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Abstract

Highly Active Anti-Retroviral Therapy (HAART) of HIV infection has significantly reduced morbidity and
mortality in developed countries. However, since these treatments can cause side effects and require strict
adherence to treatment protocol, questions about whether or not treatment can be interrupted or discontinued
with control of infection maintained by the host immune system remain to be answered. We present sensitivity
analysis of a compartmental model for HIV infection that allows for treatment interruptions, including the
sensitivity of the compartments themselves to our parameters as well as the sensitivity of the cost function
used in parameter estimation. Recommendations are made about collecting data in order to best estimate the
most sensitive parameters in the model. Furthermore, we present parameter estimates using simulated data.

1 Introduction

Highly Active Anti-Retroviral Therapy (HAART) has been highly successful in reducing the viral load in HIV
patients. However, the combined expense and side effects of this therapy have had a negative impact on drug
distribution and patient compliance. Studies indicate [1], [2] that Structured Treatment Interruptions (STI)
which involve periods of time during which patients receive no medication, may actually be beneficial to the
patient. These interruptions stimulate the immune system and potentially induce a state in which the immune
system controls the viral infection.

In this workshop, we examined a modified version of the Wodarz-Nowak model for HIV infection dynamics.
As a step toward finding a treatment protocol involving STI that will induce host control of the virus, we
performed a sensitivity analysis of our model. This sensitivity analysis suggests future experimental design to
test the model and theory of STI for control of HIV. Our investigation sought the most sensitive parameters
and compartments as well as the optimal time schedule for data collection. We also considered the parameter
identification problem that would use data to estimate parameters in the model.

In Chapter 2, we will describe the modifications made to the Wodarz-Nowak model and the effects those
changes make to the dynamics of the problem. In Chapter 3 we describe the sensitivity analysis that was
conducted and the resulting recommendations for experimental protocol. Finally, in Chapter 4 we present the
parameter estimation results we computed using simulated data.

2 Description of the Modified Wodarz-Nowak Model

The goal of this workshop was to examine a modified version of the Wodarz-Nowak model [3] for HIV infection
dynamics. The modification involves the addition of an extra compartment, V, to represent the viral load
present. The change in viral load over time is modeled as a difference of a linear birth rate dependent on the
number of infected cells and a death rate of the short-lived virus.
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2.1 ODE Model

The model is a coupled system of five ordinary differential equations with twelve parameters. Here the state
variables describe compartments in the biological system. Our modification of the Wodarz-Nowak Model for
HIV infection dynamics is

X = A—dX -B[1— fu(t) XV
Y = B[l—-fu®)]XV —aY -pYZ
W = ¢XYW —cqYW —bW

Z = cqYW—-hZ

V = kY —puV,

where the compartments are

= Uninfected T helper cells

= Infected T helper cells

Immune Precursors Cytotoxic T Lymphocyte
= Immune Effector Cytotoxic T Lymphocyte

NS <
I

= Free Virus,

and the parameters are

>
I

Target cell production rate

= Natural death rate of target cells

= Rate of viral replication

= Treatment efficacy factor

= Natural death rate of Infected cells

Death rate of infected cells due to immune response
= CTL activation rate

= Growth rate of CTL effectors due to infected cells and CTL precursors
= Natural death rate of CTL precursors

= Natural death rate of CTL effectors

= Growth rate of virions due to infected cells
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= Natural death rate of virions.

In the model, we assume the virus instantaneously approaches T-cells with no time lag for diffusion. It is
important to note that such a delay probably exists, but is not modeled by our system. Also note that the
compartment V only represents virions that can infect uninfected cells (represented by the X compartment).
In this model, immune precursors (W) are stimulated by infected cells, not by the virus. Figure 1 visually
represents the relationship between the compartments in the modified Wodarz-Nowak Model.

2.2 Incorporation of Structured Treatment Interruption (STI) in the Model

Structured treatment interruptions are planned times that patients will cease taking medication. In this model,
it is assumed that STT is incorporated only after the patient has been on medication long enough to maintain a
low level of viral load. Then, during a treatment interruption, the virus level rises and consequently stimulates
the immune system. The refreshed immune system may (hopefully!) then suppress the viral load without the
aid of continued medication.

The function u(t) represents the incorporation of STI in our model. Values of u(t) range from 0 to 1, with
0 representing no treatment and 1 representing full treatment. Thus u(t) effectively reduces the infectivity
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Figure 1: Relationship between compartments in the modified Wodarz-Nowak model. Uninfected T-helper
cells X are infected by free virus V to become infected T-helper cells Y. The infected cells stimulate the
immune precursors W to become immune effectors Z that can in turn kill the infected cells. The model
includes other relationships, but these are the primary interactions between compartments in the model.
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Figure 2: The function u(t) which incorporates STI in the model. Our work assumes a drug rise time of two
days and decay time of four days.



parameter () of the system as it grows from 0 to 1. In our analysis we considered a periodic STI schedule,
u(t), of the form shown in Figure 2.

The parameter f represents the efficacy of the treatment, for which we assumed a value of 0.75. It is
important to note that independent investigations by Brian Adams (a graduate student advising our group)
suggest that the behavior of the model is radically different for f < 0.95 than for f > 0.95.

2.3 Equilibria and Choice of Parameter Values

The parameters in our work are derived from those used by Wodarz and Nowak, whose model has a basic
viral reproductive ratio, Ry = BA/ad = 25. As mentioned earlier, our model consists of their model together
with a compartment for free virus. Adding this free virus compartment results in a basic viral reproductive
ratio, Ro = BAk/adu. To calculate parameters for our modified model, we made three assumptions:

1. the same basic viral reproductive ratio (Ro = 25);

2. a ratio of our new parameters: k/u = 25, since accepted values for these parameters are k € [20, 250]
and g = 1; and

3. Bk = 0.5 for our new parameter set, where 0.5 is the value of 8 used by Wodarz and Nowak.

The last condition (3) is enforced because in our model, the dynamics for V' depend largely on kY. Con-
sequently the dynamics for Y, which include XV, indirectly depend on k. These assumptions yield the
following parameters, which were used in our simulations.

Parameter | Value |

1

0.1
0.02
0.2

1
0.027
0.5
0.001
0.1
25

1
0.75

T R o[0T | & & >

This model has multiple equilibria for all parameter sets q = [\, d, 3,a,p,¢c,q,b, h, k, i1, f]T, but the stability
of each of these equilibria depends on the choice of parameters. For the choice of parameters used in the
simulations (qg), there are two stable equilibria which correspond to the success or failure of the immune
system to control infection. The equilibrium values corresponding to our parameters are given in the following
table.

Compartment | 1st Equilibrium 2nd Equilibrium
(virus dominates) | (immune system dominates)
X 0.4 9.8
Y 4.8 .004
W 0 8751
Z 0 4.7
A% 120 0.10




Our stability analysis is localized at the point qg in the parameter space. We linearize the non-linear system
about an equilibrium point, then carry out an eigenvalue analysis. [4] This produces only local stability
results. We would expect different numerical results if we localized our study at different parameter values.
In solving the parameter identification problem, values for our parameter vector q were chosen from the set
(ad, the space of valid values for q.

3 Analysis

Because the modified Wodarz-Nowak model is complex, including five compartments and twelve parameters,
it is necessary to establish priorities about which parameters to estimate and which compartments to try to
observe. A sensitivity analysis informs this prioritization, which can aid in experimental design.

The sensitivity analysis has three goals. First, in order to choose a subset of parameters to estimate, it is
necessary to determine which parameters to play a significant role in the dynamics of the model. Second, in
order to suggest a timing schedule for collection in the experimental protocol, it is necessary to determine which
times are most critical for data collection. Third, in order to determine which compartments are necessary to
observe and whether or not their observation can be combined, it is necessary to determine which combinations
of compartments play a significant role in the dynamics of the model.

3.1 Derivation of the Sensitivity Matrix

In this subsection, we find an equation for the sensitivity matrix, 0z /0q, from our model. This will suggest the
sensitivity of the states to the parameters. Recall that our model has five compartments,
z = [X,Y,W,Z,V] and twelve parameters, q = [A,d,3,a,p,c,q,b,h,k,u, f]l. We can therefore represent
our model by

z = f(z(t); ),
z(0) = zo.

Differentiating with respect to ¢ and formally passing the time derivative through yields

oz of 0z Of
Z) () = = (2(t, q0); q0) - — + == (2(t, q0); q0)-
(6q)( ) 6Z(Z( ;qO);qO) 8q+ 6q(z( a(IO):‘IO)
This can be written as an n x m matrix system (n = 5,m = 12) of ODEs for the sensitivity matrix r(t) = 0z/0q

#(t) = Ao(t) r(t) + go(t),

r(0) =0,
where of
Ay = &(Z(LQO);QU)
and
f

0
go = a—q(z(t,qo);%)-

The solution to this system of ODEs yields the local system sensitivity about the point qg € @gq Wwhich we
will use to examine the sensitivity of the states with respect to the parameters over time.

3.2 Forward Solution of the ODE

Note that the solution of the matrix system of ODEs depends on having a solution to the original model of
ODEs (see equation for z above). Therefore, to employ our sensitivity results, we first must be able to solve
the original model. To this end, we employed the MATLAB stiff ODE solver odel5s. We used parameters
values qg as given in the table in Section 2.3 and initial condition zy = [10,0.3,0.008,0.001, 7.5]. Solutions
were found over different time spans, e.g., 100 days and 500 days.



3.3 Sensitivity of g—é(qg) Based on the Cost Function J(q)

The cost function,

¥, [log(C * 2(ti, a)) — log(C * %)|”
J(aq) = 5 :
g;
gives a measure of how well the values predicted by the model for z(¢;) fit the experimental data z; . Therefore,
analyzing

oJ B log(C * z(t;,qo0)) — log(C * %;) oz
Salan) = Y B0l 2 OBEA) (04 21,0 )

gives us an idea of how sensitive this fit is to small changes in any one of the parameters. Since we did not
have experimental data with which to work, we instead used the solution to the original system of ODEs found
using the MATLAB stiff solver odel5s and added random noise to it in the following manner:

i

log z; = log z(t:) + ne(ts),

where z; = simulated data at time ¢;, n = error range percentage, and €(¢;) is randomly distributed according
to an N(0,1) normal distribution.

Figure 3 depicts the values we obtained for log|0J/0q| over 100 different simulated data sets. This
particular plot represents results for the system with no treatment (i.e., u = 0). We also carried out the same
analysis for the system under the periodic treatment interruption mentioned earlier in the paper and found
the the same four parameters [, a, p, c were still the most sensitive and that the drug efficacy f became the
fifth most sensitive parameter.

Throughout the paper, the boxplot of a data set is a box and whisker plot where the box has lines at the
lower quartile, median, and upper quartile values. The whiskers are lines extending from each end of the box
to show the extent of the rest of the data. The whiskers end at the data points that lie just within 1.5 of the
interquartile range (IQR). Outliers are data with values beyond the ends of the whiskers.

3.4 Sensitivity of Parameters Over Time

One benefit of the sensitivity matrix,
0z

a_q (t> qO)a

is that it illustrates the time dependence of the sensitivity of each compartment to each parameter. If we choose
a particular parameter, we can plot the sensitivity of each compartment with respect to that parameter as
a function of time and use this information to decide when measurements of those compartments will be
most beneficial. Since many of the laboratory measurements can be costly, it is important to minimize the
number of measurements. For our simulated data, we can construct a data measurement schedule and then
interpolate at those time values. Using this data we can then compute the sensitivity of the cost function to
our parameters.

For example, in the model with no drug treatment, i.e., u(t) = 0, we observed that 3 (infection rate), ¢
(immune effector activation rate), a (natural death rate of infected cells), and b (natural death rate of the
immune effector) are most sensitive. In Figure 5, we observe very different behavior of the sensitivity to each
of these parameters as functions of time.

Although these plots only represent the sensitivity of the viral compartment, Figure 6 shows that the
sensitivity of the other compartments is qualitatively similar.

The system appears to be most sensitive to 4 initially, but this reduces quickly and then begins to dominate
again as time progresses. Hence, we would suggest measuring z after five days, waiting a month, and then
beginning weekly measurements. Using this measurement scheme, Figure 4 shows an increase in the relative
sensitivity to . Similarly, since sensitivity to a remains high throughout time, we would recommend regular
measurement throughout the entire observation period (e.g., weekly). The sensitivity to ¢ is high initially, but
then decreases rapidly, so we might recommend measuring every third day for six weeks and then discontinuing
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Figure 3: Log scale plot of sensitivity of the cost function to our twelve parameters, where the indices along
the x-axis correspond to the parameters in the same order found in Section 2.2. Full observability means
c=1I
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Figure 4: Log scale plot of sensitivity of the cost function to our twelve parameters after implementing a
measurement, scheme based on the sensitivity of 8 over time. Again, C' = I.
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Figure 5: Plots of the sensitivity of the viral load V to parameters 3, a, ¢, and b over 100 days of no treatment.
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Figure 6: Plots of the sensitivity of the first four compartments, where Z = W (1), etc., to the same four
parameters as in Figure 5.
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Figure 7: Sensitivity of the viral load over 100 days of periodic STI.



measurements. For b, we might recommend just the opposite approach. As a result, it is difficult to recommend
a measurement schedule for estimating all four of our most sensitive parameters. Perhaps the best approach
is simply to measure at regular intervals.

When the structured treatment interruption described in Section 2.2 is introduced, the qualitative behavior
of the sensitivity matrix changes. As observed in Figure 7, our previous measurement schemes for a and b may
still be appropriate, whereas we need to modify those for 8 and ¢. Since the sensitivity to 8 now begins to
increase rapidly after two months, we need to measure more frequently instead of on a weekly basis. Similarly,
our measurement scheme for ¢ should now mimic the one for b, since the sensitivities to those parameters are
very similar.

3.5 Observation Matrices

The cost of data collection varies widely across the five compartments in the model. The viral load V is
often the only compartment measured. The uninfected cells X and the infected cells Y, can be measured
together with considerably less expense than measuring them separately. The same is true for the immune
precursors W and the immune effectors Z. In order to suggest an effective and frugal experimental protocol, it
is useful to determine which compartments measurements are essential and whether combining or eliminating
compartments compromises the quality of the data. In order to answer these questions, we created a set
of observation matrices C; to represent different combinations of compartments. When our compartmental
vector is multiplied by one of these observation matrices, we change the observations made in the parameter
estimation problem.
The observations we examined were:

| Observations |
[X,Y,W,Z,V]

(X, Y, W+ Z,V]
X +Y, W+ Z,V]

X +Y, W+ Z]

[X,Y,V]
[X +Y,V]
V]

3.6 The Effect on % from Changing the Observables

Our next step was to incorporate different observation matrices C into the cost function and analyze g—fl for
each. To summarize the results, measuring only [V], or [X + Y, V] causes a significant loss in sensitivity
with respect to most parameters, whereas the results obtained with [X + Y, W + Z], [X + Y, W + Z,V], and
[X,Y,W + Z,V] are strikingly similar to those obtained with the full set of observables [X,Y, W, Z,V]. As
in Section 3.3 we used a time sampling of once a day for 100 days in each data set, and the results below
are for the untreated model. Similar results were obtained in the treated model. Figures 8 and 9 illustrate
the changes that occur in the sensitivity of our cost function as we change the observation matrix. The 100
different data sets used to generate the results for any one of the observation matrices were not the same as
the data sets used for any of the other observation matrices.

4 The Inverse Problem: Estimating the Parameters

4.1 Why solve the Inverse Problem?

All of the analysis in this paper is based on the the modified Wodarz-Nowak Model. Now we concern ourselves
with another question: Is our model a good model? One way to answer this question is to answer another

12
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question instead: Given a data set, does our model describe the data set? Solving the inverse problem answers
the latter question.

Inverse problems arise in a variety of important applications in science and industry. These range from
biomedical and geophysical imaging to groundwater flow modeling. In all these applications the goal is to
estimate some unknown attributes of interest, given measurements (a data set) which are indirectly related
to these attributes. For example, in medical tomography, one wishes to image structures within the body
from measurements of X-rays which have passed through the body [9]. For our model, the data set which the
immunologist can measure is the vector of observables § = CZ. For instance, §=[X + Y, V] indicates that the
data available is the total count of X plus Y, the combined total of uninfected T helper cells and infected T
helper cells, and V, the number of free virions. The attributes of interest that we wish to estimate given the
data ¥ are the components of q.

Solving the inverse problem identifies the parameters q* for which the model best describes the given data
¥. That is, we determine z(q*) so that the “distance” between Cz(q*) and ¥ is as small as possible. We use
the least squares cost function,

J(q) = > [log(C * z(ti,q2)) —log(C * ZAi)|2’

0;

to determine this distance. Therefore, solving the inverse problem is equivalent to solving q* such that

* i ; 1o C*zt‘i: —1lo C’>I<ZA1 2
q :argmmquadJ(q)z 2. [log( ( (12)) g( )|

a;

where Q.4 is called Q-admissible, the space of valid values for q.

Given o data set, does our model describe the data set? The answer is yes if J(q*) is “small”.
4.2 Implementation
4.2.1 Simulating Data

To formulate the inverse problem requires data. Since we did not have access to real data, we simulated data
by

14



log Z; = log z; + o¢;,

where €; = €(t;) ~ N(0,1) and we assumed the vector of measurement errors were o2 = [.01.01.01.01.25] - X,
for A > 1. That is, o2 is the error incurred when a clinician actually measures each compartment. Therefore,
when we generate data we are assuming that X, Y, W and Z are each measured with 1% error from the true
measurement and V is measured with 25% error from the true measurement.

Since we are assuming that X, Y, W, Z, V are mutually independent, then for example we can assume that
the measurement error for measuring X and Y together is the sum of the measurement errors of measuring X
and then Y individually. Hence, the measurement error for Cz;=[X + Y] is 0% + 0%.

4.2.2 Optimization Methods

To find q*, we used the Nelder Mead simplex method (MATLAB’s fminsearch). We tried other optimization
methods, including Steepest Descent, Newton CG and BFGS methods, but Nelder Mead outperformed these
for our data. Nelder Mead has the further advantage that the gradient V,J = 8J/9q need not be calculated;
the method only requires evaluations of the cost function J(q).

4.2.3 Using the Sensitivity Analysis

If it becomes difficult to find q* over all the parameters, then we can concern ourselves with optimizing J just
over the parameters to which the model is most sensitive. The five most sensitive parameters for the model
with treatment in order of sensitivity, identified by the sensitivity analysis that we performed, are

= proliferation rate of Infected T helper cells,

proliferation rate of Immune Precursors Cytotoxic T Lymphocyte,
natural death rate of Immune Precursors Cytotoxic T Lymphocyte,

natural death rate of Infected T helper cells, and

- 2 oo @
|

= drug efficacy.

4.2.4 Further Assumptions

We solved the inverse problem for thousands of different synthetic data sets z, where the error o2 was generated

for A=1, 10, 100, 1000, and 10000; and z = z(t;, Qtrue), With qerue =[1, .1, .02, .2, 1 ,.027, .5, .001, .1, 25, 1,
.75]. Note that each J(q) evaluation requires a forward solution of the ODE, as in Section 3.2. For each of
these, we assumed that z;n; = [10,.3,.008,.001,7,.5].

Furthermore, we let C be the identity matrix (so we are assuming full observability, that each compartment
of z can be measured), that ¢; = 1,2,3,4,...,100 (measurements for each compartment are taken each day
over a 100 days), and that the periodic treatment u(t) is being applied.

4.3 Results

Two general approaches were used. First, for qinit = Qgen, synthetic data was generated for A=1, 10, 100,
1000, and 10000. When the parameters are independent, this approach allows us to estimate a probability
density for each of the components of q.

Secondly, we solved the inverse problem for many different values of Qinit = Qtrue + Qtrue - 70, where
& ~ N(0,1). As 7 increases, Qinit is perturbed further from Qgrue. Since Q* & Qtrue, this methodology should
enable us to estimate a confidence neighborhood about q¢rue S0 that for any qinit in this neighborhood we
can make a confidence statement about how well our inverse problem algorithm can find q* adequately close
to Qtrue-

15



4.3.1 Estimating Probability Densities

As mentioned before, we simulated data by

log z; = logz; + 0 - ¢,

where
€~ N(Oa 1);

and we assumed the vector of measurement errors was 02=[.01, .01, .01, .01, .25]-), for A > 1 where lambda
is a scalar to amplify the noise in the data. Simulations were run for lambda=1, 10, 100, 1000 and 10000.
Keeping Qinit = Qtrue fixed, we varied the amount of noise in the data by generating 100 different synthetic
data sets for each of the values A=1, 10, 100, 1000 and 10000. When the parameters are independent, this
approach allowed us to construct a marginal probability density for each of the components of q.
Figure 10(a) shows the results of our algorithm for the five most sensitive parameters: S, ¢, b, a, and f
when A = 10. Figure 10(b) shows a probability density for § when A = 10.
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Figure 10: (a) Boxplot of q=[8 ¢ b a f] vs the percent variation of each these parameters (q*) from Qerue,
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dtrue

using the results from (a).

4.3.2 Trying to Find a Confidence Neighborhood

First, we attempted to find q* over all twelve parameters. For 7 =.01, .05, and .1, we saw that the q* procured
from our algorithm was not very far from qinit (see Figure 11). For values of > .2 (for large perturbations
of Qinit from Q¢rue, the Nelder Mead algorithm was unable to solve the system at all. Hence, we turned to
the results of our sensitivity analysis to make the optimization problem simpler.

As mentioned earlier, when it becomes difficult to find q* over all the parameters, then we can concern
ourselves with optimizing J just over the parameters to which the model is most sensitive. Therefore, we set
Qtrue =[3 ¢ b a f], the five most sensitive parameters.

The only benefit to this approach was that we were able to solve the system for n < .5. Unfortunately,
the q* procured from our algorithm still was not very far from qinit, as seen in Figure 12. Hence a new
optimization scheme is recommended which is not so dependent on Qjnit-
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Boxplot of the components of q' for eta=.05

Exrror bar plot of beta vs eta
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Figure 11: (a) When optimizing over all the parameters, this is the error plot of optimal 3, §*, vs 7, the
perturbation applied to Birue to generate Bini:. The value of Bin is indicated by an '*’. For the same Qinit,
the inverse problem was solved 100 times, with a different synthetic data set for each solve, for n: n =.01, .05,
and .1. Since Qinit = Qtrue + Atrue -7V (0, 1) then, for each 1, Binit = .02+.02-nN(0,1). Error bars indicate 2
standard deviations about the mean for the 100 different inverse problem solves. §* is directly related to the
perturbation of B,;. In fact, for for n > .05, 8* > .1584r4e- (b) When optimizing over all parameters, this
is the boxplot of the components of q vs the percent variation of each component of q* from q¢rue, %,
over 100 inverse problem solves for 7 =.05. § = q[3]. These plots indicate that we ought to try constraining
our optimization to the parameters that affect the model the most.
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Boxplot of the components of q* for eta=.05
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Figure 12: When optimizing over the 5 parameters which affect the model the most, g=[3 ¢ b a f], this is the
boxplot of the components of q vs the percent variation of each component of q* from qtrue, %, over
100 inverse problem solved when 1 =.05. These plots indicate that even when constraining our optimization
to the parameters that affect the model the most, q* is still far from q¢rue- Hence a new optimization scheme
is recommended which is not so dependent on Qjnijt-
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5 Conclusion

The results of our investigations provide some guidance for future study, including design of experiments
aimed to investigate the efficacy of STTs, the validity of the modified Wodarz-Nowak model for HIV infection
dynamics, and estimates for the parameters in the model.

Our first set of results from the sensitivity analysis concerns the parameters in the model. The sensitivity
analysis determined that the parameters 3, a, p,c were still the most sensitive and that with treatment, the
drug efficacy f becomes the fifth most sensitive parameter. These parameters play significant roles in the
dynamics of the model.

Our second set of results from the sensitivity analysis suggests times to collect data about the parameters.
Without STI, the system is most sensitive to 3 initially, which reduces quickly and then begins to dominate
again as time progresses. We suggest measuring z after five days, waiting a month, and then beginning
weekly measurements. Since sensitivity to a remains high throughout time, we would recommend regular
measurement throughout the entire observation period (e.g., weekly). The sensitivity to ¢ is high initially, but
then decreases rapidly, so we might recommend measuring every third day for six weeks and then discontinuing
measurements. For b, we recommend the opposite approach. Because the results for each parameter suggest
a different measurement schedule, we suggest that the best approach may be to measure at regular intervals.
With STI, the sensitivity to 8 now begins to increase rapidly after two months. Consequently, with the
introduction of STI, we suggest more frequent measurement.

Our third set of results from the sensitivity analysis indicates which combinations of compartments play
a significant role in the dynamics of the model. Measuring only [V], or [X + Y, V] causes a significant loss in
sensitivity with respect to most parameters, whereas the results obtained with [X+Y, W+Z], [X+Y,W+Z, V],
and [X,Y,W + Z,V] are strikingly similar to those obtained with the full set of observables [X,Y, W, Z, V].
This is a very useful result, since combining measurement of X with Y and W with Z leads to a large reduction
in cost of data collection without sacrificing the quality of the information collected.

In our work with the inverse problem, we have discovered the probability distributions for optimal 3, ¢, b, a,
and f the parameters to which the model is most sensitive, given the synthetic data sets that we constructed.
Although our approach was not able to achieve a solution for the inverse problem over all twelve parameters,
limiting the optimization to the most sensitive parameters results in some increase in the ability of the optmizer
to converge to the optimal parameter set.

Some questions for future consideration concern the details of the experimental protocol and future at-
tempts to solve the inverse problem. One issue of particular concern is how to time the STIs given that a
“day” in our model may not correspond to real time. Once data have been collected, the inverse problem can
be reexamined to find better estimates for parameters in the model.
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