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Abstract

We describe an annealing procedure that computes the normalized N -cut of a weighted
graph G. The first phase transition computes the solution of the approximate normalized
2-cut problem, while the low temperature solution computes the normalized N -cut. The
intermediate solutions provide a sequence of refinements of the 2-cut that can be used to
split the data to K clusters with 2 ≤ K ≤ N . This approach only requires specification of
the upper limit on the number of expected clusters N , since by controlling the annealing
parameter we can obtain any number of clusters K with 2 ≤ K ≤ N . We test the algorithm
on an image segmentation problem and apply it to a problem of clustering high dimensional
data from the sensory system of a cricket.
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1 Introduction

There is vast literature devoted to problems of clustering. Many of the clustering
problems can be formulated in the language of graph theory [1–6]. Objects which
one desires to cluster are represented as a set of nodes V of a graph G and the
weight w associated with each edge represents the degree of similarity between
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the two adjacent nodes. After the construction of the graph, a cost function, that
characterizes the putative solution, is minimized to obtain a clustering of the data.

One of the popular choices for image segmentation is the normalized cut (Ncut),
introduced by Shi and Malik [6],

Ncut(A, B) =
links(A, B)

degree(A)
+

links(A, B)

degree(B)
, (1)

where, following Yu and Shi [7]

links(A, B) =
∑

a∈A,b∈B

w(a, b) and degree(A) = links(A, V ).

Here, A and B are subsets of V . While links(A, B) is the total weighted con-
nections from A to B, the degree degree(A) is the total links from A to all the
nodes. For a problem of an optimal partitioning of the vertex set into N clusters
A1, . . . , AN , Yu and Shi [7] define

Ncut({Ai}
N
i ) :=

1

N

N
∑

i=1

links(Ai, V \ Ai)

degree(Ai)
, Nassoc({Ai}

N
i ) :=

1

N

N
∑

i=1

links(Ai, Ai)

degree(Ai)

and show that Ncut({Ai}
N
i=1)+Nassoc({Ai}

N
i=1) = 1. It follows that maximizing

the associations and minimizing the cuts are achieved simultaneously.

As shown by Shi and Malik [6], finding a normal cut even for a bi-partition problem
is NP-complete. However, the approximate solution, the approximate normal cut
can be found efficiently as a second eigenvector of a matrix related to the Laplacian
of the graph G ([9]) after relaxing the discrete problem to a continuous problem.
The advantage of this approximation is that it provides a fast near-global solution.
However, to obtain a solution of the original problem another clustering problem
needs to be solved, usually using heuristics such as K-means [4,6], dynamic pro-
gramming [10], greedy pruning or exhaustive search [6]. A principled way to find
such a solution from the approximate (relaxed) solution was recently formulated
by Yu and Shi [7]. Since the approximate normal cut is closely related to the spec-
tral clustering methods, these methods share the same limitations when applied to
image segmentation of images [8].

Where the spectral graph theory based clustering algorithms provide fast near-
global solutions, the annealing algorithms take a different approach. Here the em-
phasis is on the control of the quality of the solution via a selection of the annealing
parameter. The solution “emerges” gradually as a function of this parameter, rather
then being computed at once [11–13]. A special class of annealing problems in-
volve information distortion type cost functions [15,16,12,13] which have been
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applied to clustering problems in neuroscience, image processing, spectral anal-
ysis, gene expression, stock prices, and movie ratings [14,19,17,18]. A starting
point for these problems is usually a joint probability distribution p(X, Y ) of dis-
crete random variables X and Y , and the goal is to find the clustering of Y into a
predetermined number of classes N that captures most of the mutual information
between X and Y . The membership of the elements y ∈ Y in classes t1, . . . , tN is
described by a conditional probability q(ti|y). The annealing procedure starts at a
homogeneous solution where all the elements of Y belong to all the classes with
the same probability at the value of the annealing parameter β = 0. The parameter
β plays the role of 1/T , where T is the annealing temperature. The algorithm con-
sists of incrementing the value of β, initializing a fixed point search at the solution
value at the previous β and iterating until a solution at the new β is found. Vari-
ous improvements of this basic algorithm are possible [20,16,13]. An alternative
approach is to use agglomeration [21,22] starting at β = ∞ and lowering the value
of β. This approach requires the set of classes at least as large as the cardinality of
Y so that each element of Y belongs to its own class at β = ∞. As β decreases,
the elements of Y aggregate to form classes. Similar ideas have been used in [23]
for fast multi-scale image segmentation.

In this paper we show that the seemingly very different approaches to clustering,
graph-theoretical and information-theoretical, are connected. We will show that
there is an information-like cost function whose solution as β → ∞ solves the
normalized cut problem of an associated graph, and the solution at the first phase
transition solves the approximate (relaxed) normalized 2-cut of the same graph.
Subsequent phase transitions then provide approximate solutions to the normalized
K-cut problem with 2 < K ≤ N , see Figure 1. The value of β at the first phase
transition does not depend on the choice of N . This first set of results unites the
discrete and the relaxed solutions of the normalized N -cut in a unified framework.
Notice, that in these results we start with a joint distribution p(X, Y ) and derive the
graph G for which the N -cut is being computed. We call this a forward problem.

Obviously, the key issue for the applications to computation of the N -cut is to
start with a given graph G and then construct sets X, Y together with a probability
distribution p(X, Y ) in such a way, that the annealing computes N -cut of G. This
constitutes an inverse problem. We solve the inverse problem in section 4. Given
a graph G, the set Y will correspond to the set of vertices, the set X to the set of
edges of G and the distribution p(X, Y ) will be constructed from the edge weights
of G.

This leads to the following algorithm:

(1) Input:
• A graph G with edge weights wij;
• an integer N specifying an upper bound of the expected number of classes;
• δ- a margin of acceptance for class membership.
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Fig. 1. The tangent vector at the first phase transition computes approximate the 2-cut, while
the solution at β = ∞ computes Ncut. The subsequent phase transitions are indicated by
the dotted lines along the primary branch of solutions.

• a terminal value βmax.
(2) Output: Separation of vertices of G into K classes with 2 ≤ K ≤ N .
(3) Algorithm:

• Given the weights wij construct random variables X, Y and the probability
distribution p(X, Y ) (see section 4);

• Starting at value βstart = β∗ and q(η|y) = 1/N + εv, where β∗ and v are
computed in Theorem 2, repeat:
(a) increment β = β + ∆β;
(b) compute a zero of the gradient of the Lagrangian ∇L(q, β + ∆β) (see

(20)).
• Stop, if one of these stopping criteria apply:

(a) for each y there exists a class µ such that q(µ|y) ≥ q(ν|y) + δ for all
classes ν 6= µ;

(b) annealing parameter β reached the terminal value βmax;

Computation of the zero of the Lagrangian can be done in many different ways,
ranging from a fixed point iteration to a Newton method.

The paper is organized as follows. In section 2 we review the approximation that
leads to the approximate normalized cut and introduce the annealing problem. In
section 3 we consider the forward problem and in section 4 we discuss the inverse
problem. We finish the section by a few illustrative examples and in section 6 we
apply our approach to the problem of clustering neural data and an image segmen-
tation problem studied by Shi and Malik [6].
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2 Preliminaries

2.1 Approximate normalized cut

Given a graph G = (V, E) and the weights wij associated with the edge connecting
vertices i and j, we let d(i) =

∑

j w(i, j) be the total connection from node i to all
other nodes. Let n = |V | be the number of nodes in the graph and let D be an n×n
diagonal matrix with values d(i) on the diagonal, and let W be an n×n symmetric
matrix with W (i, j) = wij.

Let x be an indicator vector with xi = 1 if node i is in A and xi = −1 otherwise.
Shi and Malik [6] show that minimizing the normalized 2-cut over all such vectors
x is equivalent to the problem

miny

yT (D − W )y

yTDy
(2)

over all vectors y with y(i) ∈ {1,−b} for a certain constant b and satisfying the
constraint

yTD1 = 0. (3)

If one does not require the first constraint y(i) ∈ {1,−b} and allows for a real
valued vector y then the problem is computationally tractable. The computation
of the real valued vector y, satisfying (2) and (3), is known as the approximate
normalized cut. Given such a real vector y, the bipartition of the graph G can be
achieved by putting all vertices i with y(i) > 0 to class A and all vertices j with
y(j) ≤ 0 to class B. Other ways to associate vertices to the classes A and B based
on the vector y are certainly possible.

The problem (2) with constraint (3) can be further simplified. Following again [6]
consider a generalized eigenvalue problem

(D − W )y = µDy. (4)

Problem (2) is solved by the smallest eigenvalue of (4). However, the smallest
eigenvalue of (4) is zero and corresponds to an eigenvector y0 = 1. This vector
does not satisfy the constraint (3). It can be shown ([6]), that all other eigenvectors
of (4) satisfy the constraint. Therefore the problem (2) with the constraint (3) is
solved by second smallest eigenvector of problem (4).
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2.2 The annealing problem

Given a joint distribution p(X, Y ), where X and Y are finite discrete random
variables, let T be a reproduction discrete random variable with |T | = N . We
will denote the values of T by the Greek letters µ, η, ν, . . . . Let q(η|y) be the
conditional probability q(η|y) = prob(T = η|Y = y). Given q(η|y) we define
p(x, µ) :=

∑

y q(µ|y)p(x, y) and

Z(X, T ) =
1

2 ln 2

∑

x,µ

p(x, µ)

(

p(x, µ)

p(x)p(µ)
− 1

)

, (5)

where the ln denotes the natural logarithm. Consider an annealing problem

maxq(η|y)H(T |Y ) + βZ(X, T ), (6)

where maximization is over the conditional probability q(η|y) and H(T |Y ) =
−
∑

µ,y p(µ, y) log q(µ|y) is the conditional entropy. Here, and for the rest of the
paper, log denotes a base 2 logarithm. Intuitively, states of the random variable
T represent classes, into which we try to cluster members of Y , in a way which
maximizes (6). The assignment of y ∈ Y to η ∈ T is probabilistic with the value
q(η|y).

We describe the details of the annealing algorithm elsewhere [15,16]. We first fix
N the upper bound for the number of clusters we seek. Since (6) is a constrained
optimization problem, we form the corresponding Lagrangian. The gradient of the
Lagrangian is zero at the critical points of (6). For small values of β, that is, for
β ≤ 1 (see Remark 4), the only solution is q(η|y) = 1/N . Incrementing β in small
steps and initializing a zero finding algorithm at a solution at the previous value
of β, we find the zero of the gradient of the Lagrangian at the present value of β.
For many zero finding algorithms, such as the implicit solution method discussed
in [15], the cost of solving (6) is proportional to N ×|X|× |Y |×B, where B is the
number of increments in β. Newton-type zero-finding algorithms need to evaluate
the Hessian of (6), and so the cost in this cases is proportional to N 2×|X|×|Y |2×B.

The function Z has similar properties to the mutual information function I(X, T ) =
∑

µ,x p(x, µ) log p(x,µ)
p(µ)p(x)

([28]), which we view as a function of q(µ|y) in view of
p(x, µ) =

∑

y q(µ|y)p(x, y) and p(µ) =
∑

y q(µ|y)p(y) . Indeed the underlying
functions i(x) := x log x and z(x) := x(x − 1) are both convex, satisfy i(1) =
z(1) = 0 and eventhough i(0) is not defined, the limit limx→0 i(x) = 0 = z(0).
Further, the maximum of both −

∑N
i=1 pi log pi and −

∑N
i=1 pi(pi − 1) on the space

of admissible probability vectors satisfying
∑

i pi = 1 is attained at pi = 1/N . By
Lemma 7 in the Appendix the function Z(X, T ) is a non-negative convex func-
tion of q(η|y). Note that Z(X, T ) shares these important properties with the mutual
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information function I(X, T ). As a consequence, for a generic probability distri-
bution p(X, Y ) the maximizer of

maxq(η|y)Z(X, T ) (7)

is deterministic, i.e. the optimal q(η|y) satisfies q(η|y) = 0 or q(η|y) = 1 for all η
and y. (see Corollary 8 in the Appendix).

3 The forward problem

In this section we show that when annealing (6), the solution of the normalized
N -cut and approximate normalized 2-cut for an associated graph G are connected
by a curve of solutions parameterized by β.

Given a joint distribution p(X, Y ) with X and Y finite discrete random variables we
define the graph G(V, E) in the following way. Each element y ∈ Y corresponds
to a vertex in V and the weight wkl associated with the edge ekl is

wkl :=
∑

x

p(yk|x)p(x, yl). (8)

The next Theorem is one of the key results of this paper. It connects explicitly the
solution of a normalized N -cut problem to a solution of an annealing problem, see
Figure 2.

Theorem 1 Maximization of the function Z(X, T ) with |T | = N over the variables
q(µ|y) solves the maximal normalized association problem with N classes for the
graph G, defined in (8).

Proof. By definition, p(x, µ) =
∑

y q(µ|y)p(x, y). By Corollary 8 at the maxi-
mum we have q(η|y) = 0 or q(η|y) = 1. We will write y ∈ µ whenever q(µ|y) =
1. Then we have p(x, µ) =

∑

y q(µ|y)p(x, y) =
∑

y∈µ p(x, y). Let Z̃(X, T ) :=
2 ln 2Z(X, T ). Then

Z̃(X, T )=−1 +
∑

µ

∑

x

1

p(µ)

p(x, µ)p(x, µ)

p(x)

=−1 +
∑

µ

1

p(µ)

∑

yk,yl∈µ

∑

x

p(yk|x)p(x, yl)

=−1 +
∑

µ

∑

yk,yl∈µ wkl

p(µ)
.
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Before we continue our computation, we observe that a straightforward computa-
tion shows that the numbers wkl have all the properties of the joint distribution on
Y × Y :

∑

k

wkl = p(yl),
∑

l

wkl = p(yk),
∑

k,l

wkl = 1.

From this we get

p(µ) =
∑

yk

q(µ|yk)p(yk) =
∑

yk∈µ

p(yk) =
∑

yk∈µ

∑

l

wkl.

Using this expression for p(µ) we obtain

Z̃(X, T )=−1 +
∑

µ

∑

yk∈µ,yl∈µ wkl
∑

yk∈µ,yl∈V wkl

=−1 +
∑

µ

links(µ, µ)

links(µ, Y )

=−1 + N · Nassoc({µ}N
µ=1)

It follows that the maxima of Z̃(X, T ), and therefore maxima of Z(X, T ), are max-
ima of Nassoc({µ}N

µ=1). 2PSfrag replacements

q(η|y)

1
N

v

0 1 β∗
∞

solution of Ncut
v is the solution of

approximate 2-cut

annealing parameter β

Fig. 2. The tangent vector v at the first phase transition computes approximate 2-cut, while
the solution q(η|y) at β = ∞ computes Ncut. The subsequent phase transitions are indi-
cated by dotted lines along the primary branch of solutions.

Theorem 1 relates the solution of the N -cut problem to the solution of the anneal-
ing problem at β = ∞. We now show that the solution of the approximate 2-cut
problem is associated to the first phase transition of the annealing procedure, see
Figure 2.
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The value β = β∗ where the phase transition occurs can be computed explicitly
from Proposition 3 below. The eigenvector v that solves the relaxed bi-partition
normalized cut problem is used as an initial seed of the annealing procedure at β∗.
This result considerably speeds up the annealing procedure. Standard continuation
algorithms [20,16] can then be used to trace this solution as β increases. Con-
secutive phase transitions then produce approximations of the normalized K-cut
problem for all 2 < K ≤ N .

Theorem 2 The eigenvector v associated with the phase transition at the solution
(q = 1/N , β∗ = 1/λ∗) induces an approximate normalized cut of the graph G. The
value of β∗ and v do not depend on the choice of the number of classes N .

The key step in the proof is the following Proposition. The proof is in the Appendix.

Proposition 3 The phase transition (bifurcation) from the solution q(ν|y) = 1
N

occurs at β∗ = 1
λ∗

in the direction v, where λ∗ is the second eigenvalue of the
matrix R with elements

rlk :=
∑

x

p(yk|x)p(x|yl) (9)

and v is the corresponding eigenvector. The matrix R is independent of the choice
of N .

Remark 4 Since

∑

k

rlk =
∑

x

p(x|yl)
∑

k

p(yk|x) = 1

for every l and so RT is a stochastic matrix. Thus its maximal eigenvalue is 1. As a
consequence no bifurcation can occur for β < 1.

Proof of Theorem 2. We evaluate the matrices D and W in the approximate nor-
malized 2-cut formulation (4) for a graph G. The matrix W is the matrix of weights
of the graph G and therefore it consists of the elements wkl defined in (8). Note that
W is symmetric. The elements of the diagonal matrix D are given by

d(l) :=
∑

k

wkl =
∑

k

∑

x

p(yk|x)p(x, yl) = p(yl)

for all l. The problem (4) turns into the problem of computing the second smallest
eigenvalue µ2 of

(D − W )y = µDy.

Multiplying the by matrix D−1 we arrive at the problem

(I − D−1W )y = µy. (10)
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Since D−1 is the diagonal matrix with elements 1/p(yl) it follows from (8) and (9)
that

D−1W = R.

A straightforward computation shows that (10) is equivalent to

(1 − µ)y = Ry. (11)

Since RT is a stochastic matrix (see Remark 4), it has the largest eigenvalue λ = 1.
By (11) this corresponds to the value µ = 0 in the approximate normalized 2-cut
problem. The second largest eigenvalue, λ2, of R corresponds to the second small-
est eigenvalue, µ2, of the approximate normalized 2-cut problem. Proposition 3
now finishes the proof of the Theorem.

4 The inverse problem

In the previous section we have shown that the solution of the annealing problem (6)
at β = ∞ solves the normalized N -cut problem in a graph G for any predetermined
number N of classes, while from the first phase transition we can recover a solution
of the approximate normalized 2-cut of the same graph G. The edge weights of
the graph G are determined by the joint probability distribution p(X, Y ) and the
number of vertices of G is |Y |.

In this section we aim to solve the inverse problem. Given a graph G, we would like
to determine X and the probability distribution p(X, Y ) such that the annealing
problem will solve the normalized cut for the graph G. More precisely, given a
graph G = (Y, wij) of vertices y1, . . . , yn and a symmetric set of edge weights wij,
we seek to find a set X and a discrete probability distribution p(X, Y ) such that

wij =
∑

x

p(yj|x)p(x, yi). (12)

In other words we seek to split the matrix of weights as a product of a probability
distribution and a conditional probability. If such a random variable X and a distri-
bution p(X, Y ) exist, then we can apply the annealing procedure with the function
H + βZ (see (6)) to compute the normalized and the approximate normalized cuts
of the given graph G.

We present a construction with |X| = n2 and where we assume that wii = 0 for
all i. This does not compromise the applicability of this method to real data since
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usually self-similarities are not taken into account. We denote the elements of X
by xkl; there is one element for each edge in the graph G. Then set

p(xkl, ys) := 2wkl for s = k, l;

p(xkl, ys) := 0 for s 6= k, l; (13)

Then p(xkl) = p(xkl, yk) + p(xkl, yl) = 4wkl for all k, l and

∑

x

p(yk|x)p(x, yl) =
∑

x

p(x, yk)p(x, yl)

p(x)

=
p(xkl, yk)p(xkl, yl)

p(xkl)
=

4w2
lk

4wlk

= wlk.

A legitimate question of performance of the annealing procedure arises when the
joint probability p(X, Y ) has the size n2 × n. In our applications this has not been
an issue, but certainly it would be desirable to find the set X with the least possible
cardinality. Below we provide a condition under which construction of p(X, Y )
with size n × n is possible. When it is not possible to find a set X with |X| = n,
we propose an approximation scheme.

Assume that (12) has a solution with |X| = |Y | = n i.e. there exists a probability
distribution p0 on X×Y satisfying (12). Let P0 be the n×n matrix representing the
distribution p0, such that [P0]ij = p0(xi, yj). Let Q0 be a matrix of the conditional
distribution p0(xi|yj). In the matrix form we have

Q0 = P0D0, (14)

where D0 is a diagonal matrix with the j-th diagonal element 1/p0(yj). Then (12)
is equivalent to the following problem. Given n × n symmetric matrix P1 find a
matrix P0 such that

P1 = QT
0 P0. (15)

As we will see in the next Lemma, this is similar to taking the square root of a
matrix.

Lemma 5 Given a n × n matrix of weights W for a graph G, let P be a scaled
matrix W so that P is a n× n matrix of a probability distribution. Let Q be a con-
ditional probability matrix corresponding to the matrix P . If Q is positive definite,
then the problem (12) has (generically) a solution with |X| = |Y |.
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Proof. Observe that if P1 := P satisfies (15), the corresponding conditional
probability Q1 satisfies

Q1 = P1D1 = QT
0 P0D1,

where D1, as in (14), is a diagonal matrix with the j-th diagonal element 1/p1(yj).
Since P1 satisfies (12) we have

p1(yi) =
∑

j

∑

x

p0(yj|x)p0(x, yi) = p0(yi),

and thus D1 = D0. Therefore Q1 is a square of Q0

Q1 = QT
0 P0D1 = QT

0 P0D0 = QT
0 Q0.

If Q1 = Q is positive definite as assumed, it has a square root Q0 by Gant-
macher [24] . Generically, the matrix Q0 is non-singular. Then P0 = (QT

0 )−1P1

solves the problem (12). 2

Example 6 We show that for a general matrix P1 it is not possible to find the
matrix P0 satisfying (15). This shows that it is not, in general, possible to find X
with |X| = |Y | such that (12) is satisfied. Take the matrix

P1 =







0 1

1 0





 and set P0 =







p11 p12

p12 p22





 .

Then the condition (12) for w12 and w21 reads 0 =
p2
11

p11+p12
+

p2
12

p12+p22
and 0 =

p2
22

p11+p12
+

p2
12

p12+p22
, which implies that P0 must be the zero matrix. Obviously, such a

P0 does not satisfy (12).

Finally, we present an approximate solution for the problem (15). We take

P0 := P1. (16)

With this choice the annealing problem does not compute the normalized cut of a
graph with weights P1, but rather with weights P2 = QT

1 P1 (see (15)) or, in other
words, with weights wlk given by (12) where p(x, y) is given by P1. This choice
computes the normalized cut of an approximation of the given graph G. We discuss
the performance of this approximation in the next section.
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Fig. 3. Annealing on a random graph with 10 vertices and 4 subgraphs with |X| = 100 and
p(X,Y ) given by (13). The horizontal axis is the annealing parameter β and the vertical
axis is the norm of the difference of q and the uniform solution q(η|y) = 1/4. The bot-
tom left panel shows the uniform solution for small β. The bottom right panel shows the
deterministic solution which has clustered each subgraph successfully.

4.1 Illustrative examples

In Figure 3 and Figure 4 we present the results from annealing with two different
distributions p(X, Y ) for a given graph G on 10 vertices.

The graph G has been chosen randomly in the following way. We divide vertices
into 4 groups V1 = {1, 2, 3}, V2 = {4, 5}, V3 = {5, 6}, V4 = {7, 8, 9}. The weights
within groups V1 and V4 are chosen uniformly in [8, 12], within V2 and V3 uniformly
in [6, 10], between V1∪V2 and V3∪V4 uniformly in [0, 4] and, finally, between V1 and
V2 and between V3 and V4 uniformly in [2, 6]. To obtain the probability distribution
P1 these weights are re-scaled.

We denote the set of vertices by Y and we set the reproduction variable |T | = N =
4, which indicates that we want to split the graph into four subgraphs. In Figure 3
we present annealing results with the probability distribution p(X, Y ) described in
(13) which is represented by a 100× 10 matrix. In Figure 4 are results for the same
graph G where we use the approximation (16) and thus p(X, Y ) is represented
by a 10 × 10 matrix. The final clusters are indistinguishable. The time courses of
the annealing procedures are different, however. The first phase transition happens
around β = 1.6 in Figure 3 and around β = 22 in Figure 4. The subsequent phase
transitions, that are well separated in β in Figure 4, are so close together in Figure 3,
that our relatively coarse β step has not detected them. However, by results in [25]
they must exist.

This behavior is not surprising. The main result of section 3 can be expressed in
terms of equation (15) by saying “annealing with p(x, y) given by P0 computes
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Fig. 4. Annealing on the same graph as in Figure 3 with |X| = 10 and p(X,Y ) given by
(16). The bottom left panel shows the uniform solution. The bottom right panel shows the
deterministic solution.

the normalized cut on a graph with weights P1”. The edge weights of a graph G
on 10 vertices determine directly a 10 × 10 matrix of weights P1. In Figure 3 we
anneal with p(X, Y ) given by P0 and thus are computing the normalized cut on
the graph G, while in Figure 4 we anneal with p(X, Y ) given by P1 and thus the
normalized cut of a graph with weights P2 := QT

1 P1. Intuitively, the weights P2 are
more homogeneous than those of P1. Indeed, the condition (12) gives elements w2

ij

of P2 in terms of the elements w1
ij of P1 as

w2
ij :=

∑

k

p(yj, yk)p(yk, yi)

p(yk)
=
∑

k

w1
jkw

1
ki

w1
k

where w1
k :=

∑

i wik. Therefore the weight w2
ij of the i → j edge is proportional to

a product of weights along any path with two edges joining i and j in P1. It follows
that the embedded clusters in the graph with P2 weights will be less prominent than
in the graph with P1 weights and thus it will take longer for the annealing procedure
to resolve them. This explains why the first phase transition occurs later in Figure 4.

The panels on the bottom of the Figures 3 and 4 indicate the behavior of the prob-
abilistic assignment q(η|y) as a function of β. The vertical axis has four values
indicating the assignment to different classes, the horizontal axis has 10 values in-
dicating vertices of the graph. Dark color indicates high probability, light color low
probability. For small values of β (high temperature) all vertices belong to all four
groups with probability 1/4 (lower left panel of Figure 4). As β increases, vertices
split into two groups (second panel of Figure 4); vertices in V1 ∪ V2 belong with
high probability to classes 1 and 4; vertices in V3 ∪ V4 belong with high probability
to classes 2 and 3. Following two additional phase transitions, one arrives at the
last panel, where every planted group Vi has probability close to 1 to belong to a
distinct class. Separation into four subgraphs has been completed.
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5 Application to image segmentation

We have applied our approach to an image segmentation problem. The approximate
Ncut problem is closely related to spectral clustering, since it is computed by the
second eigenvector of (4) and the matrix (D−W ) is the graph Laplacian. Therefore
it inherits all the advantages and limitations of applying spectral clustering to image
segmentation [4,8]. The main advantage is ease of computation; we briefly discuss
some limitations below.
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Fig. 5. The image segmentation problem. A. The original, B. subsampled 80 × 100 image.

To compare our approach with spectral clustering employed by Shi and Malik [6],
we segmented the same image, see Figure 5.A. Since this image has 135000 pixels,
we follow Shi and Malik and sub-sampled the image to get a 80 × 100 image in
(Figure 5.B). To segment the image we construct a graph G = (V, E) by taking
each pixel as a node and define the edge weight wij between node i and j as a the
product of a feature similarity and a spatial proximity term:

wij == e
−

(

I(i)−I(j)
σI

)2

× H(e
−

(

X(i)−X(j)
σX

)2

),

where I(j) = ι(i)
255

is the normalized intensity, while ι(i) ∈ {0, 1, . . . , 255} is the
raw intensity of pixel i. The function H is the identity when |X(i) − X(j)| < 5
and zero otherwise and is used to favor close spatial proximity of pixels. As in
Shi and Malik’s paper, we take σI = .1 and σX = 4. In agreement with (16) we
view the symmetric matrix of weights P = [wij], after approximate scaling, as a
joint probability distribution p(X, Y ) with discrete random variables |X| = |Y | =
80 × 100 = 8000, the number of pixels in the image. With this joint probability
we performed annealing with the function (6) by incrementing the value of β. We
have done this in two ways. The first way, which we call a (2 × 2) clustering, we
choose initially to cluster into two classes (the reproduction variable |T | = 2), see
Figure 6.

After annealing to β = 1.5 at which point the classes are well separated, we then
took each class separately and split it again to two classes, see Figure 7. This proce-
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Fig. 6. The segmentation induced by the best 2-cut at β = 1.5.
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Fig. 7. The segmentation induced by the best (2 × 2) cut at β = 1.5.

dure most closely resembles the recursive cut of Shi and Malik [6]. They performed
two additional optimization steps after computing the second smallest eigenvector.

First, they optimize the threshold which splits eigenvector values into two groups
to compute maximal Ncut. Secondly, they ignore all eigenvectors that are varying
continuously and thus would produce an unstable cut. Presumably, if they chose to
ignore the eigenvector corresponding to the second smallest eigenvalue, they take
the eigenvector corresponding to the third eigenvalue to make the cut. In their paper,
this procedure is called a stability analysis.

The advantage of our method is that we can avoid recursive clustering and directly
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cluster into four classes. We set the number of classes to 4 (that is, the reproduction
variable |T | = 4) and again perform the annealing with the function (6). The results
are in Figure 8.

Before we compare the results for (2 × 2) and 4-way clustering, we mention the
inherent limitations of the spectral clustering method for the image segmentation
problem. Since images are two dimensional, the graphs obtained by equating pixels
with nodes and selecting weights that respect the spatial proximity, have a stereo-
typical structure. As a consequence, the lowest cut may be associated more with
the shortest path joining edges of the image, rather than with the split between two
image segments. Eigenvalues of the graph Laplacian [9] will reflect such cuts. For
a review of these issues as well as a proposed solution, see [8]. Furthermore, for the
images that are difficult to segment (Figure 5.B) the eigenvalues of the Laplacian
will be clustered around the second smallest eigenevalue and some of the eignevec-
tors will be “unstable” in the language of Shi and Malik, that is, smoothly varying.
This problem was noticed by [4,8] and they advocate the use of a subspace corre-
sponding to the set of eigenvectors for further processing the image. The ambiguity
in selection of the correctly segmenting eigenvector is reflected in our computation
as well. As we have shown in the first part of the paper, the bifurcating branches
coming out of q = 1/2 (in (2 × 2) annealing) and q = 1/4 ( in 4-way annealing)
start in the direction of the eigenvector of the graph Laplacian. Since there are many
of these eigenvectors closely spaced together, there are many branches bifurcating
closely together. Since the continuation algorithm introduces a small error, we may
land on a different branch when we repeat the annealing with the same initial value.

We have run the algorithm repeatedly and explore the different branches of solu-
tions all the way to β = 1.5. We then selected the best segmentation based on the
value of the optimized function (6). For the 4-way cut the value of the function
(6) on the best branch is 3.223 and its Ncut value is 0.0079, while for the 2 × 2
cut the value of (6) is 2.9896 and the Ncut value is 0.0093. In fact, we have found
20 slightly different 4-cuts which correspond to different branches of solutions to
6) and the range of the values of the cost function at β = 1.5 was [3.1283, 3.223]
while for the 2 × 2 cut the range of the function values among 16 branches was
[2.9622, 2.9896]. So even the worst 4-cut was better than the best 2 × 2 cut. Also
notice that the Ncut value 0.0079 of the best 4-way cut is substantially lower then
Ncut value 0.0093 of the best 2 × 2 cut. The reported Ncut value of 0.04 for the
7-way cut using recursive 2-way partitioning by Shi and Malik [6] is an order of
magnitude larger. However, since the value of a 7-cut is expected to be larger then
that for the 4-cut and we may have used different subsampling algorithms to obtain
Figure 5.B, the direct quantitative comparison between these two results may not
be appropriate.
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Fig. 8. The segmentation induced by the best 4-way cut solution at β = 1.5

6 Application to data from a sensory system

A fundamental problem in neurobiology is to understand how ensembles of nerve
cells encode information. The inherent complexity of this problem can be signifi-
cantly reduced by restricting analysis to the sensory periphery, where it is possible
to directly control the input to the neural system. Complexity is further reduced by
focusing on relatively simple systems such as invertebrate sensory systems, where
a large proportion of the information available to the organism is transmitted by
single neurons. We will try to discover such a sensory system’s encoding scheme,
which we define as a correspondence between the sensory input the neuron receives
and the (set of) spike train (s) it generates in response to this input. We note that
this correspondence is probabilistic in nature; repeated presentations of a single
stimulus input will elicit variable neural outputs, and a single neural output can be
associated with a range of different stimuli.

We have analyzed data from the cricket cercal system, from the interneuron des-
ignated IN 9-2a in the terminal abdominal ganglion [26]. The neuron was stimu-
lated by a band-limited white noise stimulus, which was presented to the cricket
through a custom air-flow chamber [14]. The response of the neuron was recorded
intra-cellularly. From the 10 minute continuous recording a set of responses was
collected by selecting all inter-spike intervals of 50 ms or less in duration. We en-
forced a silent prefix to the responses, such that no spike occurred in the 20 ms
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Fig. 9. Annealing on a similarity graph of patterns from the cercal sensory system of a
cricket.

preceding the start of a response. The corresponding set of stimuli were formed by
taking an 80 ms long interval starting 40 ms before the first spike in the response
event. Therefore the data form a collection of pairs of intervals, one from the stim-
ulus set and one from the response set. Since the sampling frequency of the input
is 10 points per millisecond (10 kHz) and there are two spatial dimensions for the
stimulus [14], the stimulus set lies in 1600 dimensional space. The response set lies
in 800 dimensional space, and is parameterized by a single parameter which is the
inter-spike interval length. We view each data point as a pair of stimulus and its cor-
responding response. We want to cluster these points to discover the ”codewords”;
that is, consistent classes in the stimulus-response space.

We employed a method of random projections, described in [27], to compute a sim-
ilarity matrix between the data points. This yields a weighted graph G where each
vertex represents a data point (x, y) with x a stimulus and y the corresponding re-
sponse. The weight associated to the edge connecting vertices (x1, y1) and (x2, y2)
is computed as the frequency of these two data points being projected to the same
cluster under a series of random projections. A rescaled collection of these weights
forms a matrix P1 that has been described in section 4. We chose the approximation
(16) to solve the inverse problem and set X := Y and p(X, Y ) := P1.

We then applied our annealing algorithm to this joint probability. The results are
shown in Figure 9 and Figure 10. As in Figure 3 the phase transitions from one to
two, and two to three classes are so close together in the parameter β that we could
not find them numerically. Since by Remark 4 the first phase transition cannot occur
for β < 1, in practical applications one may have to anneal only for a very small
range of β, see Figure 9. In Figure 10 we graph the projection of clusters to the
response set Y . The first spike in the pattern always happens at t = 0. The second
spike is colored according to the cluster it belongs to. This clustering has clear
biological interpretation: inter-spike interval length is the important feature of the
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Fig. 10. Projection of the clusters to the response space and graphed according to the in-
ter-spike intervals. The first spike of the response codeword always happens at time 0, and
the second spike of the response is colored according to the class the inter-spike interval be-
longs to. The vertical axis is the frequency and the horizontal axis is the inter-spike interval
length.

output set.

7 Conclusions

In this paper we show the seemingly very different approaches to clustering, graph-
theoretical and information-theoretical, are connected. We have shown that there is
an information-like cost function whose solution as β → ∞ solves normalized cut
problem of an associated graph, and the solution at the first phase transition solves
the approximate (relaxed) normalized 2-cut of the same graph. Subsequent phase
transitions then separate approximate solutions to the normalized K-cut problem
with 2 < K ≤ N . The first phase transition does not depend on the choice of N .

Based on these results we propose an algorithm that, starting with an arbitrary graph
G with n vertices, controls the quality and the number of computed clusters K in
G for 2 ≤ K ≤ N . The first step in this process is the construction of the random
variables X , Y and the joint probability p(X, Y ). We provide a general algorithm
which computes p(X, Y ) with |X| = n2 and |Y | = n from the edge weights of
the graph G. Although we show that the appropriate p(X, Y ) with |X| = n and
|Y | = n does not always exist, we provide a sufficient condition for its existence.
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We also use an approximation with |X| = n and discuss its performance on several
examples. This approximation computes a normalized N -cut for a closely related
graph G′ whose weights are “smoothed out” versions of the weights of G.

We tested our algorithm on an image segmentation problem and obtained results
that compare favorably with those in Shi and Malik [6]. We also applied the algo-
rithm to a problem of clustering high dimensional data from the sensory system of
a cricket.

8 Appendix

Lemma 7 1. Z(X, T ) ≥ 0.

2. The function Z(X, T ) is a convex function of q(η|y).

Proof: To prove the first statement, we observe that x − 1 ≥ log x. Therefore from
(5) and the definition of mutual information ([28]) we get

Z(X, Y ) ≥ I(X, Y ) ≥ 0.

We will indicate the main steps in the proof of convexity of Z(X, T ), since the proof
follows closely the convexity argument for mutual information I(X, T ) in [29].
Since the function f(t) = t(t − 1) is strictly convex, one can show using Jensen’s
inequality [28] that

n
∑

i=1

ai(
ai

bi

− 1) ≥ (
n
∑

i=1

ai)(

∑n
i=1 ai

∑n
i=1 bi

− 1) (17)

non-negative numbers, a1, a2, ..., an and b1, b2, ..., bn; with equality if and only if
ai

bi
=constant. In analogy to Kullback-Leibler distance [28] we set

Z(p||q) =
∑

x

p(x)(
p(x)

q(x)
− 1).

Then our function Z(X, T ) can be written as Z(X, T ) = 1
2 ln 2

Z(p(x, µ)||p(x)p(µ)).
Applying (17) one can show that the function Z(p||q) is convex in the pair (p, q),
i.e., if (p1, q1) and (p2, q2) are two pairs of probability mass functions, then for some
real λ,

Z(λp1 +(1 − λ)p2||λq1 + (1 − λ)q2) ≤ λZ(p1||q1)

+ (1 − λ)Z(p2||q2). (18)
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The last step is to show that the Z(X, T ) is a convex function of q(η|y). Fix p(x)
and consider two different conditional distributions q1(µ|x) and q2(µ|x). The corre-
sponding joint distributions are p1(x, µ) = p(x)q1(µ|x) and p2(x, µ) = p(x)q2(µ|x),
and their respective marginals are p(x), p1(µ) and p(x), p2(µ). Consider a condi-
tional distribution

qλ(µ|x) = λq1(µ|x) + (1 − λ)q2(µ|x)

that is a mixture of q1(µ|x) and q2(µ|x). Then the corresponding joint distribution
pλ(x, µ) = λp1(x, µ) + (1 − λ)p2(x, µ), and the marginal distribution of Y , pλ =
λp1(µ)+(1−λ)p2(µ) are both corresponding mixtures. Finally, if we let qλ(x, µ) =
p(x)pλ(µ) we have qλ(x, µ) = λq1(x, µ)+(1−λ)q2(x, µ) as well. Since Z(X; T ) =

1
2 log 2

Z(pλ(x, µ)||qλ(x, µ)) and the function Z(pλ||qλ) is convex (see 18), it follows
that the function Z(X; T ) is convex function of q(η|y) for a fixed p(x). 2

Corollary 8 For a generic probability distribution p(X, Y ) the maximizer of

maxq(η|y)Z(X, T )

is deterministic, i.e. the optimal q(η|y) satisfies q(η|y) = 0 or q(η|y) = 1 for all η
and y.

Proof. By Theorem 4 of [15], this is a consequence of the convexity of Z. 2

Proof of Proposition 3. Let

F (q, β) := H(T |Y ) + βZ(X, T ).

Recall that the vector of conditional probabilities q = q(t|y) satisfies
∑

η

q(η|y) = 1 for all y. (19)

These equations form an equality constraint on the maximization problem (6) giv-
ing the Lagrangian

L(q, ξ, β) = F (q, β) +
|Y |
∑

k=1

ξk





N
∑

µ=1

q(µ|yk) − 1



 , (20)

which incorporates the vector of Lagrange multipliers ξ, imposed by the equality
constraints (19).

Maxima of (6) are critical points of the Lagrangian i.e. points q where the gradient
of (20) is zero. We now switch our search from maxima to critical points of the

22



Lagrangian. We reformulate the optimization problem (6) as a system of differential
equations under a gradient flow,







q̇

ξ̇





 = ∇q,ξL(q, ξ, β). (21)

The critical points of the Lagrangian are the equilibria of (21) since those are places
where the gradient of L is equal to zero. The maxima of (6) correspond to those
equilibria for which the Hessian ∆F , is negative definite on the kernel of the Jaco-
bian of the constraints [30,25].

As β increases from 0, the solution q(η|y) is initially a maximum of (6). We are
interested in the smallest value of β, say β = β∗, where q(η|y) ceases to be a
maximum. This corresponds to a change in the number of critical points in the
neighborhood of q(η|y) as β passes through β = β∗. The necessary condition for
such a phase transition (bifurcation) is that some eigenvalue of the linearization of
the flow at an equilibrium crosses the imaginary axis [31]. Therefore we need to
consider eigenvalues of the (N |Y |+ |Y |)×(N |Y |+ |Y |) Hessian ∆L. Since ∆L is
a symmetric matrix, a bifurcation can only be caused by a real eigenvalue crossing
the imaginary axis, and therefore we must find the values of (q, β) at which ∆L is
singular.

The form of ∆L is simple:

∆L =





























B1 0 . . . I

0 B2 . . . I
...

...
...

...

0 . . . BN I

I I . . . 0





























,

where I is the identity matrix and Bi is

Bi :=
∂2L

∂q(µi|yk)∂q(µi|yl)
=

∂2F

∂q(µi|yk)∂q(µi|yl)
.

The block diagonal matrix consisting of all matrices Bi represents the second
derivative matrix (Hessian) of F .

It is shown in [25] that, generically, there are two types of bifurcations: the saddle-
node in which two equilibria appear simultaneously, and the pitchfork-like bifur-
cations, where new equilibria emanate from an existing equilibrium. Furthermore,
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the first kind of bifurcation corresponds to a value of β and q where ∆L is sin-
gular, but ∆F is non-singular; the second kind of bifurcation happens at β and q
where both ∆L and ∆F are singular. Since at the bifurcation off of q(η|y) = 1/N
a new branch emanates from an existing branch, we need only investigate when the
eigenvalues of the smaller Hessian ∆F are zero. We solve the system

∆Fw = (∆H(T |Y ) + β∆Z(X, T ))w = 0 (22)

for any nontrivial vector w. We rewrite (22) as an eigenvalue problem

(−∆H(T |Y ))−1∆Z(X, T )w =
1

β
w. (23)

Since this matrix ∆F is block diagonal with blocks Bi, i = 1, . . . , N and by sym-
metry [25] at q(η|y) all the blocks Bi are identical, we will from now on only
compute with one diagonal block B := Bi.

Lemma 9 Let Z(X, T ) be defined as in (5) with |T | = N . Then the one diagonal
block of ∆Z, evaluated at q(η|y) = 1/N , is

∆Z(X, T ) =
N

ln 2

∑

x

p(x, yk)p(x, yl)

p(x)
− p(yk)p(yl)

The Hessian of H(T |Y ) at q(η|y) is

∆H(T |Y ) = −
Np(yk)

ln 2
.

Proof. Straightforward calculation shows that the (ν, k) element (∇Z)νk of the
gradient of Z is

1

2 ln 2

∑

x

(
2p(x, yk)p(x, ν)

p(x)p(ν)
−

p(x, ν)2p(yk)

p(ν)2p(x)
− p(x, yk)).

Differentiating such an element with respect to q(µ|yl) yields a (µ, l), (ν, k) element
of the second derivative matrix ∂2Z

∂q(µ|yl)q(ν|yk)

1

2 ln 2

∑

x

2δνη(
p(x, yk)p(x, yl)

p(x)p(ν)
−

2p(x, ν)(p(x, yk)p(yl)

p(x)p(ν)2

−
p(x, ν)p(x, yl)p(yk)

p(x)p(ν)2
+

2p(x, ν)2p(yl)p(yk)

p(ν)3p(x)
)
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We evaluate expressions p(x, ν) and p(ν) at q(ν|y) = 1
N

to get p(x, ν) = 1
N

p(x)
and p(ν) = 1

N
. Therefore at q(µ|y) = 1

N
we have

∆Z(X, T ) =
N

ln 2
δνη(

∑

x

p(x, yk)p(x, yl)

p(x)
) − p(yk)p(yl), (24)

where δνη = 1 if and only if ν = η. For the computation of ∆H(T |Y ) see ([32]).

2

Since ∆H(T |Y ) is diagonal, we can explicitly compute its inverse as well as the
diagonal block U of the matrix

(−∆H(T |Y ))−1∆Z(X, T ).

Using Lemma 9 we get that the (l, k)th element of U at q(η|y) = 1/N is

ulk :=
∑

i

p(xi, yk)p(xi, yl)

p(xi)p(yl)
− p(yk)

=
∑

i

p(yk|xi)p(xi|yl) − p(yk).

We observe that the matrix B can be written as B = R − A, where the (l, k)th

element of R is

rlk :=
∑

i

p(yk|xi)p(xi|yl), (25)

and alk := p(yk). Therefore the problem (23) becomes

(R − A)w = λw. (26)

Let 1 be a vector of ones in RN . We observe that

A1 = 1

and the l-th component of R1

[R1]l =
∑

k

∑

i

p(yk|xi)p(xi|yl)

=
∑

i

p(xi|yl)
∑

k

p(yk|xi)

=
∑

i

p(xi|yl)

= 1.
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Therefore we obtain one particular eigenvalue-eigenvector pair (0, 1) of the eigen-
value problem (26)

(R − A)1 = 0

Since the eigenvalue λ corresponds to 1/β, this solution indicates bifurcation at
β = ∞. We are interested in finite values of β.

Lemma 10 Let 1 = λ1 ≥ λ2 ≥ λ3 . . . λ|Y | be eigenvalues of a block of the ma-
trix R. Then the solution q(η|y) ceases to be a maximum at β = 1

λ2
. The corre-

sponding eigenvector to λ2 (and all λk for k ≥ 2) is perpendicular to the vector
p := (p(y1), p(y2), . . . , p(yn))T .

Proof. We note first that the range of the matrix A is the linear space consisting
of all multiples of the vector 1 and the kernel is the linear space

W := {w ∈ RN | 〈p,w〉 = 0},

where p = (p(y1), . . . , p(yn)) and 〈·, ·〉 denotes the dot product.

We now check that the space W is invariant under the matrix R which means that
RW ⊂ W . It will then follow that all eigenvectors of R − A, apart from 1, belong
to W and are actually eigenvectors of R. So assume w = (w1, . . . , wN) ∈ W ,
which means

∑

k

wkp(yk) = 0.

We compute the l-th element [Rw]l of the vector Rw

[Rw]l =
∑

k

∑

i

p(yk|xi)p(xi|yl)wk.

The vector Rw belongs to the space W if, and only if, its dot product with p is
zero. We compute the dot product

Rw · p=
∑

l,i,k

p(yk|xi)p(xi|yl)wkp(yl)

=
∑

i,k

p(yk|xi)wk

∑

l

p(xi|yl)p(yl)

=
∑

k

wk

∑

i

p(yk|xi)p(xi)

=
∑

k

wkp(yk)
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and the last expression is zero, since w ∈ W .

This shows that all other eigenvectors of R−A, apart from 1, belong to W and are
eigenvectors of R. Since bifurcation values of β are reciprocals of the eigenvalues
λi, the result follows. 2

Acknowledgements

The work of T. G. was partially supported by NSF-BITS grant 0129895, NIH-
NCRR grant PR16445, NSF/NIH grant W0467 and NSF-CRCNS grant W0577.
The work of C.C. was partially supported by the Summer Undergraduate Research
Program sponsored by IGERT grant NSF-DGE 9972824 and the Undergraduate
Scholars Program at MSU-Bozeman. We would like to thank Aditi Baker for pro-
viding us with the similarity matrix used in section 5.1 and John P. Miller for his
support of this project.

References

[1] B. Everitt, Cluster Analysis, Oxford University Press 1993.

[2] B. Mirkin, Mathematical Classification and Clustering, Kluwer Academic Publishers,
1996.

[3] Z. Wu and R. Leahy, An optimal graph theoretic approach to data clustering: Theory
and its applications to image segmentation, IEEE Trans. on Pattern Analysis and
Machine Intelligence 15(11), (1993) 1101-1113.

[4] A. Y. Ng, M. Jordan and Y. Weiss, On spectral clustering: Analysis and an algorithm,
Advances in Neural Information Processing Systems, MIT Press, vol. 14, 2002.

[5] Y. Weiss, Segmentation using eigenvectors: a unifying view, International Conference
on Computer Vision: 975-982 1999.

[6] J. Shi and J. Malik, Normalized cuts and image segmentation, IEEE Trans. Pattern
Analysis and Machine Intel., 22(8), (2000) 888-905.

[7] S. X. Yu and J. Shi, Multiclass spectral clustering, International conference on
Computer Vision 2003, 11- 17.

[8] D. Tolliver and G. L Miller, Graph partitioning by spectral rounding: applications to
image segmentation and clustering, pp. 1053-1060, 2006 IEEE Computer Society
Conference on Computer Vision and Pattern Recognition - Volume 1 (CVPR’06),
2006.

[9] F. R. K. Chung, Spectral Graph Theory, Providence, RI: Amer. Math. Soc., 1997.

27



[10] C. J. Alpert and A. B. Kahng, Multiway partitioning via geometric embeddings,
orderings and dynamic programming, IEEE Transactions on Computer-aided Design
of Integrated Circuits and Systems, 14(11), (1995)1342-58.

[11] R. Durbin, R. Szeliski and A. Yuille, An analysis of the elastic net approach to the
travelling salesman problem, Neural Computation 1 (3),(1989), 348-358.

[12] K. Rose, Deterministic Annealing for clustering, compression, classification,
regression, and related optimization problems, Proc. IEEE 86(11), (1998) 2210-2239.

[13] N. Tishby, F. Pereira and W. Bialek, The Information Bottleneck Method,
Proceedings of The 37th annual Allerton conference on communication, control and
computing,University of Illinios, 1999.

[14] A. Dimitrov, J. Miller, T. Gedeon, Z. Aldworth and A. Parker, Analysis of neural
coding using quantization with information-based distortion function, Network 14,
(2003) 369-383.

[15] T. Gedeon, A. Parker and A. Dimitrov, Information distortion and neural coding,
Canadian Applied Math. Q. 10-1, (2003),33-69.

[16] A. Parker, T. Gedeon and A. Dimitrov, Annealing and the rate distortion problem,
Advances in Neural Information Processing Systems, MIT Press, vol. 15, 2003.
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