Large Scale
Optimization Techniques
for Alex's Neural Coding
and Decoding Model

#### Outline

- Mathematical Model: Neural Coding and Decoding
- Optimization Problem
- The Basics: Unconstrained Optimization

Line Search Techniques

Steepest Descent

Newton Method

Newton Conjugate Gradient

• Constrained Optimization

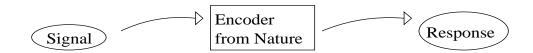
Projected Gradient

Augmented Lagrangian

- Numerical Results
- Future Goals

#### The Problem

How does neural ensemble activity represent information about sensory stimuli? What was the environmental stimulus that produced a given neural sequence?



#### Model Assumptions

- Typical sequences in the stimulus and response are known
- The joint probability relating the stimulus and response is known

#### Information Theoretic Quantities

An **quantizer** or encoder, Q, relates the environmental stimulus, X to the neural response Y through a process called *quantization*. In general, Q is a stochastic map, so that  $\sum_y Q(y \mid x) = 1$  for each x.



The **Reproduction** space Y is a quantization of X. This can be repeated: Let  $Y_N$  be a reproduction of Y. So there is a quantizer

$$q(y_N \mid y) : Y \to Y_N$$

**Mutual Information** is a measure of the dependence between two random variables. For X and  $Y_N$ 

$$I(X, Y_N) = \sum_{x,y,y_N} q(y_N \mid y) p(x,y) \log \left( \frac{\sum_y q(y_N \mid y) p(x,y)}{p(x) \sum_y p(y) q(y_N \mid y)} \right).$$

**Conditional Entropy** is a measure of the self information of a random variable given another. For  $Y_N$  given Y

$$H(Y_N \mid Y) = \sum_{y,y_N} p(y)q(y_N \mid y) \log (q(y_N \mid y))$$

### The Model for Neural Coding and Decoding

**Problem**: It would take an inordinate amount of data to determine the coding scheme between X and Y.

**Model**: Consider the problem of determining the coding scheme between X and  $Y_N$ , a quantization of Y, such that:  $Y_N$  preserves as much mutual information with X as possible and the entropy of  $Y_N|Y$  is maximized.

**Justification**: Jayne's maximum entropy principle, which states that of all the quantizers that satisfy a given set of constraints, choose the one that maximizes the entropy.

#### **Constraints**:

• The mutual information  $D_{eff} = I(X, Y_N)$  is a measure of how well  $Y_N$  represents Y. That is, for a given  $Y_N$ , we want a quantizer

$$q(y_N \mid y) : Y \to Y_N$$

that preserves as much mutual information from X as possible.

• q is a quantizer  $\Rightarrow$  q is a probability density

**Model**: We have two maximization problems:

$$\max_{q(y_N|y)} H(Y_N \mid Y)$$
 subject to  $D_{eff} \ge I_0$  and  $\sum_{y_N} q(y_N \mid y) = 1$ 

Reformulated using Lagrange Multipliers:

$$\max_{q(y_N|y)} F(q(y_N \mid y), \beta) \equiv \max_{q(y_N|y)} (H(Y_N|Y) + \beta D_{eff}(q(y_N \mid y)))$$
constrained by 
$$\sum_{y_N} q(y_N \mid y) = 1.$$

### The Optimization Problem

We now have two minimization problems:

$$\min_{q(y_N|y)} -H(Y_N\mid Y)$$
 constrained by 
$$D_{eff} \geq I_0$$
 
$$\sum_{y_N} q(y_N\mid y) = 1 \quad \forall \ y\in Y$$
 
$$q(y_N\mid y) \geq 0 \quad \forall \ y\in Y \ \text{and} \ \forall \ y_N\in Y_N$$

and

$$\min_{q(y_N|y)} -F(q(y_N \mid y), \beta) = \min_{q(y_N|y)} \left( -H(Y_N|Y) - \beta D_{eff}(q(y_N \mid y)) \right)$$

$$\text{constrained by}$$

$$\sum_{y_N} q(y_N \mid y) = 1 \quad \forall \ y \in Y$$

$$q(y_N \mid y) \geq 0 \quad \forall \ y \in Y \quad \text{and}$$

We will restrict our attention to  $\mathcal{F}(q) \equiv -F(q(y_N \mid y) | \beta)$ 

### Optimization Overview

What? Compute  $q^* = \arg \min \mathcal{F}(q)$  subject to the constraints.

**Why?** To quantize Y into an optimal  $Y_N$ .

where  $q(y_{Ni}|y_j)$  is a probability, "close" to either zero or one, which determines whether  $y_j$  belongs to the class  $y_{N_i}$  in the reproduction space  $Y_N$ .

**How?** Use Optimization Techniques to build a sequence  $\{q_k\}_{k=1}^{\infty}$  to  $q^*$  such that

- $\mathcal{F}$  is decreased:  $\mathcal{F}_k \geq \mathcal{F}_{k+1}$  for all k
- global convergence:  $||\nabla \mathcal{F}_k|| \to 0$  as  $k \to \infty$
- the constraints are satisfied.

Line Search Techniques can be used to create such a sequence.

#### Unconstrained Line Search

**Goal:** Build a sequence  $\{q_k\}_{k=1}^{\infty}$  of approximates to  $q^*$  such that  $\mathcal{F}_k \geq \mathcal{F}_{k+1}$  for all k and  $||\nabla \mathcal{F}_k|| \to 0$  as  $k \to \infty$ .

**Idea:** At  $q_k$  compute  $q_{k+1}$  as follows:

- 1. Compute a **search direction**  $p_k$  at  $q_k$ .
- 2. Compute the **step length**

$$\alpha_k \approx \arg\min_{\alpha>0} \mathcal{F}(q_k + \alpha p_k).$$

3. Define  $q_{k+1} = q_k + \alpha_k p_k$ .

### Computing the Step Length $\alpha_k$

Given the descent direction  $p_k$  what conditions should we put on  $\alpha_k$  so that we achieve the above goal?

- Naive Condition:  $\mathcal{F}(q_k + \alpha_k p_k) < \mathcal{F}(q_k)$ .
- The Wolfe Conditions:

(W1) 
$$\mathcal{F}(q_k + \alpha_k p_k) \leq \mathcal{F}(q_k) + c_1 \alpha_k \nabla \mathcal{F}(q_k)^T p_k \quad c_1 \in (0, 1)$$

(W2) 
$$\nabla \mathcal{F}(q_k + \alpha_k p_k)^T p_k \ge c_2 \nabla \mathcal{F}(q_k)^T p_k \quad c_2 \in (c_1, 1)$$

**Zoutendijk's Theorem** assures that if  $\nabla \mathcal{F}$  is Lipshitz in a neighborhood containing the level set of  $q_0$ , then line searches satisfying the Wolfe Conditions meet our goal

# Computing a Search Direction $p_k$

•  $p_k$  needs to be a descent direction:

$$p_k^T \nabla \mathcal{F}_k < 0.$$

#### Descent directions and the Associated Methods:

• The direction of steepest descent:  $p_k = -\nabla \mathcal{F}_k$ .

The Steepest Descent Method:

Convergence is linear.

Cost is low.

• The Newton direction:  $p_k = -H_k^{-1} \nabla \mathcal{F}_k$  when  $H_k$  is SPD.

Newton's Method:

Convergence is quadratic.

Cost is high.

• The Quasi-Newton direction:  $p_k = -B_k^{-1} \nabla \mathcal{F}_k$  when  $B_k$  is SPD.

Quasi-Newton Method:

A compromise.

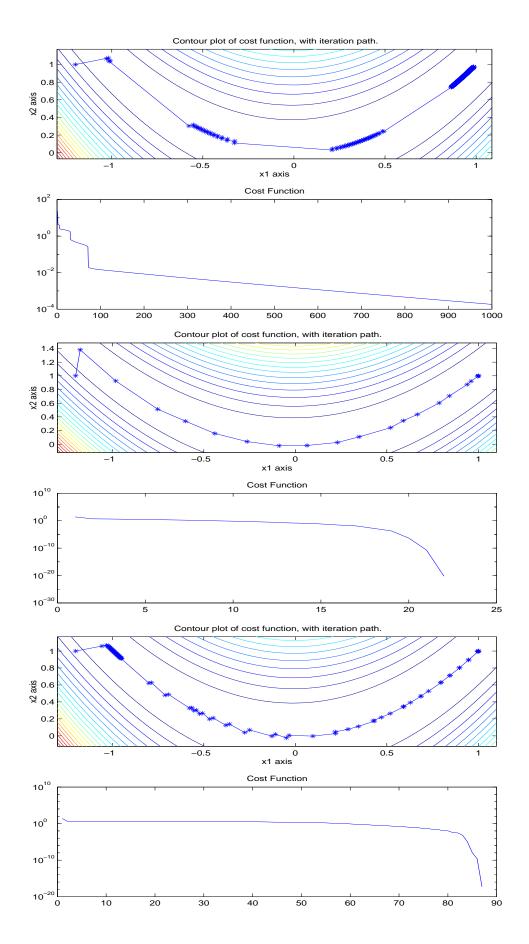


Figure 1: Numerical Performance of (i) Steepest Descent, (ii) Newton's Method (iii) Newton CG applied to the Rosenbrock function for  $x_{0} = [-1.2, 1]^{T}$  and  $x^* = [1, 1]^{T}$ 

# Newton Conjugate Gradient

**Problem:** Solving  $H_k p_k = -\nabla \mathcal{F}_k$  can be expensive.

**Goal:** For H SPD, efficiently solve Hp = -g

**Idea:** Create a sequence  $\{p_j\}$  which converges to  $p^* = -H^{-1}g$  in finitely many iterations.

- Our goal is equivalent to minimizing  $\phi(p) = \frac{1}{2}p^T H p + g^T p$ .
- Minimize  $\phi(p)$  using a line search:

Search Direction 
$$d_j = -\nabla \phi_{j-1} + \frac{\langle \nabla \phi_{j-1}, d_{j-1} \rangle_H}{||d_{j-1}||_H^2} d_{j-1}$$
  
Step Length  $\tau_j = \arg\min_{\tau>0} \phi(p_j + \tau d_j)$   
So  $p_{j+1} = p_j + \tau_j d_j$ .

**Theorem:** For any initial  $p_0 \in \Re^n$ ,  $p_j \to p^*$  in at most n steps.

**Steihaug's Stopping Criteria:** Stop the CG iteration when any of the following occur:

- CG residual  $||Hp_j + g|| \le \epsilon$ , where  $\epsilon$  denotes stopping tolerance.
- Negative curvature detected, i.e.,  $d_j^T H d_j < 0$  (Newton CG for H not PD).

#### Preconditioning

**Problem:** If  $\operatorname{cond}(H) \equiv \frac{\lambda_{\max}}{\lambda_{\min}} \gg 1$  or if the eigenvalues of H are not clustered, then it is not economical to use Newton CG to solve Hp = -g

**Reason:** Convergence of  $\{p_j\}$  to  $p^*$  is bounded by:

• 
$$||p_j - p^*||_H \le \left(\frac{\sqrt{\operatorname{cond}(H)} - 1}{\sqrt{\operatorname{cond}(H)} + 1}\right)^{2j} ||p_0 - p^*||_H$$

- $||p_{J+1} p^*||_H \le (\lambda_{n-J} \lambda_1)||p_0 p^*||_H$
- ullet If eigenvalues occur in r distinct clusters, then Newton CG approximately solves the system in r steps

**Goal:** Transform Hp = -g to an equivalent system to improve the eigenvalue decomposition of H.

**Idea:** Set  $\hat{p} = Cp$ , for nonsingular positive definite C. Then the transformed linear system is

$$C^{-T}HC^{-1}\hat{p} = -C^{-T}g$$

Now, convergence rates depend on the eigenvalues of  $C^{-T}HC^{-1}$ . So, try to choose a *preconditioning matrix* C such that

- C is positive definite
- $\bullet$   ${\rm cond}(C^{-T}HC^{-1})\ll {\rm cond}({\bf H})$  OR eigenvalues of  $C^{-T}HC^{-1}$  are clustered
- $C^{-1}$  is easily calculated

**Why?** The system  $C^{-T}HC^{-1}\hat{p} = -C^{-T}g$  is cheaper to solve.

For  $\mathcal{F}$ , consider setting  $C = \text{Hess}H(Y_N|Y)$ , a diagonal matrix.

# Constrained/Bent Line Searches

**Goal:** Build a sequence  $\{q_k\}_{k=1}^{\infty}$  of approximates to  $q^*$  such that  $\mathcal{F}_k \geq \mathcal{F}_{k+1}$  for all k,  $||\nabla \mathcal{L}_k|| \to 0$  as  $k \to \infty$  ( $\Longrightarrow$  the constraints  $\{c_i(q)\}$  are satisfied)

**Idea:** At  $q_k$ , find a search direction  $p_k$ , then "bend" (project) it so that  $q_{k+1}$  remains feasible. That is,

- $p_k$  must be a descent direction:  $\nabla \mathcal{F}_k^T p_k < 0$
- constraints must be satisfied  $\nabla c_i(q)^T p_k \ge 0 \text{ for inequality constraints}$   $\nabla c_i(q)^T p_k = 0 \text{ for equality constraints}$
- From  $q^*$ , there can not exist a direction p that satisfies the above two criteria. That is, for some  $\lambda \geq 0$

$$\nabla \mathcal{F}(q^*) = \lambda \nabla c_i(q^*)$$

Formally, for  $p^*$  (that satisfies the *Linearly Independent Constraint Qualification*)  $\exists \lambda$  that satisfies the *Karush-Kuhn-Tucker* or KKT conditions.

**Problem:** The projection can be expensive. So bent line searches work well for simple inequality constraints:  $q(y_N \mid y) \geq 0 \quad \forall \ y \in Y$  and  $\forall \ y_N \in Y_N$ 

# Projected Gradient Method

**Idea:** Take steepest descent direction:  $p_k = q_k - \max(q_k - \nabla \mathcal{F}_k, \vec{\eta})$ 

- Deals with the non-negativity constraints
- Convergence is linear.
- Cost is low

**How** to deal with the constraint  $\sum_{y_N} q(y_N \mid y) = 1 \quad \forall y \in Y$ ?

- Rewrite  $\mathcal{F}$  and  $q(y_N \mid y)$ ??
- Normalize??

### Projected Newton and Quasi Newton Methods

Idea: Let

$$p_k = -H_{\mathrm{Red}_k}^{-1} \nabla \mathcal{F}_k$$

where  $H_{Red}$  is the reduced Hessian, a semi-positive definite matrix:

$$[H_{Red}]_{ij} = \begin{cases} \delta_{ij} & \text{if either } c_i(q) & \text{or } c_j(q) & \text{are active} \\ & [\text{Hess}\mathcal{F}]_{ij} & \text{otherwise} \end{cases}$$

#### Why?

Convergence is superlinear

Newton Projection Methods behave like **steepest descent** on the active constraints and like **Newton/Quasi-Newton Methods** on the inactive constraints. Rewrite:

$$q = \left[egin{array}{c} q_I \ q_A \end{array}
ight], 
abla \mathcal{F}(q) = \left[egin{array}{c} 
abla \mathcal{F}_I \ 
abla \mathcal{F}_A \end{array}
ight], H_{Red} = \left[egin{array}{c} H_I & 0 \ 0 & I \end{array}
ight]$$

Then

$$p_k = -H_{\text{Red}_k}^{-1} \nabla \mathcal{F}_k = \begin{bmatrix} -H_{I_k}^{-1} \nabla \mathcal{F}_{Ik} \\ -\nabla \mathcal{F}_{Ak} \end{bmatrix}$$

**How** to deal with the constraint  $\sum_{y_N} q(y_N \mid y) = 1 \quad \forall y \in Y$ ?

#### Augmented Lagrangian

**Goal:** Want a fast, rigorous Quasi-Newton algorithm which takes into account all the constraints.

**Idea:** Incorporate the constraint  $c_y(q) = 1 - \sum_{y_N} q(y_N \mid y)$  into a new function using penalty terms and explicit Lagrange Multiplier estimates at each optimization step:

• The new cost function to minimize, the Augmented Lagrangian:

$$\mathcal{L}_A(q,\lambda^l,\mu_l) = \mathcal{F}(q) - \sum_y \lambda^l_y c_y(q) + rac{1}{2\mu_l} \sum_y c_y(q)^2$$

deals with  $\sum_{y_N} q(y_N \mid y) = 1 \quad \forall \ y \in Y$ 

- A Projected Newton CG Line Search deals with the non-negativity constraints
- If  $q^* = \operatorname{argmin} \mathcal{F}$  subject to the constraints  $\{c_i(q)\}$ , then  $\exists \bar{\mu}$  such that  $q^* = \operatorname{argmin} \mathcal{L}_A(q, \lambda^*, \mu)$  if  $\mu \in (0, \bar{\mu}]$
- Introduction of Langrange multipliers avoids the ill-conditioning of quadratic penalty methods since theory tells us we don't need  $\mu_l \to 0$

**Implementation:** There are three nested iterations:

- The Augmented Lagrangian or outer iteration (l)
- $\bullet$  Optimization iteration or inner iteration (k)
- Line Search iteration

#### **Details:**

1.  $q_l = \operatorname{argmin} \mathcal{L}_A(q, \lambda^l, \mu_l)$ 

Use a Projected Line Search with Wolfe Conditions CG computes the search direction  $p_k$  by solving

$$H_{Redk}p_k = -
abla \mathcal{L}_A(q^k,\lambda^l,\mu_l)$$

$$2. \lambda_i^{l+1} = \lambda_i^l - c_i(q_l)\mu_l$$

- 3.  $\mu_{l+1} = s\mu_l$  such that  $\mu_{l+1} < \mu_l$
- 4. Stop when both of the following occur:

$$||P_{[\eta,\infty)}\nabla \mathcal{L}_A(q^k,\lambda^l,\mu_l)|| \le \tau_l$$
  
$$||c_y(q)|| < \epsilon_l$$

**Justification:**  $\mathcal{L}_A$  is constructed so that it satisfies the KKT conditions:

$$abla \mathcal{L}_A = 
abla \mathcal{F} - \left( \lambda^l - rac{c(q)}{\mu_l} 
ight) 
abla c^T(q)$$

So

$$\nabla \mathcal{L}_{A}(q_{l}) = 0$$

$$\implies \nabla \mathcal{F} = \left(\lambda^{l} - \frac{c(q)}{\mu_{l}}\right) \nabla c^{T}(q)$$

$$\implies \lambda^{*} = \lambda^{l} - \frac{c(q)}{\mu_{l}}$$

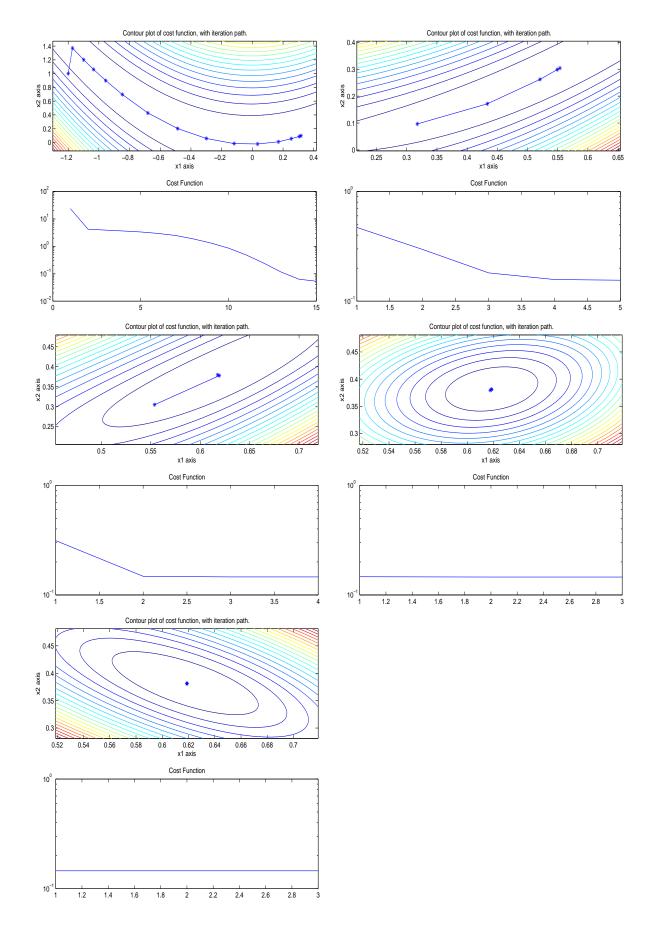


Figure 2: Path of  $\{q_k\}$  for the Augmented Lagrangian Method for l=1,2,3,4 and 5 applied to the Rosenbrock function subject to the constraints that  $x_1 + x_2 = 1$ 

# Numerical Results

#### Problem:

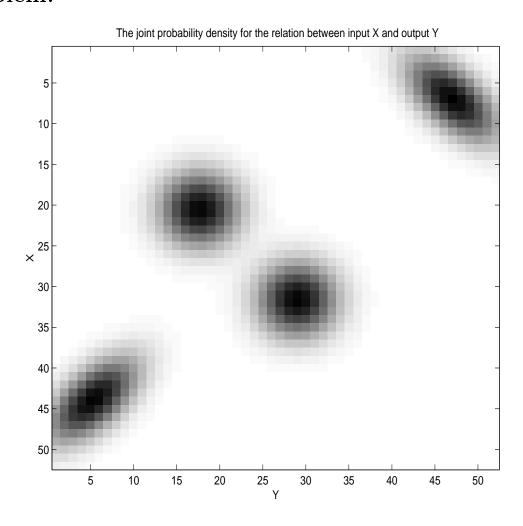


Figure 3: Synthetic Data: The four Blobs

#### **Solution:**

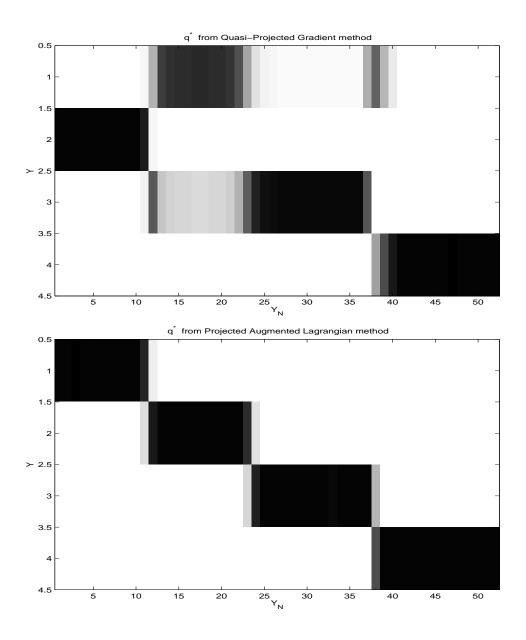


Figure 4: Symmetric solutions

COST ANALYSIS:

TOP:  $4.8 \times 10^8$  flops. BOTTOM:  $5.2 \times 10^{10}$  flops.

NOTE: Standard MATLAB optimization function fmincon:  $5 \times 10^{11}$ 

# Future Goals

- Preconditioned CG
- Apply optimization techniques to

$$\min_{q(y_N|y)} -H(Y_N\mid Y)$$
 constrained by 
$$D_{eff} \geq I_0$$
 
$$\sum_{y_N} q(y_N\mid y) = 1 \quad \forall \ y\in Y$$
 
$$q(y_N\mid y) \geq 0 \quad \forall \ y\in Y \ \text{and} \ \forall \ y_N\in Y_N$$