symmetry from S4 to S3 to S2,
and, finally, to S1. An ”*” indicates a point where d2F (q∗) is singular, and a square indicates a point where
d2L(q∗) is singular. Notice that there are points denoted by “*” from which emanate no bifurcating branches.
At these points a single block of d2F is singular, and, as explained by Corollary 12, d2L(q∗) is nonsingular.
Notice that there are also points where both d2L(q∗) and d2F (q∗) are singular (at the symmetry breaking
bifurcations) and points where just d2L(q∗) is singular (at the saddle-node bifurcations). These three types
of singular points are depicted in Figure 7.

Figure 4 illustrates symmetry breakdown from S4 to S2 × S2. The clusterings depicted in the panels are
not found when using an algorithm which is affected by the stability of the equilibria (such as the Basic
Annealing Algorithm).

Theorem 20 shows that the bifurcation discriminator, ζ(q∗, β∗,m, n), can determine whether the bifur-
cating branches guaranteed by Theorem 17 are subcritical (ζ < 0) or supercritical (ζ > 0). We considered
the bifurcating branches from (q 1

N
, λ∗, β∗ ≈ 1.0387) with isotropy group S3. The numerical results obtained

by calculating ζ(q 1
N

, β∗, 1, N−1) for N = 2, 3, 4, 5 and 6 at β∗ ≈ 1.0387 are shown in Table 1. The subcritical
bifurcation predicted by the discriminator for the Information Distortion problem (9) for N = 4 is shown in
Figure 6.

Figure 8 explores some of the clusterings on one of the secondary branches after symmetry breaks from
S3 to S2.

Figure 9 illustrates clusterings along branches which emanate from q∗ = q 1
N

at larger β than the value
of β ≈ 1.0387 at the first bifurcation. These branches are locally unstable at bifurcation, and do not give
solutions of (9). However, we cannot at the moment reject the possibility that these branches continue to a
branch that leads to a global maximum of (3) as β →∞.
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