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The Problem

How does neural ensemble activity represent information about sen-
sory stimuli? What was the environmental stimulus that produced
a given neural sequence?

__— | Encoder >
from Nature Response

Model Assumptions
e Typical sequences in the stimulus and response are known

e The joint probability relating the stimulus and response is known



Information Theoretic Quantities

An quantizer or encoder, (), relates the environmental stimulus,
X to the neural response Y through a process called quantization.
In general, @) is a stochastic map, so that » , Q(y | z) = 1 for each
x.

o e s

The Reproduction space Y is a quantization of X. This can be
repeated: Let Yy be a reproduction of Y. So there is a quantizer

qlyn |y) 1Y = Y

Mutual Information is a measure of the dependence between two
random variables. For X and Yy

I(X,Yy) = ) qlyn | y)p(z, y)log

‘/I/"y’yN

>, qun [ y)p(z,y)
p(z) >, p(W)alyn | y) |

Conditional Entropy is a measure of the self information of a
random variable given another. For Yy given Y

H(Yy|Y) = > py)alyn | y)log (q(yn | v))
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The Model for Neural Coding and Decoding

Problem: It would take an inordinate amount of data to determine
the coding scheme between X and Y.

Model: Consider the problem of determining the coding scheme
between X and Yy, a quantization of Y, such that: Yy preserves
as much mutual information with X as possible and the entropy of
Yn|Y is maximized.

Justification: Jayne’s maximum entropy principle, which states
that of all the quantizers that satisfy a given set of constraints, choose
the one that maximizes the entropy.

Constraints:

e The mutual information D.sr = I(X, Yy) is a measure of how
well Yy represents Y. That is, for a given Yy, we want a quan-
tizer

qyn | y) 1Y = Yy
that preserves as much mutual information from X as possible.

e ¢ is a quantizer = ¢ is a probability density

Model: We have two maximization problems:

max H(Yy | Y) subject to D.ss > Iy and Zq(yN ly) =1

q(ynly) .

Reformulated using Lagrange Multipliers:
max Flg(yx | 9),p) = max (HYn|Y)+5Desr(ayn | 9)))

9(un1y) q(unly
constrained byz qyn | y) = 1.
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The Optimization Problem

We now have two minimization problems:

min —H(Yy |Y) constrained by
9(ynly)
Dery > I

Y qlunly)=1 Vyey

YN

qlyn |y) >0 VYyeY and Vyy €Yy
and

min —F(q(yn | y),8) = min (—=H(Yn[Y) — BDess(q(yn | y)))

a(ynly) a(ynly)
constrained by

Y alun|ly)=1 VyeY

YN

qiyv |y) >0 VYyeY and

We will restrict our attention to F(q) = —F(q(yn | y)|5)



Optimization Overview

What? Compute ¢* = arg min F(q) subject to the constraints.

Why? To quantize Y into an optimal Yy.

¢ ={ alymlyr) qlumly2) alymlys) - qa(ymn|ym)
qymly1) qunely2) a(ymslys) - q(Une|ym)

q(ynyly)  alynyly2)  alynylys) - alynylym)}

where g(yn;|y;) is a probability, “close” to either zero or one, which
determines whether y; belongs to the class yy, in the reproduction
space Y.

How? Use Optimization Techniques to build a sequence {gx}72;
to ¢* such that
e F is decreased: Fj > Fjoq for all k

e global convergence: ||VFi|| — 0 as k — o0

e the constraints are satisfied.

Line Search Techniques can be used to create such a sequence.



Unconstrained Line Search

Goal: Build a sequence {q;}?, of approximates to ¢* such that
Fi > Fpyq for all k and ||VFy|| — 0 as k — oo.

Idea: At g compute q;1 as follows:

1. Compute a search direction p; at g;.

2. Compute the step length

o ~ argmin F(qr + apg).
a>0

3. Define qr11 = qi + ayps.

Computing the Step Length oy

Given the descent direction p; what conditions should we put on a4
so that we achieve the above goal?

e Naive Condition: F(q; + arpr) < F(qx).

e The Wolfe Conditions:
(W1) Flgg + axpr) < Flqr) + aaxVF(gr) ' pr a € (0,1)

(W2) VF(qi + arp) pe > &@VF (@) pr ¢ € (ar,1)

Zoutendijk’s Theorem assures that if V.F is Lipshitz in a neigh-
borhood containing the level set of gy, then line searches satisfying
the Wolfe Conditions meet our goal

8



Computing a Search Direction py

e p;. needs to be a descent direction:

P VF; < 0.

Descent directions and the Associated Methods:

e The direction of steepest descent: pp, = —V F;.
The Steepest Descent Method:
Convergence is linear.

Cost is low.

e The Newton direction: p; = —Hk_lv.i’-"k when H, is SPD.
Newton’s Method:

Convergence is quadratic.
Cost is high.

e The Quasi-Newton direction: p; = —Bk_lv.?-"k when By is SPD.
Quasi-Newton Method:

A compromise.



Contour plot of cost function, with iteration path.
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Figure 1: Numerical Performance of (i) Steepest Descent, (ii) Newton’s Method (iii) Newton

CG applied to the Rosenbrock function for zp;= [-1.2,1]" and z* = [1,1]"



Newton Conjugate Gradient

Problem: Solving Hip, = —V JF; can be expensive.
Goal: For H SPD, efficiently solve Hp = —g

Idea: Create a sequence {p;} which converges to p* = —H !g in
finitely many iterations.

e Our goal is equivalent to minimizing ¢(p) = sp” Hp + g’ p.
e Minimize ¢(p) using a line search:

. . <Vo;_1,d;_1>
Search Direction d; = —V¢,;_; + T‘Jd L ‘”‘21 de—1
J—1H

Step Length 7; = arg mig ¢(p; + 7d;)
T>
S0 pj41 = pj + 7;d;.

Theorem: For any initial py € R", p; — p* in at most n steps.

Steihaug’s Stopping Criteria: Stop the CG iteration when any
of the following occur:

e CG residual ||Hp;+g|| < €, where € denotes stopping tolerance.

e Negative curvature detected, i.e., de d; < 0 (Newton CG for
H not PD).
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Preconditioning

Problem: If cond(H) = 4ma > 1 or if the eigenvalues of H are

not clustered, then it is not economical to use Newton CG to solve
Hp=—g

Reason: Converegnce of {p;} to p* is bounded by:

2j
» d(H)-1 %
L T

o ||psi1 —p¥lr < (Aneg — X)||lpo — p¥|| &

e If eigenvalues occur in r distinct clusters, then Newton CG ap-
proximately solves the system in r steps

Goal: Transform Hp = —g to an equivalent system to improve the
eigenvalue decomposition of H.

Idea: Set p = C'p, for nonsingular positive definite C'. Then the
transformed linear system is

CTHC'p=—-C""1yg
Now, convergence rates depend on the eigenvalues of C~T HC 1. So,
try to choose a preconditioning matriz C such that

e (' is positive definite

e cond(C~THC™!) < cond(H) OR eigenvalues of C~T HC are
clustered

e C!is easily calculated

Why? The system C-THC'p = —C~7Tgq is cheaper to solve.

For F, consider setting C' = HessH (Yn|Y'), a diagonal matrix.
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Constrained /Bent Line Searches

Goal: Build a sequence {q;}?2, of approximates to ¢* such that
Fi > Fp forall k, |[VL|| = 0 as k — oo (= the constraints
{ci(q)} are satisfied)

Idea: At gy, find a search direction py, then “bend” (project) it so
that q;1 remains feasible. That is,

e p; must be a descent direction: V. pj, < 0

e constraints must be satisfied
Vei(q) 'pr, > 0 for inequality constraints
Vei(q)! pr, = 0 for equality constraints

e From ¢*, there can not exist a direction p that satisfies the above
two criteria. That is, for some A > 0

VF(q") = AV¢(q")
Formally, for p* (that satisfies the Linearly Independent Con-

straint Qualification) I that satisfies the Karush- Kuhn- Tucker
or KK'T conditions.

Problem: The projection can be expensive. So bent line searches
work well for simple inequality constraints: g(yy | y) > 0 V y €
Y and V yy €Yy

13



Projected Gradient Method

Idea: Take steepest descent direction: py = g — max(qy — V.Fy, 1)
e Deals with the non-negativity constraints
e Convergence is linear.

e Cost is low

How to deal with the constraint >, q(yn |y)=1 Vy€Y?
e Rewrite F and q(yn | y)77

e Normalize??

14



Projected Newton and Quasi Newton Methods

Idea: Let
pr = —Hgedy ' V.F

where H g4 is the reduced Hessian, a semi-positive definite matrix:

6;; if either ¢;(q) or ¢j(q) are active
|HRedlij =

[HessF|;; otherwise

Why?

Convergence is superlinear

Newton Projection Methods behave like steepest descent on the
active constraints and like Newton/Quasi-Newton Methods
on the inactive constraints. Rewrite:

- —H'VF
pkz—HRedklmzl s ““]

—V Far

How to deal with the constraint >, q(yn |y)=1 Vy€eY?

15



Augmented Lagrangian

Goal: Want a fast, rigorous Quasi-Newton algorithm which takes
into account all the constraints.

Idea: Incorporate the constraint ¢,(q) =1—3_, q(yn | y) into a
new function using penalty terms and explicit Lagrange Multiplier
estimates at each optimization step:

e The new cost function to minimize, the Augmented Lagrangian:
1
Lalg, Ny m) =Flg) = Neylg) + " > eylg)?
y y

deals with >, q(yn |y) =1 VyeyY

e A Projected Newton CG Line Search deals with the non-negativity
constraints

o If ¢* = argminF subject to the constraints {c;(¢)}, then Jj
such that ¢* = argminL 4(q, \*, ) if p € (0, fa

e Introduction of Langrange multipliers avoids the ill-conditioning
of quadratic penalty methods since theory tells us we don’t need
pr — 0

16



Implementation: There are three nested iterations:
e The Augmented Lagrangian or outer iteration (1)
e Optimization iteration or inner iteration (k)

e Line Search iteration

Details:
1. q = argminL 4(q, ', )
Use a Projected Line Search with Wolfe Conditions
CG computes the search direction p; by solving

Hpearpr = =V La(q", N, )
2. X =N = @)
3. 11 = sy such that p1 <

4. Stop when both of the following occur:
||P[77,OO)V£A(qk7 )\la.ul)H <7
lley (@] < &

Justification: £ 4 is constructed so that it satisfies the KK T con-
ditions:

VLy=VF - (Al - %) Vel (q)
So

VEA(ql) =0
— VF = (Al -~ @> Vel (g)

Hi
— A*:)\l—@

Hi
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Contour plot of cost function, with iteration path. Contour plot of cost function, with iteration path.
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Figure 2: Path of {¢;} for the Augmented Lagrangian Method for [=1,2,3, 4 and 5 applied
to the Rosenbrock function subject to the coingtraints that 1 + 2o =1



Numerical Results

Problem:

The joint probability density for the relation between input X and output Y
T T T T T T T T T

Figure 3: Synthetic Data: The four Blobs
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Solution:

q* from Quasi—Projected Gradient method
T T T

0.5

4.5 I I I I I I I
5 10 15 20 25 30 35 40 45 50

YN

q* from Projected Augmented Lagrangian method
T T T T T T

Figure 4: Symmetric solutions

COST ANALYSIS:

TOP: 4.8 x 108 flops.

BOTTOM: 5.2 x 10 flops.

NOTE: Standard MATLAB optimization function fmincon: 5 x 10!
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Future Goals

e Preconditioned CG

e Apply optimization techniques to

min —H(Yy |Y)  constrained by
q(ynly)

Depp 2 1o
Y alun|y)=1 VyeY

YN

glyn |y) >0 VyeY and

21

Vyv € Yy



