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Abstract. We discuss an analytical approach through which the neural symbols
and corresponding stimulus space of a neuron or neural ensemble can be discovered
simultaneously and quantitatively, making few assumptions about the nature of the
code or relevant features. The basis for this approach is to conceptualize a neural coding
scheme as a collection of stimulus-response classes akin to a dictionary or ’codebook’,
with each class corresponding to a spike pattern ’codeword’ and its corresponding
stimulus feature in the codebook. The neural codebook is derived by quantizing the
neural responses into a small reproduction set, and optimizing the quantization to
minimize an information-based distortion function. We apply this approach to the
analysis of coding in sensory interneurons of a simple invertebrate sensory system.
For a simple sensory characteristic (tuning curve), we demonstrate a case for which
the classical definition of tuning does not describe adequately the performance of the
studied cell. Considering a more involved sensory operation (sensory discrimination),
we also show that, for some cells in this system, a significant amount of information is
encoded in patterns of spikes that would not be discovered through analyses based on
linear stimulus-response measures.

1. Introduction

What stimulus features are encoded in neural activity patterns? What aspects of the

neural activity patterns encode that information? Considerable progress has been made

by approaching these questions independently. However, independent treatment of

these interconnected questions often introduces multiple assumptions that prevent their

complete solution. How can we be sure we have discovered the specific features to which

an ensemble of cells is sensitive unless we know, with complete certainty, the symbols

they use to represent those features? And, vice versa, how can we be sure of the symbols

unless we know, with certainty, what stimulus features are being represented by those

symbols?

§ Research supported in part by NIH grants MH12159 (AGD) and MH57179 (JPM, ZA, AGD), and
NSF grants DGE9972824(ZA,AEP) and MRI9871191.
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We recently presented an analytical approach [8] that enables the simultaneous

solution to these two interconnected questions. The basis for this approach is to

conceptualize a neural coding scheme as a collection of stimulus-response classes, where

each class consists of a set of stimuli and a synonymous set of neural responses. The

stimulus-response classes form a structure akin to a dictionary or ’codebook’, with each

class corresponding to a neural response ’codeword’ and its corresponding stimulus

feature in the codebook. This analytical approach enables the derivation of this neural

codebook, which in turn allows any sequence of spike patterns in a neural response to

be ’deciphered’ into the corresponding sequence of stimulus features that elicited those

responses.

This new approach uses tools from information theory and quantization theory to

perform the tasks above. Specifically, we quantize the neural responses to a small

reproduction set and optimize the quantization to minimize an information-based

distortion function. Fixing the size of the reproduction set produces an approximation

of the coding scheme. The number of distinguishable codeword classes is related to

the mutual information between stimulus and response. This analytical approach has

several advantages over other current approaches:

(i) it yields the most informative approximation of the encoding scheme given the

available data (i.e., it gives the lowest distortion, by preserving the most mutual

information between stimulus and response classes),

(ii) the cost function, which is intrinsic to the problem, does not introduce implicit

assumptions about the nature or linearity of the encoding scheme,

(iii) the maximum entropy quantizer does not introduce additional implicit constraints

to the problem,

(iv) it incorporates an objective, quantitative scheme for refining the codebook as more

stimulus-response data becomes available,

(v) it does not need repetitions of the stimulus under mild continuity assumptions, so

the stimulus space may be investigated more thoroughly.

In the following sections, we first summarize the essential theoretical background

from our recent work. Second, we present results related to the practical computational

implementation of the core algorithms for the analysis of neurophysiological recordings.

Third, we present further analysis and extensions to this theoretical approach that

enable the analysis of more complex encoding schemes. Finally, we demonstrate the

application of this approach through an analysis of coding in sensory interneurons

of a simple invertebrate sensory system: For a simple sensory characteristic (tuning

curve), we demonstrate a case for which the classical definition of tuning is actually

inadequate given the analyzed performance of cell. Specifically, the response region with

maximal firing rate, usually considered to be the “preferred direction” of this cell actually

offers much worse estimate of the stimulus direction compared to neighboring activity

ranges with lower overall activity. Considering a more involved sensory operation
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(sensory discrimination), we also show that, for some cells in this system, a significant

amount of information is encoded in patterns of spikes that would not be discovered

through analyses based on linear stimulus-response measures. Specifically, short-interval

spike doublets were found to code for stimulus features that differ significantly from

the waveforms predicted by the linear combination single-spike-based Wiener/Volterra

kernels offset by that doublet interval, through the ’stimulus reconstruction’ technique.

2. Theoretical background and previous results

2.1. A model of neural processing

Any neural code must satisfy several conflicting demands. On one hand the organism

must recognize certain natural object in repeated exposures. Failures on this level may

endanger an animal’s well-being: e.g., if a predator is misidentified as a con-specific

mate. On this level, the response of the organism needs to be deterministic. On the

other hand, distinct stimuli need not produce distinguishable neural responses, if such

a regime is beneficial to the animal (for example, a wolf and a fox need not produce

distinct responses in a rabbit, just the combined concept of “predator” may suffice.)

Thus the representation, albeit possibly deterministic, need not be bijective. Lastly,

the neural code must deal with uncertainty introduced by both external and internal

noise sources. Therefore the neural responses are by necessity stochastic on fine scale.

In these aspects the functional issues that confront the early stages of any biological

sensory system are similar to the issues encountered by communication engineers in

their work of transmitting messages across noisy media. With this in mind we represent

the input/output relationship present in a biological sensory system as a communication

system [37].

We will therefore consider a neural encoding process within an appropriate

probabilistic framework [1, 22]. The input signal X to a neuron (or neural ensemble) may

be a sensory stimulus or may be the activity of another set of (pre-synaptic) neurons.

We will consider the input signal to be produced by a source with a probability p(x).

The output signal Y generated by that neuron (or neural ensemble) in response to Y

will be a spike train (or ensemble of spike trains.) We will consider the encoding of X

into Y to be a map from one stochastic signal to the other. This stochastic map will be

the encoder q(y|x), which will model the operations of this neuronal layer. The output

signal Y is induced by q(y|x) by p(y) =
∑

x q(y|x)p(x).

The view of the neural code, which is probabilistic on a fine scale but deterministic

on a large scale, emerges naturally in the context of Information Theory [6]. The Noisy

Channel Coding Theorem suggests that, in this context, relations between individual

elements of the stimulus and response spaces are not the basic building elements of the

system. Rather, the defining objects are relations between classes of stimulus-response

pairs. There are about 2I(X;Y ) such equivalence classes (i.e., codeword classes). When

restricted to codeword classes, the stimulus-response relation is almost bijective. That
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is, with probability close to 1, elements of Y are assigned to elements of X in the same

codeword class. This framework naturally deals with lack of bijectivity, by treating it

as effective noise. We decode an output y as any of the inputs that belong to the same

codeword class. Similarly, we consider the neural representation of an input x to be

any of the outputs in the same codeword class. Stimuli from the same equivalence class

are considered indistinguishable from each other, as are responses from within the same

class.

2.2. Finding the codebook

Given this model of neural function, we would like to recover the codebook. In this

context, this equates to identifying the joint stimulus-response classes that define the

coding relation. The approach we use ([8]) is to quantize (i.e., cluster) the response space

Y to a small reproduction space of finitely many abstract classes, YN . This method

allows us to study coarse (i.e., small N) but highly informative models of a coding

scheme, and then to automatically refine them when more data becomes available. This

refinement is done by simply increasing the size of the reproduction, N .

The quality of a quantization is characterized by a distortion function [6]. In

engineering applications, the distortion function is often chosen in a fairly arbitrary

fashion [6, 13]. By concentrating on a pair of interacting systems (stimulus and

responses), we can avoid part of this arbitrariness: The mutual information I(X; Y )

tells us how many different states on the average can be distinguished in X by observing

Y . If we quantize Y to YN (a reproduction with N elements), we can estimate I(X; YN),

which is the mutual information between X and the reproduction YN . With that in

mind, we postulate the following distortion function [8]:

DI(Y, YN) = I(X; Y )− I(X; YN). (1)

Following examples from rate distortion theory [6, 34], this problem of optimal

quantization can be formulated as a maximum entropy problem [8, 18]. The reason is

that, among all quantizers that satisfy a given set of constraints, the maximum entropy

quantizer does not implicitly introduce additional constraints in the problem. Within

this framework, the minimum distortion problem is posed as a maximum quantization

entropy problem with a distortion constraint:

max
q(yN |y)

H(YN |Y ) constrained by (2)

DI(q(yN |y)) ≤ D0 and
∑
yN

q(yN |y) = 1 ∀y ∈ Y

More details are presented in Section 3 and [8]. Recently the same problem was

reformulated as one of optimal decoding [35], interpreting the quantizer q(yN |y) as

a channel decoder.
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The optimal quantizer q(yN |y) induces a coding scheme from X → YN by p(yN |x) =∑
y q(yN |y)p(y|x) which is the most informative approximation of the original relation

p(x|y) for a fixed size N of the reproduction YN . Increasing N produces a refinement of

the approximation, which is more informative (has lower distortion and thus preserves

more of the original mutual information I(X;Y)).

The elements of YN can be interpreted as the labels of the equivalence classes which

we want to find. The quantizer q(yN |y) gives the probability of a response y belonging to

an equivalence class yN . We have shown in [12] that the optimal quantizer is generically

deterministic, that is, the optimal probability q(yN |y) is 1 or 0 (see also Appendix B). In

this case the responses associated with class yN are YN = {y|q(yN |y) = 1}. The induced

coding scheme from X → YN also induces the quantization X → XN by associating the

class xN ∈ XN with the stimulus set

XN = {x|p(yN |x) ≥ p(yM |x) for all other classes yM}.
Clearly, each x ∈ X belongs to at least one class XN and thus X = ∪NXN . If the

inequality above is strict for each x, then the classes are non-intersecting. Hence the

resulting relation p(yN |xN) is bijective. In general we expect the set {x|p(yN |x) =

p(yM |x) for some M,N} to be of measure zero, and therefore the relation p(yN |xN) is

almost bijective. Hence, we recover an almost complete reproduction of the coding

scheme as a relation between equivalence classes, which we outlined earlier.

Examples of the application of this method to synthetic data were presented in [8].

We reproduce a similar figure here (Figure 1) to demonstrate essential aspects of this

approach.

A similar approach, termed “The Information Bottleneck”, was developed

previously by Tishby et. al. in [30, 48]. This approach has been used successfully

in applications of text clustering [2, 30, 40, 42, 43] and astronomical observations [41].

The preliminary results from its application to neural systems [14, 36] are discussed in

the context of Section 4.1. The two approaches are related, due to the common term

in the cost functions, I(X; Z) (Z ≡ YN in our notation), and the use of probabilistic

(“soft”) clustering techniques. In fact, as noted in [28], both can be seen as extensions of

Grenander’s method of sieves [16] for estimating expectations of probabilistic quantities.

However, a more detailed inspection of the methods reveals several distinctions.

A cursory inspection would note the minor difference in cost functions: in this work

and in [8], influenced by [18, 34], we use the maximum entropy formulation (2). The

formulation in [48] follows more closely rate distortion theory ([6]) and uses the cost

function F = I(Y ; Z)− βI(X; Z).

In fact, this difference in cost functions leads to drastically different solution

strategies. In [48], both parts of the optimization function are functional and must

be optimized at the same time. The parameter β is considered a tradeoff parameter,

which controls the tradeoff between quality of representation and amount of compression

of the data. Thus the choice of β left to the user. The number of classes (reproduction

size, N) are not fixed, and in the implementation in [48] more classes are introduced as
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Figure 1. (a) A joint probability for a discrete relation between two random variables
X (stimulus) and Y (response), with 52 elements each. (b–d) The optimal quantizers
q(yN |y) for different numbers of classes. These panels represent the conditional
probability q(yN |y) of a pattern y from a) (horizontal axis) belonging to class yN

(vertical axis). White represents zero, and black represents one. Intermediate values
are represented by levels of gray. The behavior of the mutual information with
increasing N can be seen in the log-linear plot (e). The dashed line is I(X; Y ), which
is the least upper bound of I(X;YN ).

they are needed. In the implementation used for the agglomerative bottleneck approach

[42], a greedy algorithm is used, in which points are grouped to larger classes as β

descends from infinity to prescribed value of β0.

In contrast, here and in [8] we are mostly concerned with minimizing the distortion

function (1) for fixed number of classes, N. To that effect, in our approach the entropy

H is simply a regularizer that helps with continuous optimization, since it has a

unique maximum where the optimization starts. For the purposes of the numerical

implementation, any strictly concave function has the same effect. For the same reason

we fix the reproduction size N and always take β to infinity. As demonstrated here

(Figure 1, Section 4), and in [8], the reproduction is refined (N increased) only if both

a) there is sufficient data and b) the approximation is markedly improved. This regime

allows us to prove (in [12], and Section 3.3) the important result that the solution to our

problem is generically deterministic. We have used this result to design a combinatorial

search algorithm (Section 3.1.2), which searches for optimal solution only among the

deterministic solutions. We have found this algorithm very useful to our data analysis,

however, it is inapplicable to the problem discussed in [48].

Because of the above differences, it is not obvious a priori whether the solutions of

the two approaches are the same in the parameter regime where they can be compared

(the same β and N).
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3. Theoretical Results

3.1. Numerical algorithm for optimal quantization

In order to implement this analytical approach for the analysis of experimental data, we

have devised several algorithms using various reformulations of the following problem:

max
q(yN |y)

H(YN |Y ) constrained by (3)

DI(q(yN |y)) ≤ D0,
∑
yN

q(yN |y) = 1 ∀y ∈ Y, and q(yN |y) ≥ 0.

We have thus turned our problem to an optimization problem, similar to problems which

appear in Rate Distortion Theory [6, 34]. Below we present two distinct approaches,

which use different properties of the cost function and the feasible space to design

efficient algorithm for solving (3). The first (3.1.1) involves a continuous optimization

scheme which uses the probabilistic formulation of the problem. We present two

implementations of this scheme. The second (3.1.2) makes use of special properties of

the cost function in this space to replace the optimization with a combinatorial search

in the set of vertices of the feasible region. Both formulation have their strengths and

weaknesses. We use them interchangeably in further analytical work.

3.1.1. Annealing Using the method of Lagrange multipliers we can reformulate the

optimization problem as finding the maximum of the cost function as

max
q(yN |y)

F (q(yN |y)) ≡ max
q(yN |y)

(
H(YN |Y )− βDI(q(yN |y))

)
(4)

constrained by q(yN |y) ∈ ∆,

where ∆ := {q(yN |y) | ∑
yN

q(yN |y) = 1 and q(yN |y) ≥ 0}. This construction removes

the nonlinear parametric constraint from the problem and replaces it with a parametric

search in β = β(D0). For small β the obvious optimal solution is the uniform solution

q(yN |y) = 1/N [34]. It can be shown that as β → ∞, the solution of the problem (4)

converges to a solution of the problem (3) ([12]). Therefore we need to track the optimal

solution from β = 0 to β = ∞. We can do this by incrementing β in small steps and

use the optimal solution at one value of β as the initial condition for a subsequent β.

To do this we must solve (4) at a fixed value of β. We have implemented two different

algorithms to solve this problem.

The first algorithm is a Projected Newton Conjugate Gradient Line Search with

an Augmented Lagrangian cost function [12]. This is a relatively standard numerical

method for which the convergence property to a local maximum is assured.

The second algorithm is based on the observation that extrema of F can be found

by setting its derivatives with respect to the quantizer q(yN |y) to zero [8]. Solving this

system produces the implicit equation (∇DI depends on q(yN |y))

q(yN |y) =
e−β

∇qDI
p(y)

∑
yN

e−β
∇qDI
p(y)

. (5)
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Here ∇q denotes the gradient operator with respect to the quantizer. The expression (5)

can be iterated for a fixed value of β to obtain a solution for the optimization problem,

starting from a particular initial state. In practice this scheme has demonstrated very

fast convergence to a fixed point, and linear to quadratic dependence on the size of the

problem. We are currently investigating the reasons for this beneficial behavior.

Tracking the solution from small values to large values of β can be also formulated

as a continuation problem [3, 10], which finds efficiently the solution of (4) for the next

step in β given the current solution. Instead of using the optimal solution at the last β

value as the initial condition for the next step (as explained above), the initial condition

(as well as the magnitude of the next β step) can be computed by taking a fixed step

along the vector which is tangent to the curve defined by ∇qF (q, β) ≡ 0. A more

extensive discussion of this technique can be found in [29].

3.1.2. Combinatorial search The special structure of our cost function and feasible

region allows us to approach the optimization from a different perspective and design

an optimization scheme which involves a combinatorial search in a discrete space

of events. Applying standard results from information theory [6] we have shown

in previous studies that the function DI is concave in q(yN |y) ([8]). The domain

∆ := {q(yN |y) | ∑
yN

q(yN |y) = 1 ∀y ∈ Y and q(yN |y) ≥ 0} is a product of

simplices and therefore convex. We have shown in [12] that these two facts imply

that the optimal solution of (3) lies generically in a vertex of ∆ (see Appendix B). Since

the set of vertices may become large, we implemented a local search, bilinear in the

sizes of the spaces Y and YN , which leads, under modest assumptions [12], to a local

maximum of (3). Empirically, this search is very fast for small problem sizes (coarse

quantizations with a small reproduction size N). However the increased computational

cost makes it prohibitively slow for large reproductions. This drawback is offset by its

massively parallel nature, which makes it a prime candidate for implementing on parallel

computing environments.

3.2. Analysis of complex sensory stimuli

In general, we want to analyze the operation of any sensory system under conditions

which are close to its natural set of conditions. This usually entails observing

rich stimulus sets of high dimensionality. Characterizing such a relationship non-

parametrically is very difficult, and usually requires prohibitively large datasets [19].

To cope with this regime, we choose to model the stimulus/response relationship. The

formulation as an optimization problem suggests certain classes of models which are

better suited for this approach. We shall look for models that give us strict upper

bounds D̃I to the information distortion function DI . In this case, when we minimize

the upper bound, the actual value of DI is also decreased, since 0 ≤ DI ≤ D̃I . This

also gives us a quantitative measure of the quality of a model: a model with smaller D̃I

is better.
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We start the modeling process by noting that DI can be expressed as

DI(Y, YN ; X) = H(X)−H(X|Y )− (H(X)−H(X|YN)) (6)

by using standard equalities from information theory [6]. The only term in (6) that

depends on the quantizer q(yN |y) is H(X|YN), so minimizing DI is equivalent to

minimizing

Deff := H(X|YN).

Thus the models we need to consider should produce upper bounds of H(X|YN).

One way to achieve this is by constructing a maximum entropy model [18] of the

corresponding probability.

We can further express H(X|YN) as H(X|YN) = EyN
H(X|yN) [7, 9], where each

term H(X|yN) is the entropy of X conditioned on yN being the observed response class.

Here EyN
denotes the expectation in YN . As a first attempt, we constrained the class

conditional mean and covariance of the stimulus to the ones observed from data:

xN =
∑
x

p(x|yN) x (7)

CX|yN
=

∑
x

p(x|yN)(x− xN)2.

Here and later we use x2 as a shorthand for x xT (direct product, non-commutative).

The maximum entropy model under such constraints is a Gaussian N(xN , CX|yN
). with

the estimated mean and covariance. Each entropy term is then bounded by

H(X|yN) ≤ HG(X|yN) ≡ 1

2
log(2πe)|X| det CX|yN

where |X| is the dimensionality of the stimulus space X. This produces an upper bound

D̃eff of Deff by

Deff ≤ D̃eff ≡ EyN
HG(X|yN) = EyN

1

2
log(2πe)|X| det CX|yN

. (8)

The class conditioned covariance CX|yN
can be expressed explicitly as a function of

the quantizer. Since p(x|yN) =
∑

y p(x|y)p(y|yN), equation (7) implies

xN =
∑
xy

p(x|y)p(y|yN)x =
∑
y

p(y|yN)
∑
x

p(x|y)x =
∑
y

p(y|yN)xy (9)

and

CX|yN
=

∑
xy

p(x|y)p(y|yN)(x− xN)2 (10)

=
∑
y

p(y|yN)
∑
x

p(x|y)
(
(x− xy) + (xy − xN)

)2

=
∑
y

p(y|yN)
(
CX|y + (xy − xN)2

)

=
∑
y

p(y|yN)
(
CX|y + x2

y

)
−

( ∑
y

p(y|yN)xy

)2
.
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Since p(yN) =
∑

y q(yN |y)p(y) and p(y|yN) = q(yN |y) p(y)
p(yN )

by Bayes’ theorem, the

last expression (10) is a function of the quantizer (through p(y|yN)). The parameters

(CX|y, xy) are independent of the quantizer and can be estimated from data. When

substituted back in (8), this yields an explicit formula for the upper bound of the

effective distortion

D̃eff =
∑
yN

p(yN)
1

2
log(2πe)|X| det

[ ∑
y

p(y|yN)
(
CX|y+x2

y

)
−

( ∑
y

p(y|yN)xy

)2]
(11)

which can be used in place of DI in the optimization scheme (3). The stimulus model

obtained in this manner is effectively a Gaussian mixture model (GMM), with weights

p(yN) and Gaussian parameters (xN , CX|yN
). Each element of the mixture is determined

by L parameters for the class conditioned mean xN and L(L + 1)/2 parameters for

the symmetric class conditioned covariance matrix CX|yN
, for a total of L(L + 3)/2

parameters per class. Here L = |X| is the size of the input space. Hence the number of

parameters for this model is NL(L + 3)/2. The number of parameters grows linearly in

the reproduction size N , but quadratically in L.

Reduced models

The full covariance model may quickly become impractical because of the large number

of parameters. In practice we detect this by observing the error bars of the cost function

estimates and stop if these increase too much. These complex models often gives us

very good estimates of the cost function, but they limit the level of refinement we can

achieve in practice. For that reason we also developed several reduced GMMs with

fewer parameters: probabilistic Principal Components Analysis (PCA) model, spherical

covariance model, common covariance model and common PCA model.

Probabilistic PCA model A model closest to the full Gaussian above is the probabilistic

PCA (PPCA) model [4]. It is essentially the same GMM, but the covariance matrix is

restricted in the following way: The largest K eigenvalues and corresponding principal

component (PC) eigenvectors of CX|yN
are preserved, the remaining L−K eigenvalues

are forced to have the same value. This takes the original covariance structure and

preserves the first K principal directions, while modeling the remaining directions with

a spherical noise model. In effect, the class conditioned covariance CX|yN
is restricted

to the class of block diagonal matrices of the form CX|yN
= [CK σ2

NIL−K ], that is,

it is block diagonal, with covariance CK along the first K principal components, and

covariance σ2
NI along the rest. Each class is determined by L parameters for the mean

xN , K(K + 1)/2 for the preserved covariance matrix CK , and one additional parameter

for σN along the orthogonal noise dimensions. The total number of parameters for this

model is N(L + K(K + 1)/2 + 1), which is linear in N , linear in L, and quadratic in K.

The number of preserved dimensions, K, is a free parameter for this model. The full

Gaussian model can be seen as the limiting case K = L.
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We now show that the PPCA model gives an upper bound of the function D̃I

modeled by a full Gaussian. Recall that D̃I ∝ ∑
N log det CX|yN

=
∑

N log
∏

s σN,s and

denote by D̃PCA
I the distortion function obtained from the PCA model. We fix the

last L − K eigenvalues of the matrix CX|yN
to be the eigenvalue σL−K . In this case,

σs ≤ σPCA
s = σL−K for all s ≥ L − K and σs = σPCA

s for all s ≤ L − K. Therefore∏
s σs ≤ ∏

s σPCA
s . Since the logarithm is a monotonically increasing function and this

computation holds for all classes N the result

D̃I ≤ D̃PCA
I

follows. Moreover, if K1 < K2 then

D̃
PCAK1
I ≥ D̃

PCAK2
I .

Spherical model Another limiting case for the above model is the spherical Gaussian

model, for which K = 0, that is, all principle directions are forced to have the same

variance. In this case, CX|yN
= σ2

NIN is proportional to the identity matrix IN . Each

class is determined by L parameters for xN and one parameter for σN . The total number

of parameters is N(L + 1), linear in N and L.

Common covariance model In the full covariance model and variants, every class-

conditioned stimulus may have a different covariance matrix CX|yN
. Here we impose a

different type of restrictive structure on the input, by requiring that all class-conditioned

stimuli have the same covariance structure

CX|N = EyN
CX|yN

(12)

This produces the following estimate of the cost function

D̃C
eff =

1

2
log(2πe)|X| det CX|N (13)

By a result of Ky Fan [11], the function log det is concave, implying that D̃eff ≤ D̃C
eff

and hence the common Gaussian model produces an upper bound to the full Gaussian

bound D̃eff , and to the cost function DI as well. The number of parameters for

each class is L for xN , and there is a common covariance structure with L(L + 1)/2

parameters, independent of the number of classes. The total number of parameters is

L(L + 1)/2 + NL, linear in N , quadratic in L, but the quadratic part is independent of

N .

Common PPCA model Similarly to the previous PPCA model, we can restrict the

common covariance CX|N even further, by imposing the PPCA structure on it:

we preserve the K highest eigenvalues and corresponding principal directions, and

force the remaining L − K eigenvalues to have the same value, thus modeling the

orthogonal subspace with a spherical Gaussian. The total number of parameters is

K(K + 1)/2 + 1 + NL.



Neural coding and decoding 12

Common spherical model For completeness we also present the K = 0 limiting case of

the above model, which represents the whole variance structure with a single parameters,

σ. In this case CX|N = σ2I and the total number of parameters is 1 + NL, linear both

in N and L. We have found this model to be too restrictive for the case of the cricket

cercal sensory system and have not used it, except in few test cases. It may prove to be

useful for other sensory systems.

3.3. Properties of the optimal solution

Solution is deterministic when models are used. By results of [12], the cost function

D̃eff = H(X)− H̃(X|YN)

is concave in q(yN |y) for the most general model of the data, i.e. the full Gaussian

model. More restrictive models, described in Section 3.2, are special cases of the general

model. This means that some of the parameters estimated from the data are forced to

have common values, but the overall structure of the model (i.e. Gaussian) remains the

same. Therefore the results of [12] extend to reduced models and we have

Theorem 1 The optimal solution of the problem (3) with DI replaced by D̃I =

I(X, Y ) − D̃eff with any of the four models of the input classes, lies generically on

the vertex of ∆. In other words the optimal quantizer is generically deterministic when

using any of the suggested models.

Stability of the optimal solution. An important question which needs to be addressed is

how stable our quantizer is with respect to small changes in data. These small changes

can come from a variety of sources, among them recording errors, adaptation, round off

errors when handling the data,etc. The function F which we optimize is a continuous

function of the joint probability p(x, y), and, in the case of function D̃eff , continuous

function of the estimated quantities CX|yN
and xN . These estimates depend in turn

continuously on the collected dataset. This means that small difference in collected data

will yield function F only slightly different from the original function. The assignment of

the optimal solution of the optimization problem (3) can be thought of as a continuous

function from the space of possible values of estimated quantities CX|yN
and xN to a

discrete set of vertices of ∆. Every continuous function whose range is discrete must be

locally constant. In other words, if values of the quantities CX|yN
and xN change slightly,

then the new optimal quantizer will be not only close to the old one, but actually the

same. Clearly this is the strongest possible stability statement one can make. This

stability property is another attractive feature of our approach.

4. Analysis of stimulus/response relations in the cricket cercal sensory

system

The preparation we study is the cercal sensory system of the cricket. In the following

sections, we briefly introduce this system, describe the experimental methods used to
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collect the data, and then discuss the application of this new approach to analysis of

coding by single sensory interneurons in this system.

Functional organization of the cercal system. This system mediates the detection and

analysis of low velocity air currents in the cricket’s immediate environment. This sensory

system is capable of detecting the direction and dynamic properties of air currents with

great accuracy and precision [15, 17, 20, 21, 25, 38, 39, 44, 46, 47], and can be thought

of as a near-field, low-frequency extension of the animal’s auditory system.

Receptor organs. The receptor organs for this modality are two antenna-like

appendages called cerci at the rear of the abdomen. Each cercus is covered with

approximately 1000 filiform mechanosensory hairs, like bristles on a bottle brush. Each

hair is constrained to move along a single axis in the horizontal plane. As a result of this

mechanical constraint, an air current of sufficient strength will deflect each hair from its

rest position by an amount that is proportional to the cosine of the angle between the

air current direction and the hairs movement axis. The 1000 hairs on each cercus are

arrayed with their movement axes in diverse orientations within the horizontal plane,

insuring that the relative movements of the ensemble of hairs will depend on the direction

of the air current. The filiform hairs also display differential sensitivity to aspects of the

dynamics of air displacements, including the frequency, velocity, and acceleration of air

currents [27, 33].

Sensory receptor neurons. Each hair is innervated by a single spike-generating

mechanosensory receptor neuron. These receptors display directional and dynamical

sensitivities that are derived directly from the mechanical properties of the hairs

[20, 23, 24, 33, 39, 38]. In particular, the amplitude of the response of each sensory

receptor cell to any air current stimulus depends upon the direction of that stimulus,

and these directional tuning curves of the receptor afferents are well-described by cosine

functions [23]. The set of approximately 2000 receptors innervating these filiform hairs

have frequency sensitivities spanning the range from about 5 Hz up to about 1000 Hz.

Primary sensory interneurons. The sensory afferents synapse with a group of

approximately thirty local interneurons and approximately twenty identified projecting

interneurons that send their axons to motor centers in the thorax and integrative

centers in the brain. It is a subset of these projecting interneurons that we study here.

Like the afferents, these interneurons are also sensitive to the direction and dynamics

of air current stimuli [21, 25, 46, 47]. Stimulus-evoked neural responses have been

measured in several projecting and local interneurons, using several different classes of

air current stimuli [5, 25, 46, 47]. The stimuli that have been used range from simple

unidirectional air currents to complex multi-directional, multi-frequency waveforms.

Each of the interneurons studied so far has a unique set of directional and dynamic

response characteristics. Previous studies have shown that these projecting interneurons
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encode a significant quantity of information about the direction and velocity of low

frequency air current stimuli with a linear rate code [5, 46, 47]. More recent studies

demonstrate that there is also substantial amount of information in the spike trains

that cannot be accounted for by a simple linear encoding scheme [8, 32]. Evidence

suggests the implementation of an ensemble temporal encoding scheme in this system.

Experimental approach. Stimulus-response properties of sensory interneurons were

measured using intracellular electrodes. Stimuli consisted of controlled air currents

directed across the animals’ bodies, and the responses consisted of the corresponding

spike trains elicited by those air currents. The preparations were mounted within a

miniature wind tunnel, which generated laminar air currents having precisely controlled

direction and velocity parameters. Details of the dissection, stimulus generation, and

electrophysiological recording procedures are presented in Appendix A.

4.1. Analysis of simple stimulus/response relations

In some cases the relationships between sensory stimuli and neural responses are

simple enough to be captured relatively easily in a non-parametric manner. Here we

demonstrate one such case. Consider the relation between stimulus direction and neural

response in one of the cercal sensory interneurons. For this experiment, the set of

stimulus waveforms consisted of a set of simple uni-directional air current ”puffs” of

identical shape and duration, presented sequentially from a variety of directions around

the animal’s body. Stimulus angle can be represented as a one-dimensional variable.

The neuron’s response in this simple case was represented by the number of elicited

spikes in a 50ms window. The particular cell studied here shows pronounced directional

selectivity, i.e., the number of spikes it fires depends on the direction from which the

air puff originates. This directional tuning has been measured and analyzed in earlier

studies, and shown to be well approximated by a truncated sine wave function [25, 47].

Using the approach presented here, this relation has been captured in the series of

quantizations shown in Figure 2. Panel a) shows the histogram of the raw data, where

the horizontal axis is the stimulus direction (here called ’Y, deg’) and the vertical axis

plots the distribution of the spike rates elicited at each stimulus direction. We use this

as the estimate of the joint probability p(x, y), which is used explicitly in estimating the

information distortion DI . Panels b) through e) show successive steps in the refinement

of the quantizer as the number of classes increases from 2 to 5, respectively. The

quantizer in panel e) corresponds to the point N = 5 on the plot in panel f), which

shows the mutual information yielded by this scheme. This case, with N=5 different

distinguishable classes, yields over 1.5 bits of information. This is close to the theoretical

maximum, and corresponds closely to the value calculated in earlier studies based on

an alternate approach [47]. It is interesting to note that what is usually referred to as

the “preferred” direction of the cell (the stimulus direction eliciting maximum activity)

is actually less-well discriminable than the neighboring directions. In particular, the
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finest reproduction in Figure 2e discriminates the “preferred” direction of 45o with a

uncertainty of more than 60o (class 1), while the direction near 120o can be discriminated

much better, with uncertainty of less than 20o (class 4).
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Figure 2. (a) The joint probability for the relation between stimulus angle (Y, degrees)
and neural response (X, spikes / 50 msec). (b–e) The optimal quantizers q(yN |y) for
different numbers of classes, from 2 classes in b) to 5 classes in e). These panels
represent the conditional probability q(yN |y) that a stimulus y from a) (horizontal
axis) belongs to class yN (vertical axis). White represents a probability of zero, black
represents a probability of one, and intermediate probabilities are represented by levels
of gray. The behavior of the mutual information with increasing N can be seen in the
log-linear plot (f). The dashed line is I(X;Y ).

This way of applying the method is similar in its use of data to the “direct method”

of estimating mutual information [45]. The optimal quantization makes our approach

less demanding than the direct method regarding the amount of data needed to achieve

equivalent significance, since it quantizes the large response space to a relatively small

reproduction space. In addition, the quantization also produces a simple functional

relation between stimulus and response classes, while the direct method produces only

an estimate of the mutual information. We do, however, obtain a lower bound of the

mutual information, albeit with higher precision.

There are several drawbacks to attempting direct estimates of the joint probability,

as used here in our analysis and also in applications of the direct method [14, 26, 31,

36, 45]. In principle, estimating the joint probability with a histogram is feasible only

for relatively small stimulus and response spaces. For this reason a single-dimensional

stimulus space (stimulus angle here, arm direction in [14]), and a small response space

(number of spikes in a small temporal window, a number between zero in nine for Figure

2) are used here and in [14]. This allows the direct estimate of the joint probability, but

limits us to relatively uninteresting cases. The other attempts to use estimates of the

joint or conditional probabilities [26, 31, 36, 45] try to do so in relatively complex spaces

(high dimensional white noise [36, 31, 45], or naturalistic stimuli [26, 31]). However, their

reliance on repeated stimulus presentations means that just a tiny portion of the whole
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input space can be sampled. This may bias the responses and corresponding estimates

of the mutual information quite dramatically, even when enough data is avaliable for

the estimates to be performed precisely.

4.2. Analysis of complex stimulus/response relations

We applied this analytical approach to characterize the encoding characteristics of

single identified sensory interneurons to stimuli that were more complex and biologically

relevant than simple unidirectional air puffs. The goal of the experiments and analyses

were to discover (jointly) a) the dynamic stimulus waveform features encoded by the

cells, and b) the spike train ”codeword” patterns that encoded those features. Within

the jargon of our approach, the goal was to discover the ”codeword classes” for these

cells. For this analysis, a variety of complex air current stimulus waveforms were used,

ranging from bandlimited (5-400Hz) Gaussian white noise (GWN) to waveforms that

combined stochastic and deterministic components that are suspected to be of more

behavioral relevance [46]. Typically stimuli are not repeated on a single preparation, so

the stimulus space can be sampled in more detail. For a more detailed description of

the experimental procedures, see Appendix A.1.

After the responses are recorded, they are pre-processed to a form suitable for the

algorithm. We use a binary representation of spikes, where at certain time a spike

can either be present or absent. To be considered a pattern and further processed, a

sequence of spikes must start with a spike and be preceded by a quite period of at least

D ms. For a single neuron this is a binary string of length T ms . For an ensemble of

neurons, this is a string of symbols of length T . Each symbol represents the activity of

the ensemble as a binary string of labeled lines, as described in [19]. The parameters of

the initial processing, D and T , may be varied to verify their effects on the final results.

In the example shown on Figure 3, D = 5ms and T = 10ms, which is a typical set of

parameters.

Using the algorithms presented above, we proceeded to derive quantizers that

identified synonymous classes of feature/spike-pattern pairs. In the illustrations below,

the stimulus features are represented as the mean voltage waveforms, and voltage ranges

of the stimulus that drove the air currents immediately preceding the elicited spike

pattern codewords, and the response codewords are represented as the actual spike

patterns that corresponded to those stimulus features. For visualization purposes we

use a representation of spike patterns that is similar to a peristimulus time histogram

(PSTH). We call this representation a Class Conditioned Time Histogram (CCTH.)

The procedure is illustrated for a relatively simple case in Figure 4.2, for which the

stimulus-response space has been quantized into three classes (i.e., N=3). The response

space Y in panel a) consists of spike patterns yi. Here each yi is a spike doublet

with a certain interspike interval (ISI). Each dot in the panel represents the time of

occurrence of a single spike in a doublet. All doublets start with a spike at time 0,

hence the vertical line along the left border at t=0. For this figure, the doublets have
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Figure 3. Data extraction for subsequent quantization. The left panel show an

intracellular trace (top, red). Here we observe the occurrence of a doublet with

ISI ≈ 5ms. Such a pattern occurs many times during a regular physiological

recording. The lower panel show a set of stimuli that occurred in conjunction

with this pattern (evoked this response). The actual stimuli are represented

with green. The mean, and variance of the stimulus conditioned on this

particular doublet occurring is shown in blue.

The right panel shows all spike sequences of length less than 10ms, which

were observed in the course of the same experiment. The doublet seen on the

left panel is highlighted with red. The horizontal axis is time, in ms, relative

to the first spike in a pattern. The vertical axis shows pattern number. Here

patterns are ordered in ISI, from small (bottom) to large (top). This ordering

is irrelevant to the subsequent analysis.

been arranged in order of descending inter-spike interval. (In the more general case,

the spike codewords can be any arbitrary sequence of spikes in time, and might be

distributed across several or many cells in an ensemble.) In b) and c) we see the two

probabilities that completely define the quantization: p(y) in b) and q(yN |y) in c).

Using Bayes’ Theorem, we obtain p(y|yN) from p(y) and q(yN |y) (not shown). The final

result in d) is the expectation
∑

y yip(yi|yN). The pattern yi can be considered as the

conditional probability p(tj|yi) = p( spike occurs at time tj| the observed pattern is yi).

This probability is 1 at times when a spike occurs and zero otherwise. In this case,

panel d) can be interpreted as showing p(tj|yN) =
∑

y p(tj|yi)p(yi|yN) - the conditional

probability of a spike at time ti given class yN . The similarity to a PSTH is that we

present the distribution of spikes in time, conditioned on the occurrence of an event.

For the PSTH, the event is a particular stimulus. For this representation, the event is

a certain response class, hence the name CCTH.

This representation has problems similar to the PSTH, since it assumes that
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Figure 4. The response space and its probabilistic representation. a) The

response space for this example consists of patterns of doublets, which always

start with a spike at time 0. The second spike follows with a delay between 2.5

ms (lower left) and more than 10 ms (upper right, only single spike visible). The

patterns are ordered according to decreasing interspike interval. The vertical

scale is the consecutive number of a spike pattern. b) The log probability

of occurrence of a particular pattern, estimated by counting frequency of

occurrence (histogram). c) A particular quantizer, as in Figure 2, groups

several of the patterns in a) in a single class. In this case, all doublets with

ISI ∈ [6.9 10]ms are grouped in class 1, doublets with ISI ∈ [3.1 6.9]ms and

single spikes are grouped in class 2, and doublets with ISI< 3ms are in class

3. d) The CCTH of a spike at time T given the pattern is in a certain class.

See details in text explaining the CCTH. We plot the conditional probability

of spike occurrence vs. time for each pattern on a logarithmic scale, with black

indicating a probability of one for the occurrence of a spike, and a lighter shade

of gray representing a lower probability.

spike at different times are independent†. Hence it cannot discriminate whether the

spikes are from two different patterns ( an ’or’ event, denoting combined patterns)

from the possibility that there are two spikes from the same pattern (an ’and’ event,

denoting a different pattern). However, since there is a refractory period, and since

different patterns occur with different frequencies, it is relatively easy to discriminate

the signature of a triplet from that of a doublet. For example, in Figures 5, 6C, the

darker regions are due mostly to the second spike in a doublet, while the lighter regions

preceding or following them are due to more rare triplets, for which one of the spikes is

in the corresponding dark region.

How do we know when to stop the process of model refinement? The model of

a coding scheme we use suggests that I(X; YN) ∝ log N for N ≤ Nc ≈ 2I(X;Y ) and

I(X; YN) ≈ const for N ≥ Nc. Since we in general don’t know I(X; Y ), in practice

we stop the refinement at an Nc for which the rate of change of DI with N appears

”empirically” to decrease dramatically. The estimate of I(X; YNc) is the best lower

† Note that this was used only for visualization purposes and nowhere in our analysis do we assume
that spike occurrences are independent events!
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bound estimate of I(X; Y ) at this level of detail.

If there is not enough data to support such refinement, the algorithm is stopped

earlier. The criterion we use in such a case is that the estimate of DI does not change

with N within its error bounds (obtained analytically or by statistical re-estimation

methods like bootstrap, or jack-knife). Then N < Nc, and the quantized mutual

information is at most log N . We can recover at most N classes, and some of the

original classes will be combined. Thus we can recover a somewhat impoverished picture

of the actual input/output relationship which can be refined automatically as more data

becomes available, by increasing N and repeating the optimization procedure.

Below we present equivalent analyses of several other identifiable interneurons from

the cricket’s cercal sensory system to illustrate specific aspects of the procedures. In

Figure 6 we present a full quantization sequence for one cell. For later examples, we

present only the finest reproduction supported by data for the particular cell. We also

suppress showing confidence intervals to the class conditioned means for reasons of

visualization clarity. Details of the procedures and results are in the figure captions.

Figures 5 through 11 illustrate this analytical approach, and show results for several

different cell classes. Figures 8, 9 and 11 also illustrate the different results obtained

with this approach vs. the ’stimulus reconstruction’ approach. Estimation of a stimulus

waveforms with these class-conditioned means would be significantly more accurate than

estimates based on a linear stimulus reconstruction kernel.

Figure 10 demonstrates the applicability of the method to analyzing multi-cell

ensembles. The data for this case was actually obtained from intracellular recording

of a single cell, to which we presented a GWN stimulus followed by the identical but

sign-inverted stimulus. The responses of the cell to the second stimulus were taken

to represent the activity of its complementary cell, which is sensitive to stimuli from

the opposite direction. In this way we have a synthetic two-cell ensemble, in which

the cells are forced to be conditionally independent (i.e., their activity is not related

except through the common stimulus). Figure 10A demonstrates the appearance of this

independence in the analysis: the first two classes contain isolated single spikes from one

cell irrespective of the activity of the other cell. The class conditioned means (which

are also the linear reconstruction kernels) also show that the cells are rectifying the

stimulus.

An interesting case which needed a more detailed model is shown in Figure 11. In

this case, the single class/single Gaussian model that we outlined in Section 3.2 was too

restrictive, and we had to use a 2 component GMM to explain the stimulus conditioned

on a single class. This is a minor extension of the quantization method. The stimulus

reconstruction method cannot handle this case in principle, since the nonlinearity is not

in the interaction between spikes, but in the generation of a single spike.
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Figure 5. A quantization with 4 classes. The top panel shows four class-

conditioned mean stimulus waveforms, corresponding to the four spike pattern

codewords derived through this quantization. The 4 mean waveforms are each

plotted in the color of the corresponding class. The horizontal axis of this top

plot denotes time, in ms, relative to the occurrence of the first spike in a class.

That is, time 0 is the time at which the first spike on the codeword pattern

occurred. The dashed lines denote 95% confidence intervals of the means,

which depend on the reproduction size, N . The lower right panel plots the

CCTH spike codewords for these four classes, as described in Figure 4.2. These

patterns are aligned in time with the mean stimulus waveforms that elicited

them, in the panel directly above. These are the classes of spike patterns that

served as the basis for extracting the corresponding mean stimulus waveforms.

Every class starts with a spike (line at 0ms). The amplitudes of the colored

bars in the panel to the left of these CCTH plots show the relative proportion

of spike patterns belonging to the different classes, as GMM priors (weights).

These bars are color-coded to indicate the class-conditioned mean stimulus

waveform to which the spike pattern to the right corresponds. This particular

quantization groups the spike patterns roughly according to interspike intervals:

The top class (brown) consists mostly of doublets with a second spike 7-10 ms

after the initial spike (dark gray range to the right), and a few triplets (light

gray bars in front), for which the third spike is in the same range. The 4th

class (dark blue) consists mostly of short doublets, with a second spike 2.5-3.3

ms after the first spike, and a range of triplets with a third spike 6-10ms after

the first spike. The lower left panel shows the estimate of the lower bound to

the mutual information (green), and the absolute upper bound for the same

level of quantization (blue, log2 N). The errorbars mark the uncertainty of the

estimate, which depend on the reproduction size. The estimate for the current

quantization level is denoted with a red marker.

5. Discussion

The general goals of the research presented here were a) to develop algorithms through

which the relevant stimulus space and the corresponding neural symbols of a neuron



Neural coding and decoding 21

or neural ensemble could be discovered simultaneously and quantitatively, making

no assumptions about the nature of the code or relevant features, and b) to test

the algorithms on an experimental preparation. The approach presented here makes

a significant step in these directions. The essential basis for this approach is to

conceptualize a neural coding scheme as a collection of stimulus-response classes akin to

a dictionary or ’codebook’, with each class corresponding to a neural response ’codeword’

and its corresponding stimulus feature in the codebook. The analysis outlined here

enables the derivation of this neural codebook, by quantizing the neural responses into

a small reproduction set and optimizing the quantization to minimize an information-

based distortion function.

The major advantage of this analytical approach over other current approaches

is that it yields the most informative approximation of the encoding scheme given

the available data. That is, it gives the representation with the lowest distortion,

by preserving the most mutual information between stimulus and response classes.

Moreover, the cost function (which is intrinsic to the problem) does not introduce

implicit assumptions about the nature or linearity of the encoding scheme, nor does the

maximum entropy quantizer introduce additional implicit constraints to the problem.

Many of the current analytical approaches for studying coding schemes can be

seen as special cases of the method we present here. A rate code can be described

as a deterministic quantization to the set of integers within an encoding window.

The quantizer assigns all spike patterns with the same number of spikes to the same

equivalence class. A spike latency code can be seen as a quantization to classes

determined by the latency and jitter of the spike’s timing. In this case, a stimulus

feature is decoded as in the rate code case, based on which latency “class” a spike

falls into. The metric space approach [49] uses an explicit cost (distortion) function to

determine which different sequences are identical: they are equivalent if, according to

the cost function, their difference is below a certain threshold. The cost function and

identification threshold induce a deterministic quantization of the response space to a

smaller reproduction space of equivalent classes.

We chose to formulate the problem explicitly in the language of information theory,

so that we could use the powerful methods developed in this context for putting all

these ideas in a unified framework. By doing so, we immediately realized one problem

with this general approach: the distortion functions impose an assumed structure on

the neural response (albeit a very natural one in the case of [49]) that may or may

not be there in reality. Therein lies on important benefit of the method we present

here: the information distortion cost function in (1) is intrinsic to the system, and

does not introduce any additional assumptions about its function or structure. This

benefit is somewhat decreased from the point at which we introduce models of the

stimulus in Section 3.2, since now the models implicitly impose assumptions about the

structure of the stimulus-response space. We partially resolve this issue by allowing for

flexible models, that can partition the input space on small enough chunks, so that the

distortions that the models introduce are small compared to the relevant structures in
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the space (Figure 11).

Appendix A. Experimental protocols

Appendix A.1. Dissection and preparation of specimens

All experiments were performed on adult female crickets obtained from commercial

suppliers (Bassett’s Cricket Ranch, Visalia, CA, and Sunshine Mealworms, Silverton,

OR). Specimens were selected that had undergone their final molt within the previous

24 h. The legs, wings and ovipositor were removed from each specimen, and a thin

strip of cuticle was removed from the dorsal surface of the abdomen. After removal of

the gut, the body cavity was rinsed and subsequently perfused with hypotonic saline.

Hypotonicity facilitated microelectrode penetration of the ganglionic sheath.

The preparation was pinned to the center of a thin disc of silicone elastomer

approximately 7 cm in diameter, located within the central arena of a air-current

stimulation device, described below. Once the preparation was sealed and perfused with

saline, the ganglion was placed on a small platform and gently raised from the ventral

surface of the abdomen. This increased the accessibility of the ganglion to electrodes

while at the same time improving the stability of electrode penetration by increasing

surface tension on the ganglion.

Appendix A.2. Electrophysiological recording

Sharp intracellular electrodes were pulled from glass capillary tubes by a model P*80/PC

electrode puller (Sutter Instrument Co.) The electrodes were filled with a mixture of 2%

neurobiotin and 1 M KCl, and had resistances in the range of 30 to 50 megohms. During

recordings the neurobiotin would diffuse into the nerve cell, allowing for subsequent

staining and identification. Data were recorded using an NPI SEC-05L Intracellular

amplifier and sampled at 10 kHz rate with a digital data acquisition system running on

a Windows 2000 platform.

Appendix A.3. Stimulus generation

The cricket cercal sensory system is specialized to monitor air currents in the horizontal

plane. All stimuli for these experiments were produced with a specially-designed and

fabricated device that generated laminar air currents across the specimens’ bodies. Air

currents were generated by the controlled, coordinated movement of loudspeakers. The

loudspeakers were mounted facing inward into an enclosed chamber that resembled a

miniature multi-directional wind tunnel. The set of speakers were sent appropriate

voltage signals to drive them in a ”push-pull” manner to drive controlled, laminar air-

current stimuli through an enclosed arena in the center of the chamber, where the cricket

specimens were placed after dissection.

Stimulus waveforms were constructed prior to the experiment using Matlab.

During experiments, the stimulus waveforms were sent out through a DAC to audio
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amplifiers and then to the set of loudspeakers. Stimuli for determining directional

selectivity consisted of half-cosine waves interspersed with silent periods, which created

unidirectional air puffs. Additional stimuli consisted of 30 minute Gaussian white noise

voltage waveforms, low passed below 500 Hz. Stimuli were either played along a single

axis relative to the cricket, or were allowed to change angle at a maximum rate of 50

Hz.

Appendix B. The optimal solution is generically deterministic

Here we explain some technical background for the results in [12] which we cite in the

text. Recall, that our goal is to solve the minimization problem

I minq(yN |y)∈∆DI(Y, YN)

where

∆ := {q(yN |y) | ∑
yN

q(yN |y) = 1 and q(yN |y) ≥ 0 ∀y ∈ Y }

and

DI = I(X; Y )− I(X; YN).

The only term in DI that depends on the quantization is I(X; YN), so we can replace

DI with the effective distortion

IN := I(X; YN)

in our optimization schemes.

In [12] we showed that DI is a concave function of q(yN |y), that the domain ∆ is

convex and therefore the solution of problem (I) is either a vertex of ∆ or, in a degenerate

case, a product of simplices Di which lie on the boundary of ∆. More precisely, for a

fixed size of X and Y we let P to be the set of all joint probability distributions p(X, Y ).

Since both X and Y are discrete spaces, the set P can be identified with the set of all

|X| × |Y | matrices A with each row and column summing to one. This allows us to put

on P a subspace topology from R|X|×|Y |. Then there is an open and dense set D ⊂ P
such that if p(x, y) ∈ D, then the solution of the problem (I) is in the vertex of ∆. We

say that this is a generic case. This means that, unless p(x, y) has a special symmetry,

the solution will be a vertex. The presence of noise in the system and the finite amount

of data should break any symmetries, and so for all practical purposes one can assume

that indeed the solution of (I) is a vertex of ∆.
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Figure 6. Six steps in refining the quantizations. The format for each

panel is equivalent to that described in Figure 5. A) The coarsest nontrivial

quantization, containing only 2 classes. (B–E) Increased levels of refinement,

from 3 (B) to 8 (E) classes. The structure evident in the initial coarse

quantizations (Figure 5) remains unchanged: The patterns are grouped mostly

according to the ISI of a doublet, with additional spikes appearing infrequently

with a relatively uniform distribution (light gray region in the lower right

corner, and light gray stripe at about 2.5 ms). F) A refinement in which the

triplets were isolated in separate classes (class 2 and 4 from the bottom). All

the uncertainty previously associated with the light gray range of the third spike

is now almost completely collapsed in the triplet classes. The corresponding

class conditioned stimulus reflect this class structure as well (light blue and red

classes). The confidence ranges of (E,F) are not displayed in order to show the

means more clearly. In general, the uncertainty increases with N .
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Figure 7. A set of quantizations for a fixed reproduction size N = 4
derived with three different models. A)PPCA model with K = 10 dimensions

preserved. B) common PPCA model with K = 25 dimensions preserved.

C) Spherical Gaussian model. The resulting clustering is mostly consistent

between the models (lower right panel in (A-C). The class conditioned means

are also practically identical. The estimate of the mutual information (lower

left panel in (A-C)) changes with the complexity of the model used. A)

provides a relatively tight lower bound of IN (green trace) closest to the

absolute upper bound (blue trace), but the uncertainty grows rather rapidly

(errorbars). B) produces a lower estimate of IN (green trace), which is less

uncertain (errorbars). The lower bound to IN in C) is very poor (note different

vertical scale). However, the estimate of this bound is very precise (again,

different vertical scale makes the errorbars look big). The complexity of the

models also affects the maximum reproduction size N that can be used. The

more complex model in A) allows refinements with N ≈ 7 − 8 classes. The

intermediate model in B) allows refinements with N ≈ 12 − 14 classes. The

simplest model in C) allows additional refinements in excess of N = 16 classes.

For this model, we can also observe the decreased rate of change of IN with N

around 8 classes.
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Figure 8. Comparison to the stimulus reconstruction method. The bottom

panel is replicated from Figure 6F to present a common reference. In the top

panel, we show the 8th class-conditioned mean from Figure 6F (green trace),

superimposed on a histogram of the stimulus (grayscale background). For each

time t on the horizontal axis there is a histogram of the amplitudes V on the

vertical axis at that time. This gives a visual representation of the variance

around this class conditioned mean. The red trace shows the linear stimulus

reconstruction for this class. It lies outside the confidence ranges of the class

conditioned mean for T ∈ [−10 − 8] ms. Throughout the rest of the time it is

inside the confidence limits of the green trace. The yellow trace was obtained

by calculating the linear stimulus reconstruction when the set of second spikes

were moved 0.4ms closer to the first spike. This indicates a mild sigmoidal

nonlinearity – very high firing rates are reduced, presumably due to refractory

effects. If we detect and correct for this nonlinearity, the behavior of the cell

is well predicted by linear stimulus reconstruction. It is possible that second

order reconstruction will be able to provide a better approximation for this

particular nonlinearity
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Figure 9. Eight-class reproduction for another type of interneuron. This cell

has a stimulus signature quite different from the previous cell: for short ISIs

(last 3 classes) the class-conditioned means differ mainly in amplitude. For

long ISIs, similarly to the previous cell, each spike seems to be associated

with a biphasic sine-like input. The stimulus density around one of the

class-conditioned means (purple) is shown in the lower panel. The linear

stimulus reconstruction for this class is show in red. In this case, the stimulus

reconstruction kernel is very different than any class-conditioned mean, and

would yield a very poor stimulus estimate. Unlike the case in Figure 8, we were

unable to find a simple nonlinearity that could account for this discrepancy. It

is possible that adding second- or higher- order Volterra kernels in the stimulus

reconstruction approach would account for this nonlinearity as well.
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Figure 10. Quantization of a synthetic two-cell ensemble (see text for

explanation). A) The coarsest quantization to two classes recovers the single

spike-conditioned average. The class-conditioned spike histogram in the lower

right corner now has two traces for each class (labeled lines), showing the

activity of the two cells in cyan and magenta, respectively. Class 1 consists of

a single spike in cell 2 (magenta) and any activity from cell one (cyan). Class

2 consists of a single spike in cell 1 and any activity from cell 2. B) One of the

finest quantizations supported by the available data. Classes continue isolate

the activity of each individual cell. However, the activity of the other cell can

now be discriminated better. For example, class one consists of cell 1 firing,

followed by cell 2 firing 5-10 ms later, while class 2 has cell 1 firing and cell

2 firing 3-5 ms later. The class conditioned means follow roughly the same

relation: there is a stimulus deviation associated with the first spike, and an

anti-phase deviation associated with the second spike (for example, consider

the green trace). The stimulus density around one of the classes is shown in

the lower panel.
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Figure 11. A single class from another cell. This class consists of one spike

at 0 ms with no activity before or after it for 10 ms. This dataset supported

only the coarsest quantization to two classes, with everything but the isolated

single spike combined in class two. There was not enough data for additional

refinements. The single spike conditioned mean, which coincides with the linear

reconstruction kernel, is shown in brown. A simple visual inspection of the data

revealed that there were actually two distinct stimulus conditions which lead to

a single spike. These are shown with yellow and blue densities (green denotes

overlap of the densities). We used a two-component GMM for this class to

explain the data (black traces overlayed over the corresponding densities). The

stimulus reconstruction method cannot handle this case in principle, since the

nonlinearity is not in the interaction between spikes, but in the generation of

a single spike.


