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Abstract: We apply a novel computational technique known as the
map-seeking circuit algorithm to estimate the motion of the retina of eye
from a sequence of frames of data from a scanning laser ophthalmoscope.
We also present a scheme to dewarp and co-add frames of retinal image
data, given the estimated motion. The motion estimation and dewarping
techniques are applied to data collected from an adaptive optics scanning
laser ophthalmoscopy.
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1. Introduction

The adaptive optics scanning laser opthalmoscope [1] (AOSLO) is a scanning device which pro-
duces high resolution optical sections of the retina of the living eye. This instrument combines
adaptive optics [2], which is a set of techniques used to measure and correct for aberrations that
cause blur in retinal images, with confocal scanning laser ophthalmoscopy [3]. After adaptive
optics correction, microscopic details in the human retina are directly observed. The usefulness
of the AOSLO has been limited by motions of the eye that occur on time scales which are
comparable to the scan rate. These motions can lead to severe distortions, or warping, of the
AOSLO images. These distortions are particularly apparent in the AOSLO because, with the
small field sizes that are used to achieve sufficient sampling rates for microscopic imaging (typ-
ically 1-3 degrees), the effects of the eye movements are magnified. Removing the distortions is
an important step toward providing high fidelity visualizations of the retina, either as stabilized
videos, or as high signal-to-noise (S:N) frames. Since the signal in a single frame is limited by
safe light exposure limits, co-adding an undistorted sequence of frames is required to improve
the S:N of static images. In order to correct for these distortions, one must first determine the
retinal motion that has caused them.

In this paper we apply a novel computational technique known as the map-seeking circuit
(MSC) algorithm [4, 5, 6, 7, 8, 9, 10] to estimate the motion of the retina from a sequence
of frames of AOSLO data. For simple translational motion, one can apply standard cross-
correlation techniques [11, 12]. MSC has much lower computational complexity; hence it may
allow the motion to be estimated much more quickly. In addition MSC easily allows one to con-
sider more general motions—like rotations—that may arise in AOSLO imaging. One may also
be able to adapt other standard techniques from image registration [13], e.g., landmark-based
registration.

Once motion estimates are available, one can compensate for the motion-induced image
distortions. This is called image “dewarping”. In this paper we introduce a weighting scheme
that is based on linear interpolation to do the dewarping. This scheme can also be used to co-add
multiple image frames in order to form image mosaics and to average out the noise.

This paper is organized as follows. In Section 2 we present a simple model for scanned image
data from the AOSLO. Section 3 deals with motion estimation. We review the cross-correlation
approach in the context of our data model, and we present the MSC algorithm as a computa-
tionally efficient alternative to fast Fourier transform based schemes to estimate motion based
on cross-correlation. In Section 4 we present our dewarping scheme. In Section 5 we present



experimental results which demonstrate the effectiveness of both our MSC-based motion esti-
mation scheme and our dewarping scheme. Finally, we present discussion and conclusions in
Section 6.

2. Mathematical Model for Scanning Data

The first generation AOSLO device uses a pair of scan mirrors to sweep across the retina.
The fast scan mirror sweeps back and forth horizontally once every 63.5 microseconds; it is
attached to a vibrating piezo-electric crystal, which traces out a sinusoidal path in space-time.
The scanning beam, which illuminates the retina and also drives the wavefront sensor for the
AO system, is turned off for half of each scan period. Data at the extremes of the scan period
are discarded and some preliminary data processing is done to remove sinusoidal effects, so
all the remaining 512 processed pixels sample regions of the retina with the same horizontal
extent. Each pixel subtends about .17 minutes of arc, or 0.88 microns of planar distance across
the retina. The slow scan mirror sweeps vertically across the retina at a 30-hertz rate and traces
out a skewed sawtooth pattern in space-time. The scan rate of the slow scan mirror is calibrated
so that the pixels are nearly square. The slow scan return path takes about 10 percent of the
total scan time, and the data recording during the return path are discarded.

Let x = (x,y) denote lateral (horizontal and vertical) position in the retinal layer being
scanned (if there were no lateral displacements due to eye movements), and let E(x) denote
its reflectivity. Let r(t) = (rH(t),rV (t)) represent the known raster position at time t, and let
X(t) = (X(t),Y (t)) denote the unknown lateral displacement of the retina. A continuous model
for preprocessed, noise-free AOSLO scanning data is then

d(t) = E(r(t)+X(t)). (1)

A model for recorded data is
di = E(r(ti)+X(ti))+ηi, (2)

where ηi represents noise and the ti denote discrete pixel recording times.
Since the data are preprocessed, we can assume both horizontal and vertical scan paths,

rH and rV , are periodic sawtooths. Thus in the absence of retinal motion, the AOSLO would
measure the reflectivity of the retinal layer at discrete, equispaced points on a rectangular grid.
For the first generation AOSLO, this grid is 512 pixels across by 480 pixels vertically and it is
resampled each 1/30 second. With retinal motion, the sampled grid moves and is distorted so
that it is no longer rectangular; see [12].

3. Motion Retrieval Algorithms

3.1. Translational Motion Estimation Via Cross-Correlation

Retinal motion in the form of a drift with constant velocity v,

X(t) = X(t0)+(t − t0)v, (3)

can be detected using cross-correlation techniques. If we assume the raster motion is periodic
and we let τ f denote the frame scan period, then from (3) and (1) we obtain x(t + τ f ) = r(t +
τ f )+X(t +τ f ) = x(t)+τ f v. Consequently, recorded image intensities in successive frames are
related by

E(x(ti + τ f )) = E(x(ti)+ τ f v)+noise. (4)

Recall that the cross-correlation between a pair of discrete rectangular images E and E ′ is
defined to be

corr(E,E ′)k,` = ∑
i

∑
j

E(i+ k, j + `)E ′(i, j). (5)



By finding the indices k, ` which maximize cross-correlation between consecutive pairs of dis-
crete, rectangular AOSLO image frames, one can obtain an estimate for the offset τ f v in (4),
and then extract the drift velocity v.

The above cross-correlation approach may be used to estimate translational motion between
non sequential image frames; pixels that are recorded at integer multiples of the frame scan rate
correspond as they do in the sequential frame case, and offsets are integer multiples of τ f v.

There are several shortcomings to the basic cross-correlation approach outlined above. The
motion within each frame period is typically not even close to a constant drift. This problem is
addressed in Section 3.3 below. Another shortcoming is due to the fact that the reflectivity E at a
particular point may vary with time. This problem may be dealt with by changing the reference
frame (the fixed frame against which the other frames are cross-correlated) when large changes
in reflectivity are detected.

The standard approach to cross-correlation of discrete images relies on the fast Fourier trans-
form (FFT). Stevenson and Roorda have made use of FFT-based correlation for retinal motion
detection [12].

3.2. Motion Detection Using the MSC Algorithm

MSC is a method for discovering the “best” transformation T , from a given class of trans-
formations, that maps a match image to a reference image. In the context of maximizing the
cross-correlation (5), the transformations are translations and can be discretely parameterized
as

Tk,`E(i, j) = E(i+ k, j + `).

Each of the translations can be decomposed into a horizontal shift by k pixels, which we denote

by T (1)
k , followed by a vertical shift of ` pixels, denoted by T (2)

` , so that

Tk,` = T (2)
` T (1)

k . (6)

We introduce the notation
〈〈E,E ′〉〉 = ∑

i
∑

j

E(i, j)E ′(i, j), (7)

so that the cross-correlation (5) can be expressed as

corr(k, `) = 〈〈T (2)
` T (1)

k E,E ′〉〉. (8)

A key idea underpinning MSC is that of superposition. Rather than explicitly selecting dis-
crete indices (k, `) to maximize the cross-correlation, we select coefficient, or “gain”, vectors

g(1) = (g(1)
1 ,g(1)

2 , . . .) and g(2) = (g(2)
1 ,g(2)

2 , . . .) which maximize the extended cross-correlation,

corr(g(1),g(2)) = 〈〈

(

∑̀g(2)
` T (2)

`

)(

∑
k

g(1)
k T (1)

k

)

E,E ′〉〉. (9)

Note that when one picks the gain vectors to be standard unit vectors (all zeros except a single
“1” entry), the extended cross-correlation reduces to the standard cross-correlation.

The MSC algorithm is an iterative scheme which makes use of efficiently computed gradi-
ents of the extended cross-correlation (9) to very quickly find the maximizer of the standard
cross-correlation (8). Whereas standard approaches to maximizing correlation make use of the
fast Fourier transform and have computation expense proportional to N logN, where N is the
number of pixels, the computational expense of MSC is proportional to N, and the proportional-
ity constant is quite small. MSC’s cost can be dramatically reduced if one can obtain a “sparse



encoding” of the information in the images. By this we mean a very compact representation
which requires minimal storage.

MSC can easily handle more general classes of transformations. For instance, if one wishes
to consider rotations as well as translations, one can simply add a rotational “layer” by adding

another term T (3)
m to the decomposition (6). The T (3)

m represents a discretization of the rotations
to be considered.

3.3. Image Preprocessing

As we noted at the end of Section 3.1, retinal motion within the frame scan period is much
more complex than a constant drift. However, during short time intervals, the motion can be
well-approximated by drift. Since the horizontal scan rate is several orders of magnitude faster
than the vertical scan rate, we first partition each image frame into several patches that extend
horizontally across the frame but are some fraction (typically 1/8 or 1/16) of the vertical extent
of the frame. Hence the patches are typically 512 pixels across by 60 or 30 pixels vertically. We
then apply correlation between corresponding patches in the match and the reference frames to
obtain approximations to the motion within frames.

If a Fourier-based cross-correlation scheme is used, one must zero pad the patches to min-
imize motion artifacts due to periodic wrap-around. With MSC, we take the match patch to
be smaller than the reference patch. The sum in eqn (7) is then taken only over pixels in the
smaller patch. With large retinal motions, there is a problem when the reference and match
patches have relatively small overlap. Since the patches are smaller in the vertical direction, we
shift the boundaries of match patch up or down. The amount of this up or downward shift is
determined by a “look-ahead” strategy based on motion predicted from previous frames. Verti-
cal motions larger than the patch height result in the loss of top and bottom patches. With very
larger motions we find it necessary to change the reference image.

Some additional image preprocessing is required to increase the MSC convergence rate and
to decrease the chance that MSC might converge to a spurious local maximizer. With AOSLO
data, we decompose each image frame into several binary image “channels”, consisting for
example of pixels of high intensity in one channel, middle intensity pixels in a second channel,
and low intensity pixels in a third channel.

By recording only the locations of the nonzero pixels in the binary images, we can dramat-
ically reduce the storage requirements of the MSC algorithm. Moreover, operation counts can
be dramatically reduced by computing on only the nonzero pixels.

4. Image Dewarping

Let E denote the reference image and let E ′ denote the “match” image onto which the reference
image is mapped via a transformation T . We map the match image back to the reference image
using the inverse transformation to obtain a new image,

E ′′(x) = E ′(x′), where x = T−1x′.

Problems arise when the image data are discrete. If a point x lies on a regular reference grid,
then x′ = Tx is unlikely to lie on this same regular grid. In a reciprocal manner, the match image
E ′ is implicitly collected on a rectangular array. Points x′ on this “match array” will not map
back to the reference grid. See Fig. 1 for an illustration.

In order to obtain intensity values at points on the reference grid, we apply the following
weighting scheme, which is based on bilinear interpolation. We first initialize (i.e., set compo-
nents to zero) a pair of arrays—Earray, which will contain intensity values each point in the
reference grid, and Warray, which contains weights at each point in the reference grid. We then



Fig. 1. Illustration of transformation effects. Under the transformation T , straight lines in
the rectangular grid on the left map to curved lines on the right. Under the inverse transfor-
mation T−1, equispaced grid points on the right (blue dots) map back to non equispaced
points on the left (red dots).

sweep through the points in the match grid. For each point x′
i in the match grid, we apply the

inverse transformation to obtain x′′i = T−1x′i. We next determine into which rectangle in the ref-
erence grid x′′i falls. For each of the four reference grid points x j at the corner of this rectangle,
we do the following: If Warray( j) = 0, we reset intensity value Earray( j) = E ′(x′i), and we re-

set the weight Warray( j) =
|x′′i −x j|

hx

|y′′i −y j |
hy

. Here x j and y j denote the x- and y-components of x j,

and similarly for x′′i and y′′i , and hx and hy denote the mesh spacings in the x- and y-directions.
On the other hand, if the current weight Warray( j) 6= 0, we compute a new weight as before,
but we reset the intensity value Earray( j) to be a convex combination of the old intensity value
and E ′(x′i), where the coefficients in the convex combination are determined by the current and
new weights. We then add the new weight to the current weight Warray( j).

5. Experimental Results

The video clip in Fig. 2 shows a 24 frame sequence (.8 seconds) of AOSLO data in which the
sinusoidal warp has been removed (see beginning of Section 2). Note that the frames have been
clipped from the original 512×480 pixel size to the smaller 350×350 pixel size. In this video
one observes that the predominant motion is a somewhat erratic downward drift followed by
a jerky, short-duration, large-amplitude “snap-back” (this is called a micro-saccade), followed
by more downward drift. One can also observe a high temporal frequency, low amplitude jitter,
known as tremor, superimposed onto the larger motions.

To detect motion relative to a fixed reference frame (taken to be the first frame), we im-
plemented the patch-based cross-correlation scheme using the MSC algorithm, which was de-
scribed in Section 3. Fig. 3 shows the horizontal and vertical motion estimates that were ob-
tained. The positive direction in subplot (a) corresponds to motion to the right in the video,
while the positive direction in subplot (b) corresponds to downward motion in the video. One
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Fig. 2. Sample frame from the raw video clip SLD-AR.avi. This clip consists of 24 image
frames and the file size is 3.1 MB. The image size is 350 × 350 pixels, or 1.02 × 1.02
degrees, or 300×300 microns. The fovea is located 400 microns up and to the left of the
frame.

can clearly see the downward drift and the microsaccade in subplot (b). In both the video and
subplot (a), one can also see a drift to the right near the end of the recording period. Note that
we have used simple linear interpolation to fill in the missing motion due to lack of recorded
data during the return time, or “flyback”, of the slow scan mirror and due to the loss of data
from clipping.

Given the motion estimates from Fig. 3, we apply the image dewarping scheme described in
Section 4. Results obtained from this approach are shown in the video clip in Fig. 4. Note that
individual photoreceptors, which appear as bright spots, are nearly stationary in the dewarped
video. The motion of the retina is now manifested in the movement of the boundary.

We have set up a web link [14] on which we have posted a pair of much longer video clips,
OC_foveal_PRs.avi and OC_dewarp.avi, showing a sequence of 300 frames (10 sec-
onds) of raw AOSLO image data (with only sinosoidal warp removed) and the corresponding
image frames after motion estimation and dewarping. Again the individual photoreceptors in
the dewarped video clip are nearly stationary.

In both the raw and the dewarped videos, one can see bright “blobs”, which are leukocytes
(white blood cells), moving through dark regions which are capillaries. The invention of the
AOSLO has made it possible to noninvasively measure blood flow in the retina [15], albeit
manually. The image stabilization in the dewarping videos may facilitate automated blood flow
measurements.
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Fig. 3. Horizontal and vertical motion estimates obtained from AOSLO data. One pixel
corresponds to .17 minutes or arc, or .88 microns of planar distance across the retina. The
.8 second duration of the motion corresponds to 24 frames of AOSLO data.

Fig. 5 shows the effect of co-adding dewarped image frames. The top image in this figure is
of a single frame of AOSLO data from the video clip in Fig. 2. The bottom image in Fig. 5 was
obtained by co-adding the dewarped frames that appear in the second video clip (Fig. 4). An
examination of the region 100 pixels down and 100 pixels across from the upper left corner of
co-added image reveals a honeycomb structure known as the cone mosaic. This feature cannot
be seen in the single raw image frame.

6. Discussion and Conclusions

By applying the MSC-based motion estimation scheme presented in Section 3 to AOSLO data,
we were able to estimate retinal motion on time scales of 1/(30×16) sec ≈ 2 millisec. Given
the motion estimates, we were then able to apply the dewarping scheme presented in Section
4 to remove motion-induced artifacts. We were also able to co-add dewarped data frames to
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Fig. 4. Sample frame from dewarped video clip SLD-AR-dewarp.avi. This clip consists of
24 image frames and the file size is 3.5 MB. The image statistics are the same as in Fig. 2.

enhance image quality to the point where previously unobservable features like the cone mosaic
could be seen.

The fact that there was very little residual motion in the dewarped video suggests that the
motion estimates are quite accurate. Additional evidence of the accuracy of the motion es-
timation scheme comes from a study conducted by Dr. Scott Stevenson at the University of
Houston School of Optometry. Stevenson obtained retinal motion estimates using (i) our MSC-
based cross-correlation approach applied to AOSLO data; (ii) a standard Fourier-based cross-
correlation approach applied to the same AOSLO data; and (iii) simultaneous recordings of eye
motion taken from a dual-Purkinje eye tracker [16]. Stevenson found the MSC and the Fourier-
based motion estimates to be in very close agreement. These in turn agreed fairly well with the
Purkinje data. Discrepancies with the Purkinje measurements can be accounted for by the fact
that the Purkinje measures the motion of the lens of the eye rather than the motion of the retina
itself.

Note that schemes that are based on correlating patches within successive frames can detect
only relative motion. For instance, one can “freeze” the reference frame (which was the first
frame in the case presented above) and compute motion relative to the reference frame. How-
ever, the retina moves during the 1/30 second scan period during which the reference frame is
recorded. Consequently, the estimated motion will be in error, or “biased”, by an amount that
depends on the retinal motion during the scan of the reference frame.



To obtain the results presented in Section 5 we assumed that the average of the true motion,

1
T

∫ T

0
Xtrue(t)dt, (10)

tends to a constant for large T . Consequently, if a nonconstant reference frame bias is present
in the estimated motion X(t), one can then extract the bias from the fact that

1
N

N

∑
n=1

X(t +nτs) ≈ Xbias(t)

for large N. Here τs is the frame scan period, and Xbias(t), 0 ≤ t ≤ τs, is the (nonconstant)
reference frame bias. The corrected motion for the nth scan period is then X(t +nτs)−Xbias(t),
0 ≤ t ≤ τs.
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Fig. 5. Raw image (top) and co-added image (bottom) obtained from AOSLO data. Image
statistics are the same as in Fig. 2. Note the honeycomb structure known as a cone mosaic
in the co-added image.


