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ABSTRACT

The goal of this thesis is to solve a class of optimization problems which origi-
nate from the study of optimal source coding systems. Optimal source coding sys-
tems include quantization, data compression, and data clustering methods such as
the Information Distortion, Deterministic Annealing, and the Information Bottleneck
methods. These methods have been applied to problems such as document classifi-
cation, gene expression, spectral analysis, and our particular application of interest,
neural coding. The class of problems we analyze are constrained, large scale, non-
linear maximization problems. The constraints arise from the fact that we perform
a stochastic clustering of the data, and therefore we maximize over a finite condi-
tional probability space. The maximization problem is large scale since the data sets
are large. Consequently, efficient numerical techniques and an understanding of the
bifurcation structure of the local solutions are required. We maximize this class of
constrained, nonlinear objective functions, using techniques from numerical optimiza-
tion, continuation, and ideas from bifurcation theory in the presence of symmetries.
An analysis and numerical study of the application of these techniques is presented.



1

CHAPTER 1

INTRODUCTION

The goal of this thesis is the solution of a class of optimization problems which
originate from the study of optimal source coding systems. A problem in this class is
of the form

max
q∈∆

(G(q) + βD(q)) (1.1)

where β ∈ [0,∞), ∆ is a subset of <n, the usual n dimensional vector space on the
reals, and G and D are sufficiently smooth real valued functions.

Source coding systems are those which take a set of K objects, Y = {yi}K
i=1,

and represent it with a set of N < K objects or classes, YN = {νi}N
i=1. Examples

include data compression techniques (such as converting a large bitmap graphics file
to a smaller jpeg graphics file) and data classification techniques (such as grouping
all the books printed in 2002 which address the martial art Kempo). Both data
compression and data classification techniques are forms of data clustering methods.
Some stipulations that one might require of any such method is that the clustered
data, {νi}, represents the original data reasonably well, and that the implementation
of the method runs relatively quickly.

Rate Distortion Theory [17, 35] is a mathematical framework which rigourously
defines what we mean by ”representing the original data reasonably well” by defining
a cost function, D(Y, YN), called a distortion function, which measures the difference
between the original data Y and the clustered data YN . Once one has a distortion
function, and a data set, the method of Deterministic Annealing (DA) [61] is an algo-
rithm that could be implemented to cluster the data quickly. The DA method is an
approach to data clustering which has demonstrated marked performance improve-
ments over other clustering algorithms [61]. The DA method actually allows for a
stochastic assignment of the data {yi}K

i=1 to the clusters {νi}N
i=1. That is, the data

yj belongs to the ith cluster νi with a certain probability, q(νi|yj). Observe that we
may view q as a vector in some subspace ∆ of <NK . The subspace ∆ is the space of
valid discrete conditional probabilities in <NK . The DA algorithm finds an optimal
clustering, q∗, of the data by maximizing the level of randomness, called the entropy
H(q, C), at a specified level of distortion, D(q, C) = D(Y, YN). We have written H
and D as functions of q and of the centroids of the clusters C = {ci}N

i=1, where ci is
the centroid (or mean) of cluster νi. This optimization problem can be written as

maxC,q∈∆ H(q, C) constrained by (1.2)

D(q, C) ≤ D0,

where D0 > 0 is some maximum distortion level.
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The Information Distortion method [22, 20, 29] uses the DA scheme to cluster
neural data Y = {yi}K

i=1 into classes {νi}N
i=1 to facilitate the search for a neural coding

scheme in the cricket cercal sensory system [29, 25, 24]. The neural coding problem,
which we will describe in detail in the next section, is the problem of determining the
stochastic correspondence, p(X, Y ), between the stimuli, X = {xi}, presented to some
sensory system, and the neural responses, Y = {yi}, elicited by these stimuli. One of
the major obstacles facing neuroscientists as they try to find a coding scheme is that
of having only limited data [37]. The limited data problem makes a nonparametric
determination of p(X, Y ) impossible, and makes parametric estimations (using, say,
Poisson or Gaussian models, which we describe in the next section) tenuous at best.
For example, it is extremely difficult to estimate the covariance matrix CX,Y when
fitting a Gaussian model to neural data. One way to make parametric estimations
more feasible is to optimally cluster the neural responses into classes {νi}, and then
to fit a Gaussian model to p(X|ν) for each class ν. This yields p(X, YN), by

p(X = x, YN = ν) = p(x|ν)p(ν),

which is an approximation to p(X,Y ). This is the approach used by the Information
Distortion method to find a neural coding scheme [29, 25, 24]. The optimal clustering
q∗(YN |Y ) of the neural responses is obtained by the Information Distortion method
by solving an optimization problem of the form

maxq∈∆ H(q) constrained by (1.3)

DI(q) ≤ D0

where D0 > 0 is some maximum distortion level, and the distortion function DI is
the information distortion measure. Before explicitly defining DI , we first explain the
concept of the mutual information between X and Y , denoted by I(X; Y ), which is
the amount of information that one can learn about X by observing Y (see (2.4) for
an explicit definition). The information distortion measure can now be defined as

DI(q) = I(X; Y )− I(X; YN).

Thus, if one were interested in minimizing DI , one must assure that the mutual
information between X and the clusters YN is as close as possible to the mutual
information between X and the original space Y . Since I(X,Y ) is a fixed quantity,
then if we let Deff := I(X,YN), the problem (1.3) can be rewritten as

maxq∈∆ H(q) constrained by

Deff (q) ≥ I0

where I0 > 0 is some minimum information rate. Using the method of Lagrange
multipliers, this problem can be rewritten as

max
q∈∆

(H(q) + βDeff (q)) , (1.4)
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for some β ∈ [0,∞), which is of the form given in (1.1).
As we have seen, Rate Distortion Theory provides a rigorous way to determine

how well a particular set of clusters YN = {νi} represents the original data Y = {yi}
by defining a distortion function. The basic question addressed by Rate Distortion
Theory is that, when compressing the data Y , what is the minimum informative
compression, YN , that can occur given a particular distortion D(Y, YN) ≤ D0 [17]?
This question is answered for independent and identically distributed data by the
Rate Distortion Theorem, which states that the minimum compression is found by
solving the minimal information problem

minq∈∆ I(Y ; YN) constrained by (1.5)

D(Y ; YN) ≤ D0

where D0 > 0 is some maximum distortion level.
The Information Bottleneck method is a clustering algorithm which has used

this framework for document classification, gene expression, neural coding [64], and
spectral analysis [70, 78, 69]. The information distortion measure DI is used, so that
an optimal clustering q∗ of the data Y is found by solving

minq∈∆ I(Y ; YN) constrained by

DI ≤ D0.

As we saw with the Information Distortion optimization problem, we rewrite this
problem as

maxq∈∆−I(Y ; YN) constrained by

Deff ≥ I0.

Now the method of Lagrange multipliers gives the problem

max
q∈∆

−I(Y ; YN) + βDeff (q), (1.6)

for some β ∈ [0,∞), which is of the form given in (1.1).
A basic annealing algorithm, various forms of which have appeared in [61, 22,

29, 78, 70], can be used to solve (1.1) (which includes the cases (1.4) and (1.6)) for
β = B, where B ∈ [0,∞).

Algorithm 1 (Annealing). Let

q0 be the maximizer of max
q∈∆

G(q) (1.7)

and let β0 = 0. For k ≥ 0, let (qk, βk) be a solution to (1.1). Iterate the following
steps until βK = B for some K.

1. Perform β-step: Let βk+1 = βk + dk where dk > 0.
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2. Take q
(0)
k+1 = qk + η, where η is a small perturbation, as an initial guess for the

solution qk+1 at βk+1.

3. Optimization: solve
max
q∈∆

G(q) + βk+1D(q)

to get the maximizer qk+1, using initial guess q
(0)
k+1.

The purpose of the perturbation in step 2 of the algorithm is due to the fact that
a solution qk+1 may get ”stuck” at a suboptimal solution qk. The goal is to perturb

q
(0)
k+1 outside of the basin of attraction of qk.

To illustrate how Algorithm 1 works, we now examine its results when employed
by the Information Distortion method to solve (1.4). We consider the synthetic data
set p(X, Y ), shown in figure 1(a), which was drawn from a mixture of four Gaussians
as the authors did in [22, 29]. In this model, we may assume that X = {xi}52

i=1

represents a range of possible stimulus properties and that Y = {yi}52
i=1 represents a

range of possible neural responses. There are four modes in p(X, Y ), where a mode
of a probability distribution can be thought of as the areas in the space (X,Y ) which
have high probability. Each mode corresponds to a range of responses elicited by
a range of stimuli. For example, the stimuli {xi}15

i=1 elicit the responses {yi}52
i=39

with high probability, and the stimuli {xi}36
i=25 elicit the responses {yi}38

i=22 with high
probability. One would expect that the maximizer q∗ of (1.4) will cluster the neural
responses {yi}52

i=1 into four classes, each of which corresponds to a mode of p(X,Y ).
This intuition is justified by the Asymptotic Equipartition Property for jointly typical
sequences, which we present as Theorem 13 in Chapter 2.

The mutual information I(X,Y ) is about 1.8 bits, which is comparable to the
mutual information conveyed by single neurons about stimulus parameters in several
unrelated biological sensory systems [21, 41, 58, 72]. For this analysis we used the joint
probability p(X,Y ) explicitly to evaluate H(q) + βDeff (q), as opposed to modelling
p(X,Y ) by p(X,YN) as explained in the text. The annealing algorithm (Algorithm
1) was run for 0 ≤ β ≤ 2.

The optimal clustering q∗(YN |Y ) for N = 2, 3, and 4 is shown in panels (b)–(d) of
figure 1. We denote YN by the natural numbers, YN = {1, ..., N}. When N = 2 as in
panel (b), the optimal clustering q∗ yields an incomplete description of the relationship
between stimulus and response, in the sense that responses {yi}12

i=1 ∪ {yi}52
i=39 are in

class ν1 = 1 and responses {yi}38
i=13 are in class ν2 = 2. The representation is improved

for the N = 3 case shown in panel (c) since now {yi}12
i=1 are in class ν1 = 1, and {yi}52

i=39

are in a separate class, ν2 = 2. The responses {yi}38
i=13 are still lumped together in the

same class ν3 = 3. When N = 4 as in panel (d), the elements of Y are separated into
the classes correctly and most of the mutual information is recovered (see panel(f)).
The mutual information in (f) increases with the number of classes approximately as
log2 N until it recovers about 90% of the original mutual information (at N = 4), at
which point it levels off.
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Figure 1. The Four Blob Problem from [22, 29]. (a) A joint probability for the relation
p(X,Y ) between a stimulus set X and a response set Y , each with 52 elements.
(b–d) The optimal clusterings q∗(YN |Y ) for N = 2, 3, and 4 classes respectively.
These panels represent the conditional probability q(ν|y) of a class ν being associated
with a response y. White represents q(ν|y) = 0, black represents q(ν|y) = 1, and
intermediate values are represented by levels of gray. In (e), a clustering is shown
for N = 5. Observe that the data naturally splits into 4 clusters because of the
4 modes of p(X, Y ) depicted in panel (a). The behavior of the effective distortion
Deff = I(X; YN) with increasing N can be seen in the log-linear plot (f). The dashed
line is I(X; Y ), which is the least upper bound of I(X; YN).

It has been observed that the solutions (q, β) of (1.1), which contain the sequence
{(qk, βk)} found in step 3 of Algorithm 1, undergo bifurcations or phase transitions
as β → B [61, 22, 29, 78, 70]. (see Figure 2). The explicit form of some of these
solutions about bifurcation points for the Information Distortion problem (1.4) are
given in Figure 3.

The behavior of Deff as a function of β can be seen in the top panel. Some
of the solutions {(qk, βk)} for different values of βk are presented on the bottom row
(panels 1 – 6). One can observe the bifurcations of the solutions (1 through 5) and the
corresponding transitions of Deff . The abrupt transitions (1 → 2, 2 → 3) are similar
to the ones described in [61] for a different distortion function. One also observes
transitions (4 → 5) which appear to be smooth in Deff even though the solution
from qk to qk+1 seems to undergo a bifurcation.

The bifurcation structure outlined in Figure 3 raises some interesting questions.
Why are there only 3 bifurcations observed? In general, are there only N − 1 bi-
furcations observed when one is clustering into N classes? In Figure 3, observe that
q ∈ <4K = <208. Why should we observe only 3 bifurcations to local solutions of
H + βDeff in such a large dimensional space? What types of bifurcations should
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Figure 2. Conceptual bifurcation structure of solutions (q∗, β) to the problem (1.1)
as a function of the parameter β. In this instance, the first solution is denoted as q 1
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we expect: pitchfork-like, transcritical, saddle-node, or some other type? At bifur-
cation, how many bifurcating branches are there? What do the bifurcating branches
look like: are they subcritical or supercritical (sometimes called first order and sec-
ond order phase transitions respectively)? What is the stability of the bifurcating
branches? In particular, from bifurcation of a solution, is there always a bifurcating
branch which contains solutions of the original optimization problem?

For problems of the form

max
q∈∆

F (q, β), (1.8)

where
F (q, β) = G(q) + βDeff (q),

which include the problems posed by the Information Distortion (1.4) and Information
Bottleneck (1.6) methods, we have addressed these questions. We considered the
bifurcation structure of all stationary points of (1.8), which are points q ∈ <NK

that satisfy the necessary conditions of constrained optimality, known as the Karush-
Kuhn-Tucker Conditions (see Theorem 16). In this way, we have been able to answer
many of the questions about the bifurcation structure just posed.

The foundation upon which we have relied to effect these answers is the theory
of bifurcations in the presence of symmetries [33, 34, 71]. The symmetries in the
case of (1.8) are based upon the observation that any solution (q∗(YN |Y ), β) to (1.8)
gives another equivalent solution simply by permuting the labels of the classes of YN

(see chapter 6). This symmetry can be seen in Figure 1 in any of the panels (a)–(e).
Permuting the numbers on the vertical axis just changes the labels of the classes
YN = {1, ..., N}, and does not affect the value of the cost function G(q) + βDeff (q)
(this is proved rigorously for the problem (1.4) in Theorem 73). For example, if P1

and P2 are two K × 1 vectors such that for a solution q∗(YN |Y ), q∗(1|Y ) = P1 and
q∗(2|Y ) = P2, then the clustering q̂ where q̂(1|Y ) = P2, q̂(2|Y ) = P1, and q̂(YN |Y ) =
q∗(YN |Y ) for all other classes ν, is also a maximizer of (1.8), since F (q̂, β) = F (q∗, β).

We will use SN to denote the well known algebraic group of all permutations on
N symbols [8, 27]. We say that F (q, β) is SN -invariant if F (q, β) = F (σ(q), β) where
σ(q) denotes the action on q by permutation of the classes of YN as defined by the
element σ ∈ SN . Now suppose that a solution q∗ is fixed by all the elements of SM for
1 < M ≤ N . A bifurcation at β = β∗ in this scenario is called symmetry breaking if
the bifurcating solutions are fixed (and only fixed) by subgroups of SM . Under some
generic conditions (Assumptions 81), we are able to use the Equivariant Branching
Lemma [34] (Theorem 47) and the Smoller-Wasserman Theorem [71] (Theorem 49)
to show that if there is a bifurcation point on a solution branch that is fixed by SM for
1 < M ≤ N , then symmetry breaking bifurcation occurs. The Equivariant Branching
Lemma in this instance gives explicit bifurcating directions of the M bifurcating
solutions, each of which has symmetry SM−1.

The theory of bifurcation in the presence of symmetries gives us the following
answers to the questions posed above. There are only N − 1 bifurcations observed
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when one is clustering into N classes because there are only N−1 symmetry breaking
bifurcations along certain paths of bifurcating branches. In particular, there are N−1
subgroups of SN in the partial lattice or ”chain of subgroups”

1 < S2 < ... < SN−1 < SN .

The first solution branch, (q0, β), where q0 is the uniform distribution q 1
N

, has sym-
metry of the full group SN . When bifurcation occurs on this branch, the symmetry
dictates that there are at least N bifurcating branches, each with symmetry SN−1

(Corollary 111 and the Equivariant Branching Lemma). Each of these branches un-
dergoes symmetry breaking bifurcation at some point later on, with at least N − 1
bifurcating branches, each with symmetry SN−2 (Theorem 110 and the Equivariant
Branching Lemma), and so on. Once we are on a solution branch where there is
no symmetry (in other words, symmetry S1), then we have shown that, generically,
further bifurcations are not possible (Theorem 114).

We have shown that all symmetry breaking bifurcations from SM to SM−1 are
pitchfork-like (Theorem 120 and see Figures 16–24). Furthermore, we have ascer-
tained the existence of other types of bifurcating branches from symmetry breaking
bifurcation which we did not expect (see Figure 25).

In fact, we have shown that the observed bifurcation structure given in Figure 3,
although qualitatively correct, is ”shifted” in β (see Figure 20 and Remark 152).

We have derived a condition, called the bifurcation discriminator, which predicts
whether all of the branches from a symmetry breaking bifurcation from SM to SM−1

are either subcritical or supercritical (Theorems 127 and 128). We have confirmed this
result numerically for the subcritical bifurcations that occur, for example, from the
q 1

N
solution branch for N ≥ 3 for the Four Blob Problem (see Table 3 and Figures 16,

17 and 24). We have also numerically confirmed that subcritical bifurcations occur
on other branches as well (Figure 22).

It is a well known fact that subcritical bifurcating branches are unstable (Theorem
127). We have also provided a condition which ascertains the stability of supercritical
branches (Theorem 128). We have shown that, in some instances, unstable branches
can not contain solutions to (1.9) (Theorem 129). For example, the subcritical bifur-
cating branches in Figure 16 contain stationary points which are not solutions of the
problem (1.8). Thus, we have shown that a local solution to the optimization problem
(1.8) does not always persist from a symmetry breaking bifurcation. This would ex-
plain why, in practice, solving (1.1) after bifurcation incurs significant computational
cost [29, 61].

Symmetry breaking bifurcations are not the only bifurcations. The existence of
subcritical bifurcating branches implies that saddle-node bifurcations or folds may
occur. We have confirmed numerically that these ”non-symmetry breaking” bifur-
cations do indeed exist (Figures 16, 17, 22, and 24). Furthermore, we show that,
generically, saddle-node bifurcations are the only type of non-symmetry breaking
bifurcations. We also give necessary and sufficient conditions for the existence of
saddle-node bifurcations (chapter 8).
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Although we had (1.8) in mind as we developed the mathematical framework in
this thesis, we have been able to generalize the theory so that it applies to a class of
optimization problems. We conclude this section by giving the form of a problem in
this class, which is

max
q∈∆

F (q, β), (1.9)

where

F (q, β) = G(q) + βD(q), (1.10)

and q is a discrete conditional probability q(YN |Y ), a stochastic map of the realizations
of some random variable Y to the realizations of a random variable YN . The space ∆
is the linear constraint space of valid conditional probabilities,

∆ :=

{
q(YN |Y ) |

∑
ν

q(ν|y) = 1 and q(ν|y) ≥ 0 ∀y ∈ Y

}
. (1.11)

The goal is to solve (1.9) for β = B ∈ [0,∞). Further assumptions on the functions
G and D are the following.

Assumption 2.

1. G and D are real valued functions of q(YN |Y ), which depend on YN only through
q, are invariant to relabelling of the elements or classes ν of YN . That is, G
and D are SN -invariant.

2. G and D are sufficiently smooth in q on the interior of ∆.

3. The Hessians of G and D are block diagonal.

As we have seen, similar problems arise in Rate Distortion Theory (1.5), Deter-
ministic Annealing (1.2), the Information Distortion method (1.4), and the Informa-
tion Bottleneck method (1.6).

Neural Coding

The motivating factor for the work presented in this thesis is the efficient im-
plementation of the Information Distortion method [22, 20, 29]. The objective of
the Information Distortion is to allow a quantitative determination of the type of
information encoded in neural activity patterns and, at the same time, identify the
code with which this information is represented. In spite of the fact that the explicit
objective of the method is deciphering the neural code, the method could be applied
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to cluster any system of pairs of the inputs and outputs. This versatility has already
been exhibited by the Information Bottleneck method [70, 78, 69].

This section is organized as follows. First, we describe in detail the neural coding
problem, first with words, then by building the mathematical framework. We continue
by surveying some of the methods used to determine coding schemes in many different
sensory systems. This prepares the reader for the following section, which provides
an overview of how the Information Distortion method searches for an answer to the
neural coding problem.

We begin with Dimitrov and Miller’s formulation of the neural coding problem
[22].

The early stages of neural sensory processing encode information about sen-
sory stimuli into a representation that is common to the whole nervous sys-
tem. We will consider this encoding process within a probabilistic framework
[4, 41, 59].

One of the steps toward understanding the neural basis of an animal’s be-
havior is characterizing the code with which its nervous system represents
information. All computations underlying an animal’s behavioral decisions
are carried out within the context of this code.

Deciphering the neural code of a sensory system means determining the cor-
respondence between neural activity patterns and sensory stimuli. This task
can be reduced further to three related problems: determining the specific
stimulus parameters encoded in the neural ensemble activity, determining the
nature of the neural symbols with which that information is encoded, and fi-
nally, quantifying the correspondence between these stimulus parameters and
neural symbols. If we model the coding problem as a correspondence between
the elements of an input set X and an output set Y , these three tasks are:
finding the spaces X and Y , and the correspondence between them.

Any neural code must satisfy at least two conflicting demands. On the one
hand, the organism must recognize the same natural object as identical in
repeated exposures. On this level the response of the organism needs to be
deterministic. On the other hand, the neural code must deal with uncertainty
introduced by both external and internal noise sources. Therefore the neural
responses are by necessity stochastic on a fine scale [19, 86](see Figure 4).

In this respect the functional issues that confront the early stages of any bio-
logical sensory system are similar to the issues encountered by communication
engineers in their work of transmitting messages across noisy media. Thus,
tools from information theory can be used to characterize the neural coding
scheme of a simple sensory system.
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Figure 4. The neural response to a static stimulus is stochastic. Presenting an
identical stimulus, X(τ) = x, four separate times to a biological sensory system
produces four distinct neural responses, Y = y1, y2, y3, y4.

One can model the input/output relationship present in a biological sensory sys-
tem as an optimal information channel (X,Y ) [68], where X, is a random variable of
inputs

X : ΩX → X , (1.12)

and Y is a random variable of outputs

Y : ΩY → Y (1.13)

(see Figure 5).
When translating the structure of an information channel to neural systems, the

output space ΩY from (1.13) is usually the set of activities of a group of neurons,
which is potentially an infinite dimensional space, since we assume that the neural
response is some function of the voltage at each point in physical space of the cell’s
membrane, for each cell in the group, at each instance of time. Instead of considering
the membrane potential at every instance of time, it is common practice to assume
that the spikes (the sharp modes of the neural responses in Figure 4) are the only
relevant features of the neural response. If the neural response is divided up into k
time bins, and if we let a 1 indicate the presence and 0 indicate the absence of a
spike in a particular time bin of the neural response, then we let Y represent ΩY as
the finite dimensional measurable space Y = {0, 1}k. Thus, each neural response is
modelled as a sequence of k zeroes and ones, Y = Zk, where Z ∈ {0, 1}, so that
only the temporal patterns of spikes is taken into account. For the physiological data
presented in this thesis, the length of a time bin is on the order of 100µs and k = 100.
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A

B

Figure 5. A: Modelling a sensory system as a communication channel. B: The struc-
ture, p(X,Y ), of an optimal communication system.
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Thus, a neural response of length 10 ms is represented by Y as a sequence of 100
zeros and ones.

Another common representation of the neural response, called the firing rate, is
given by

Ỹ : Y → Ỹ , (1.14)

where Ỹ is the space of real numbers <. Ỹ represents either the number of spikes
which occur in some window of time which is large with respect to the time bins which
contain the individual spikes, or it is the mean firing rate, an average of the spike
count over several time bins. These time windows ranges anywhere from 10− 500ms
in the neurophysiological literature [59, 67].

The input space ΩX can be sensory stimuli from the environment or the set of
activities of another group of neurons. It is also potentially an infinite dimensional
space. Elements of the space of visual stimuli, for example, would represent the visual
scene at different locations in physical space at each instance in time. Many times
when the input is sensory stimuli from the environment, one assumes that X = <K ,
where <K is the K dimensional vector space on the real numbers. If we let K = km
for some positive integers k and m, then we have that X = <km = (<m)k. In this
context, X can be written as X = W k where W is a random variable

W : ΩX → <m,

and interpreted as an m dimensional representation of the stimulus X ∈ X at time
k.

The correspondence between stimuli and responses, the joint probability p(X,Y ),
is called a coding scheme [22, 73]. The input X = W k is produced by a source with
a probability p(X). The output Y = Zk is produced with probability p(Y ). The
encoder p(Y |X) is a stochastic mapping from X to Y . From the point of view of
information theory, the designation of spaces X and Y as an input and output space
is arbitrary. Thus we can choose to characterize the same information channel as a
source Y with probability p(Y ) and a decoder stochastic mapping p(X|Y ) from Y to
X (see Figure 6).

Neural Coding through the Ages
We continue by surveying some of the methods used to determine coding schemes

in many different sensory systems. These methods can be partitioned into two cate-
gories. Neural encoding methods find approximations of the encoder p(Y |X). Neural
decoding methods find approximations to the decoder p(X|Y ).

Neural Encoding. Perhaps the simplest description of neural encoding is spike
count coding, commonly called rate coding, first observed in the classic early work
of Adrian and Zotterman [2, 3] in 1926. Adrian and Zotterman hung weights of
different masses from a muscle, and measured the activity of a stretch receptor neuron
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Figure 6. Probability framework, showing the spaces produced by X(τ) and Y (t),
and the stochastic mappings p(Y |X) and p(X|Y ) between them. Discovering either of
these mappings defines a dictionary between classes of stimuli and classes of responses,
where the classes are defined by p(X,Y ) as in Figure 5B. We use two different time
variables, τ and t, to make the distinction that the stimuli X may occur during
different intervals of time than do the neural responses Y .

embedded in the muscle [59]. They found that the firing rate, Ỹ as defined in (1.14),
of the stretch receptor cell increased with increasing stimulus strength (weights with
more mass). This common relationship, called the response tuning curve, (Figure 7A)
is evidenced in many sensory systems [59]. For example, moving a static pattern
across the visual field of a blowfly [59] and recording from the fly’s motion sensitive
neuron H1, also yields a response tuning curve as in Figure 7A. In this case, the
stimulus amplitude is the average velocity of the pattern, over a 200ms window.
Similarly, blowing wind with uniform intensity from many different directions across
a cricket yields the directional tuning curve when recording from the four interneurons
of the cricket cercal sensory system [48] as in Figure 7B.

Figures 7A and 7B suggest that, even in this simple encoding regime, neural
encoding is not a linear process.

To estimate the encoder p(Ỹ |X), an experimenter could, in principle, repeat each
stimulus x ∈ X many times, giving the density depicted in Figure 8. Since the
experimenter controls p(X = x) (the probability of observing a realization of the
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A B

Figure 7. A: The response tuning curve. In spike count or rate coding, the response
amplitude is Ỹ , which we define as the number of spikes present in some time window.
The stimulus amplitude is represented by some scalar. B: The Directional Tuning
Curve. Another example of spike count coding. The response or directional tuning
curves for the 4 interneurons in the cricket cercal sensory system, where the stimulus
amplitude is given by direction of the wind with respect to the cricket in degrees, and
the response amplitude is Ỹ . The preferred directions, (the center of mass or modes
of the tuning curves) are orthogonal to each other [48].

Figure 8. An estimate of the encoder p(Ỹ |X), using spike count coding, by repeating
each stimulus x ∈ X many times, creating a histogram for each ỹ|X, and then
normalizing.
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stimulus X = x), one can then calculate

p(Ỹ = ỹ) =
∑
X

p(ỹ|x)p(x).

Bayes Rule [28] then yields the decoder

p(x|ỹ) = p(ỹ|x)p(x)
1

p(ỹ)
.

Spike count coding does seem to describe some sensory systems well [59], and
is an attractive method due to its simplicity, especially when the stimulus space
is small (i.e. a few dimensions), as in the case of coding direction in the cricket
cercal sensory system [48, 63]. There are at least three points arguing why spike
count coding is not a feasible way to describe an arbitrary sensory system. First,
counting spikes per unit of time neglects the temporal precision of the spikes of the
neural response, which potentially decreases the information conveyed by the response
[52, 53, 66, 62, 57, 56]. In the visual system, it has been conjectured that firing rates
are useful for gross discrimination of stimuli, while a temporal code is necessary for
more subtle differences [57]. Secondly, the known short behavioral decision times (for,
say, defensive maneuvering of a blowfly or of a cricket) imply that these decisions are
made based on the observation of just a few spikes (1 or 2 in a 10-30ms window in
some instances [59, 77]) from the sensory system which instigates the decision, and
not on some large window of time. The third reason is that many sensory systems,
such as the visual, auditory and olfactory systems, respond to stimulus attributes
that are very complex. In other words, ΩX , the space of possible stimuli for some
systems, is a very large space, which is not clearly representable by a small space
X to be presented in an experiment. Hence, it is not feasible to present all possible
stimuli in experiment to estimate p(Ỹ |X).

Another way to describe neural encoding , first used by Fatt and Katz in 1952
[79], is by fitting a Poisson model [28] to the data

p(Ỹ = ỹ|X = x) = Poisson(λ) :=
e−λλỹ

ỹ!

for some rate λ. This model presupposes that the spikes are independent from each
other given a stimulus X = x. Determining λ for a given realization X = x of the
stimulus is straightforward. One starts by computing the peristimulus time histogram
(PSTH), r(t|X = x), the normalized histogram of the neural responses Y |x over many
repetitions of the stimulus X = x (see Figure 9A). The PSTH r(t|X = x) gives the
probability per unit time of observing a spike given that X = x occurred [79, 59].
The Poisson rate is

λ =

∫
r(t|X = x)dt,
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A B

Figure 9. Both panels are from [1]. A: Examples of a peristimulus time histogram for
three different stimuli x1, x2, x3, not shown. Below each PSTH is the raster plot of
associated neural responses Y |xi over many repetitions of the stimulus X = xi. The
PSTH is the normalized histogram of the raster plot. B: Testing to see if the firing
rate given a particular realization of a stimulus, Ỹ |X = x is not a Poisson process.
A true Poisson process has population mean equal to population variance, and so by
the large Law of Large Numbers, for a large enough data size, the sample mean and
sample variance must be very nearly equal.

which is the average number of spikes given that X = x. Thus

p(Ỹ |X = x) = Poisson

(∫
r(t|X = x)dt

)
. (1.15)

The relation (1.15) yields an explicit form of p(Ỹ |X = x), which is alluring since
a Poisson process is a basic, well studied process. But when is the assumption that
the spikes are independent met? One way to test whether a process is not a Poisson
process is to test whether the sample mean is equal to the sample variance. Such a
test for neurological data is shown in figure 9B.

Rieke et al. contend that if the refractory period of a neuron is small compared
to the mean interspike interval (ISI), then a Poisson model may be appropriate [59].
Berry and Meister have proposed a variant of the Poisson model which deals with the
refractory period and its implications regarding the independence assumption [5].

Another shortcoming of the Poisson model as posed in (1.15) is that it only
considers the neural response as the firing rate Ỹ . In order to model a spike train



18

Y = ZN , Rieke et al. suggest a ”Poisson-like” model [59]. If ti is the beginning of
one of the N time bins which define Y = y, and T is the total length of time of the
neural response Y = y, then

p(Y = y|X = x) =
1

N !
ΠN

i=1r(ti|X = x) exp

(∫ T

0

r(t|X = x)dt

)
.

In this case, the implicit assumption is that the neural responses Y are independent.
Other Poisson-like processes which dispense with the independence assumption

are the so called Inhomogeneous Poisson Gaussian and Inhomogeneous Poisson Zernike
models used by Brown et al. to model the encoder p(Y |X) [11]. These models use
a generalization of the Poisson rate parameter λ which is history dependent and so
independence of the neural responses is not necessary.

The strongest argument posed against the spike count coding model applies here
as well: since the space of possible stimuli for some systems is a very large space, it
is not possible to present all possible stimuli in experiments to estimate r(t|X) (and
hence to estimate p(Y |X)).

The last neural encoding model which we investigate here employs the celebrated
Wiener/Volterra series. The Volterra series, discovered by Volterra in 1930, is a series
expansion for a continuous function, such as Ỹ (t), provided that Ỹ (t) = G(X(τ)) for
some functional G that satisfies some regularity conditions [85, 59, 80]. The series is
given by

Y (t) = f0 +
∫

f1(τ1)X(t− τ1)dτ1

+
∫ ∫

f2(τ1, τ2)X(t− τ1)X(t− τ2)dτ1dτ2 + ...
. (1.16)

Wiener in 1958 reformulated the Volterra series in a way such that the coefficient
functions or kernels fi could be measured from experiment [59, 87, 80]. The first
Wiener kernel is

f1 =
X ∗ Y

SX

,

where X ∗Y is the convolution of X and Y , and SX = X ∗X is the power spectrum of
X [59]. f1 is proportional to the spike triggered average. Rieke et al. (as well as many
others) have satisfactorily used just the first Wiener kernel, and hence only the first
term of (1.16), to approximate Ỹ |X. The benefits of encoding in this fashion is two-
fold: computing the first Wiener kernel is inexpensive, and not much data is required
to compute it. On the other hand, there are many instances (the cricket cercal sensory
system for example [24, 25]) where this practical low order approximation, does not
work well [60, 32]. Although it is theoretically possible to compute many terms in
the Wiener series to improve the encoding approximation [42, 59], such computations
can be quite costly, and they are rarely done in practice. The necessity of higher
order terms in the approximation of Ỹ |X is another indication that neural encoding
is not a linear process. To deal with this deficiency, van Hateren and Snippe use the
Wiener filter in conjunction with various nonlinear models to estimate the response
of the photoreceptor cells in the blowfly [81].
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Another issue is that the Wiener/Volterra series is an expansion for a continuous
function, which is appropriate for neural responses modelled as the firing rate Ỹ .
But how does one construct a Wiener/Volterra series to model the discrete spiking
of neurons Y ?

Furthermore, the result of calculating Ỹ using a Wiener series approximation
gives a specific Ỹ (t)|X(τ). Since we view encoding within a probabilistic framework,
we wish to determine an approximation to p(Ỹ |X), the encoder. In principle, one
could repeat realizations of the stimulus to estimate p(Ỹ |X). But now one is once
again faced with fact that the space of possible stimuli for some systems is a very
large space. Thus, it is not feasible to present all possible stimuli in experiment to
estimate p(Ỹ |X).

Neural Decoding. We now turn our attention to the problem of estimating the
neural decoder p(X|Y ). This problem may be more tractable than the task of deter-
mining the encoder p(Y |X) since it is easier to estimate p(X|Y ) over an ensemble of
responses, since Y := {0, 1}k is in many cases a much smaller space than the space
of stimuli X .

The Linear Reconstruction Method, espoused by Rieke et al in 1997 [59], considers
a linear Wiener/Volterra approximation of X|Y

X(t) =

∫
K1(τ)Y (t− τ)dτ (1.17)

=
∑

i

K1(t− ti).

The last equation follows if one models a spike train as a sum of delta functions

Y (t) =
∑

i

δ(t− ti),

where the ith spike occurs at time ti. To determine K1, one minimizes the mean
squared error [59]

min
K(t)


∑

x∈X

∫

<

(
x(t)−

∑
i

K(t− ti)

)2

dt


 ,

which has the explicit solution [59]

K1 = F−1

(
〈F(X(ω))

∑
j e−iωtj〉Y

〈|∑j e−iωtj |〉Y

)
. (1.18)

Here, 〈·〉Y indicates averaging over the values of y ∈ Y , F indicates a Fourier Trans-
form, and ω is frequency. The numerator of (1.18) is the Fourier transform of average
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stimulus surrounding a spike, and the denominator is the power spectrum of the spike
train.

This method deals with one of the problems from the Wiener/Volterra series
method of encoding by modelling Y (t) as a delta function, and so the temporal
structure of spikes is considered. This does not violate the continuity assumption of
the Wiener series as in the encoding regime because in decoding, we need only assume
that X(t) is a continuous function, not Y (t).

Computing only one kernel (from (1.18)), which is computationally inexpensive,
presupposes that decoding is linear. Furthermore, this method yields only a point
estimate of X|Y . To estimate p(X|Y ), one would need to continue an experiment
for a long period of time in the hope of producing many instances of the same neural
response for each observed y ∈ Y . Unfortunately, as pointed out in [37], the amount
of data needed to support non-parametric estimates of coding schemes which contain
long sequences of length T across N neurons grows exponentially with T and N . For
some systems, the required data recording time may well exceed the expected lifespan
of the system.

The linear reconstruction method models a single neuron, and it is not clear how
the regime can be extended to account for populations of neurons. Although there is
evidence that neural coding is performed independently by single neurons [49], coding
by a population of neurons has been shown to be important in some sensory systems
[55, 77], as well as from a theoretical point of view [45, 77]. Other linear methods
have been developed which do model populations of neurons, but, unfortunately, for
each of the ones that we introduce here, the neural response is assumed to be spike
counts in a time window, Ỹ . Georgopoulos et al. in 1983 proposed the Population
Vector Method [30] which decodes a stimulus using a convolution similar to (1.17) to
estimate X|Ỹ

X(t) =
∑

i

ỸiCi.

Here, Ci is the preferred stimulus for neuron i. Abbot and Salinas in 1994 [63]
proposed their Optimal Linear Estimator (OLE), which decodes by

X(t) =
∑

i

ỸiDi

where Di is chosen so that

〈〈
∫

<

(
x(t)−

∑
i

ỸiDi

)2

dt〉Ỹ 〉X ,

the mean squared error averaged over all stimuli and all neural responses observed
in experiment, is minimized. As in (1.18), 〈·〉X and 〈·〉Ỹ indicate averaging over the
spaces X and Ỹ respectively. The analytic solution for such a Di is given by [63]

Di =
∑

j

Q−1
ij Lj
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where Lj is center of mass of the tuning curve for cell i (see Figure 7B), and Qij is
the correlation matrix of Ỹi and Ỹj.

There are other linear methods for decoding as well, which use either a Maximum
Likelihood Estimator or a Bayesian estimator instead of the OLE [63].

To get a good sampling of points ỹ ∈ Ỹ , Abbot and Salinas advocate presenting a
randomly chosen, continuously varying stimulus X, such as a Gaussian White Noise
(GWN) stimulus, to the sensory system. This enables an experimenter to take a
”random walk” through the stimulus space, thereby eliciting a wide range of neural
responses from Y [63, 47, 74].

The Population Vector Method is inexpensive to implement, and is ideal when the
tuning curve is a (half) cosine as in the case of the cricket cercal sensory system (Figure
7B). Furthermore, small error (difference of the estimated stimulus from the true
stimulus) is incurred when decoding {Ỹi} if the preferred stimuli {Ci} are orthogonal.
The OLE in fact has smallest average mean squared error of all linear methods over
a population of neurons [63]. For the Population Vector Method, however, it is
not always obvious what the preferred stimulus Ci is for generic, complex stimuli.
Furthermore, the method does not work well if the preferred stimuli {Ci} are not
uniformly distributed, and it requires a lot of neurons in practice [63]. Neither of
these linear methods give an explicit estimate of p(X|Y ).

A parametric approach, in which a particular probability distribution is assumed,
could yield an explicit form of p(X|Y ) as is the case when one considers Poisson en-
coding models. Such a model for decoding was proposed by de Ruyter van Steveninck
and Bialek in 1988 [59]. In experiment, they let X(t) be a randomly chosen and con-
tinuously varying stimulus. p(X|Y ) is then approximated with a Gaussian with mean
E(X|Y ) and covariance Cov(X|Y ) computed from data as in Figure 10.

In this regime, the temporal pattern of the spikes is considered and one has an
explicit form for p(X|Y ). But why should p(X|Y ) be Gaussian? This choice is
justified by the following remark.

Remark 3. Jayne’s maximum entropy principle [36] states that of all models that sat-
isfy a given set of constraints, one ought to choose the one that maximizes the entropy,
since a maximum entropy model does not implicitly introduce additional constraints in
the problem. Rieke et al. show that over all models with a fixed mean and covariance,
the Gaussian is the maximum entropy model [59].

However, an inordinate amount of data is required to obtain good estimates of
Cov(X|Y = y) over all observed y ∈ Y , which requires one to continue an experiment
for a long period of time. Another way to deal with the problem of not having enough
data is to cluster the responses together and then to estimate a gaussian model for
each response cluster.

The last approach we study here is the Metric Space Approach of Victor and
Purpura (1996) [84, 83], which actually constructs an estimate of the joint probability
p(X,Y ). From the previous decoders we have examined, we see that we are in search
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Figure 10. Estimating p(X|Y ) with a Gaussian. Examples of three spike trains
recorded from the H1 neuron of the blowfly and the corresponding conditional means
of the stimuli (velocity of a pattern) which elicited each of these responses. These
conditional means, as well as conditional variances, are used to construct a Gaussian
decoder p(X|Y ) of the stimuli [59].

of a decoding method that estimates p(X|Y ), takes the temporal structure of the
spikes of the neural responses Y (t) into account, and deals with the insufficient data
problem. The Metric Space Approach satisfies all these goals, and without assuming
a distribution on X|Y a priori, as was necessary for the Poisson and Gaussian models
we have examined. Instead, as the name implies, a metric is assumed on Y . Choosing
some scalar r ≥ 0 and given two spike trains, Yi and Yj , the distance between them
is defined by the metric

D[r](Yi, Yj), (1.19)

which is the minimum cost required to transform Yi into Yj via a path of elementary
steps (see Figure 11):

1. Adding or deleting a spike has a cost of 1.

2. Shifting a spike in time by ∆t has a cost of r|∆t|.
The quantity 1

r
can be interpreted as a measure of the temporal precision of the

metric. The metric
D[r = 0](Yi, Yj)
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Figure 11. Computing the Spike Train Metric [84]. One path of elementary steps
used to transform a spike train Yi into a spike train Yj..

is just the difference in the number of spikes between the spike trains Yi and Yj.
Coding based on this measure is just counting spikes since no cost is incurred when
shifting spikes in time. The metric

D[r = ∞](Yi, Yj)

gives infinitesimally precise timing of the spikes.
Unfortunately, the Metric Space Approach suffers from the same problem that

all of the encoders that we have investigated do: the stimuli, x1, x2, ..., xC must be
repeated multiple times, a problem when X is large. The Metric Space Approach is
described by the following Algorithm.

Algorithm 4 (Metric Space Method). [84] Choose r ≥ 0 and an integer z.
Suppose that there are C stimuli, x1, x2, ..., xC, presented multiple times each, all
of which elicit a total of K neural responses y1, y2, ..., yK. Initialize C, the C × C
classification matrix, to zeros, and let ν1, ν2, ..., νC be C abstract response classes.
Start the algorithm with i = 1.

1. Suppose that yi was elicited by xα. Assign yi to response class νβ if

〈D[r](yi, ŷ)z〉
1
z
ŷ elicitedby xβ

is the minimum over all xk for k = 1, ..., C.
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A B
ν1 ν2 ν3 ν4 ν5

3 11 3 2 1 x1

5 10 3 2 0 x2

1 1 15 1 2 x3

1 0 4 2 13 x4

2 3 2 5 8 x5

ν1 ν2 ν3 ν4 ν5

.25 .44 .11 .17 .043 x1

.42 .40 .11 .17 0 x2

.08 .04 .56 .08 .08 x3

.08 0 .15 .17 .54 x4

.17 .12 .07 .42 .33 x5

Table 1. A: An example of the Metric Space method for clustering data where K =
100 neural responses were clustered into C = 5 classes. Observe that there were 20
neural responses elicited by each C = 5 stimulus. B: The ith column of the normalized
matrix C gives the decoder p(X|νi). In this example, any of the neural responses which
belong to ν1 are decoded as the stimulus x2 with certainty .42. Any of the neural
responses in class ν3 are decoded as the stimulus x3 with certainty .56.

2. Increment the component [C]αβ of the matrix C by 1.

3. Repeat step 1 and 2 for i = 2, ..., K

One normalizes the columns of the matrix C to get the decoder p(X|ν) (see Table
1). Decode a neural response y and the certainty of the assignment p(X|y) by looking
up its response class ν in the normalized matrix C (see Table 1B). The responses
are clustered together to obtain p(X|ν), an estimate of p(X|Y ) given the available
amount of data.

Minimizing the cost function D[r] in step 1 of Algorithm 4 is intuitively a nice
way to quantify jitter in the spike trains. As we have seen, in Rate Distortion Theory,
this type of cost function is called a distortion function. The values for q and z that
Victor and Purpura recommend to use in Algorithm 4 are those that maximize the
transmitted information from stimulus to response [84].

The Information Distortion

The brief survey in the last section gives insight into what types of characteristics
that an encoding/decoding algorithm ought to have. First, the algorithm ought to
produce an estimate of X|Y (or of Y |X) as well as a measure of the certainty of
the estimate, p(X|Y ) (or p(Y |X)). The temporal structure of the spike trains of the
neural responses need to be considered. Assumptions about the linearity of encoding
or decoding ought not to be required. Presentation of all stimuli must not be required.
Rather, X(t) ought to be randomly chosen and continuously varying. A population
of neurons ought to be able to be considered. And lastly, the algorithm needs to deal
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with the problem of having limited data, perhaps by clustering the neural responses.
The Information Distortion method [22, 20, 29] satisfies these prerequisites.

It searches for approximations of the decoder p(X|Y ) by quantizing the neural
responses Y to a small reproduction set of N classes, YN , by defining the random
variable

YN : ΩY → YN .

The random variables
X → Y → YN

form a Markov chain [22]. The quantization or stochastic assignment [17, 35] of the
elements of Y to YN is defined by the quantizer q(YN |Y )

q(YN |Y ) : Y → YN . (1.20)

The Information Distortion method computes an optimal quantizer q∗(YN |Y ) that
minimizes an information-based distortion function, called the information distortion
measure,

DI(Y, YN),

which is defined in (2.11). Applying the information distortion measure to neural
data, which is equivalent to maximizing the information transmission between the
stimulus space and quantized neural responses, has theoretical justification [9, 20, 22,
37, 51, 59, 64, 72, 83, 84]. Such a q∗(YN |Y ) for a fixed N produces the Gaussian
distribution p(X|YN), which is an approximation to the decoder p(X|Y ) (see (2.26)).
Recall that the choice of a Gaussian is justified by Remark 3. These approximations
p(X|YN) can be refined by increasing N , which increases the size of the reproduction
YN . There is a critical size, Nmax, beyond which further refinements do not signif-
icantly decrease the distortion DI(Y, YNmax) given the amount of data. Thus, given
sufficient data, one chooses the optimal quantization q∗(YNmax|Y ) at this size Nmax,
which in turn gives the Gaussian p(X|YNmax), an estimate of the decoder p(X|Y ).

Outline of Thesis

The goal of this thesis is to solve problems of the form (1.9),

max
q∈∆

(G(q) + βD(q)),

where Assumption 2 is satisfied, and q is a clustering or quantization of some objects Y
to some objects YN . To motivate why we are interested in the problem, we require the
language of information theory. To study solution behavior of the problem, we need
ideas from optimization theory, bifurcation theory, and group theory. The purpose of
this section is to further elucidate the details of how the chapters that follow present
these ideas.
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In chapter 2, we introduce the notation and develop the mathematical tools that
will be used throughout the rest of this thesis. The tools we develop here include the
rudiments of Information Theory, a formal introduction to instances of the functions
D(q) and G(q) which compose the terms of (1.9), and finally a formal exposition of
the information distortion measure which we introduced earlier in this chapter. The
latter objective is necessary since optimizing this measure is a key ingredient to both
the Information Distortion [22, 20, 29] and the Information Bottleneck [70, 78, 69]
methods, our two main problems of interest.

In chapter 3, we use tools from constrained optimization theory to rewrite (1.9)
in terms of its Lagrangian

L(q, λ, β) : <NK ×<K ×< → <. (1.21)

Later, in chapter 9, we examine optimization schemes, such as the implicit solution
[22, 29] and projected Augmented Lagrangian [29, 50] methods, which exploit the
structure of (1.21) to find local solutions to (1.9) for step 3 of algorithm 1.

We wish to pose (1.9) as a dynamical system in order to study the bifurcation
structure of these local solutions for β ∈ [0,B]. To this end, we consider the equilibria
of the flow

(
q̇

λ̇

)
= ∇q,λL(q, λ, β) (1.22)

for β ∈ [0,B] and some B < 0. These are points

(
q∗

λ∗

)
where∇q,λL(q∗, λ∗, β) = 0 for

some β. The Jacobian of this system is the Hessian ∆q,λL(q, λ, β). Equilibria, (q∗, λ∗),
of (1.22), for which ∆F (q∗, β) is negative definite on the kernel of the Jacobian of the
constraints, are local solutions of (1.9) (Remark 27).

In chapter 4 we explore the pivotal role that the kernel of ∆q,λL plays de-
termining the bifurcation structure of solutions to (1.9). This is due to the fact
that bifurcation of a branch of equilibria (q∗, λ∗, β) of (1.22) at β = β∗ happens
when ker ∆q,λL(q∗, λ∗, β∗) is nontrivial (Theorem 24). Furthermore, the bifurcating
branches are tangent to certain linear subspaces of ker ∆q,λL(q∗, λ∗, β∗) (Theorem
110). More surprisingly perhaps is that the block diagonal Hessian ∆F (Assumption
2.3) plays a crucial role as well. We will derive explicit relationships between these
Hessians in this chapter, and we will show that, generically, there are only three types
of singularities of ∆q,λL and ∆F which can occur. Furthermore, we explain how these
singularities dictate the bifurcation structure of equilibria of (1.22) (Figure 12). In
particular, the singularity types show that, generically, only two different types of
bifurcation can occur: symmetry breaking bifurcation and saddle-node bifurcation.

In chapter 5, we present the general theory of bifurcations in the presence of
symmetries, which includes the Equivariant Branching Lemma (Theorem 47) and
the Smoller-Wasserman Theorem (Theorem 49). We are able to extend some of the
results of Golubitsky [33, 34] to determine the bifurcation structure of pitchfork-like
bifurcations for equilibria of a general dynamical system with symmetries.
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In chapter 6 we apply the general theory of bifurcations in the presence of sym-
metries to the dynamical system (1.22). When an equilibrium (q∗, λ∗, β∗), which is
fixed by the action of the group SM , undergoes bifurcation, then the Equivariant
Branching Lemma ascertains the existence of explicit bifurcating solutions in one di-
mensional subspaces of ker ∆q,λL(q∗, λ∗, β∗) which are fixed by special subgroups of
SM (Theorem 110). Such symmetry breaking bifurcations are always pitchfork-like
(Theorem 120). Further information about the bifurcation structure of solutions to
(1.9) can be garnered using the symmetry of F . In the sequel, we show that every
singularity of ∆q,λL yields bifurcating branches when G is strictly concave (Corol-
lary 108), which is the case for the Information Distortion problem (1.4). We also
provide conditions which determine the location (Theorem 80), type (Theorem 120),
orientation (i.e. supercritical or subcritical), and stability (Theorems 127 and 128)
of bifurcating branches from certain solutions to (1.9). In some instances, unstable
branches can not contain solutions to (1.9) (Theorem 129).

In chapter 7, we introduce continuation techniques which allow us to confirm the
theory of chapter 6 by numerically computing the bifurcation structure of stationary
points of the Information Distortion problem (2.34). There are two types of bifurca-
tions which we observe numerically: symmetry breaking bifurcations and saddle-node
bifurcations. See Figures 16–24 and 25.

In chapter 8 we show that bifurcations that are not symmetry breaking bifurca-
tions are generically saddle-node bifurcations. We also give necessary and sufficient
conditions for the existence of saddle-node bifurcations (Theorems 135 and 141).

In chapter 9, we introduce two numerical optimization schemes [40, 50] which
can be used in step 3 of the annealing algorithm (Algorithm 1) to find solutions
of the problem (1.9): the Augmented Lagrangian Method (Algorithm 149) and an
implicit solution method (9.20). Another optimization scheme, which does not use
the method of annealing, can be used to solve (1.9) when D(q) is convex and B = ∞,
as is the case for the Information Distortion method. This vertex search algorithm is
a greedy search over the vertices of ∆ (Algorithm 155). Each of these algorithms has
its advantages and disadvantages, and we rate their performance on synthetic and
physiological data sets (Tables 4–5 and Figure 27).

One of the purposes of this thesis is to introduce methodology to improve Algo-
rithm 1 and to minimize the arbitrariness of the choice of the algorithm’s parameters.
Thus, we conclude with an algorithm (Algorithm 157) which shows how continua-
tion and bifurcation theory in the presence of symmetries can be used to aid in the
implementation of Algorithm 1.
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CHAPTER 2

MATHEMATICAL PRELIMINARIES

In this chapter we introduce the notation and develop the mathematical tools
that will be used throughout the rest of this thesis as we study solutions of (1.9),

max
q∈∆

(G(q) + βD(q)),

where q is a clustering or quantization of some objects Y to some objects YN . To
motivate why we are interested in problems of this form, we present the rudiments of
Information Theory, introduce the functions D(q) and G(q) which compose the terms
of (1.9), and give a formal exposition of the information distortion measure which
we introduced in chapter 1. The latter objective is necessary since optimizing this
measure is a key ingredient to both the Information Distortion [22, 20, 29] and the
Information Bottleneck [70, 78, 69] methods, our two main problems of interest.

Notation and Definitions

The following notation will be used throughout the sequel:

|H| := the number of elements of the set H, differentiated from ”the absolute value
of” when the argument is a set.

Y := a random variable with realizations from a finite set Y := {y1, y2, ..., yK}.
K := |Y| < ∞, the number of elements of Y , the realizations of the random variable

Y .

YN := a random variable with realizations from the set of classes YN := {1, 2, ..., N}.
N := |YN |, the total number of classes.

p(X) := the probability mass function of X if X is a discrete random variable. If X
is a continuous random variable, then p(X) is the probability density function
of X.

q(YN |Y ) := the K × N matrix, p(YN |Y ), defining the conditional probability mass
function of the random variable YN |Y , written explicitly as




q(1|y1) q(1|y2) q(1|y3) ... q(1|yK)
q(2|y1) q(2|y2) q(2|y3) ... q(2|yK)

...
...

...
...

q(N |y1) q(N |y2) q(N |y3) ... q(N |yK)


 =




q(1|Y )T

q(2|Y )T

...
q(N |Y )T


 .
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qν := q(ν|Y ), the transpose of the 1×K row of q(YN |Y ) corresponding to the class
ν ∈ YN .

q := the vectorized form of q(YN |Y )T , written as

q = ((q1)T (q2)T ... (qN)T )T .

qνk := q(YN = ν|Y = yk), the component of q corresponding to the class ν ∈ YN

and the element yk ∈ Y .

δa1...am := a scalar function on the natural numbers {ai}m
i=1 with range

{
1 if ai = aj ∀i, j

0 otherwise

logxxx :=log2 xxx, the component-wise log base 2 operator of the vector xxx.

ln xxx :=loge xxx, the component-wise natural log operator of the vector xxx.

[xxx]i := ith component of the vector xxx

[A]ij := the (i, j)th component of the matrix A

A− := the Moore-Penrose generalized inverse of the k ×m matrix A.

det A := the determinant of the matrix A.

peigenspace(A) := the vector space spanned by the eigenvectors corresponding to
the positive eigenvalues of the square matrix A.

A⊗B := the Kronecker product of the p × q matrix A and the r × s matrix B is
defined as the pr × qs matrix C, such that the (i, j)th block of C is [C]ij =
A⊗B = aijB.

< vvv,www >A := vvvT Awww =
∑

i,j[vvv]iAij[www]j, an inner product with respect to A if A is
positive definite.

< vvv,www > := < vvv,www >I=
∑

i,j[vvv]i[www]j, the Euclidean inner product.

||vvv|| :=
√

< vvv,vvv >, the Euclidean norm.

∠(vvv,www) := the angle between the vectors vvv and www, measured in radians.

Ik := the k × k identity matrix.

eeei :=ith column of the identity I.

EXf(X) :=
∫
xxx∈X f(xxx)p(xxx)dxxx, the expected value of scalar function f(X) with re-

spect to the distribution p(X).

ψ(xxx)|Ω := the vector valued function ψ restricted to the space Ω.
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∂xxxψ := Jacobian of the vector valued function ψ with respect to the vector xxx

∂2
xxxψ := three dimensional array of second derivatives of the vector valued function

ψ with respect to the vector xxx

∂2
xxxψ(xxx0)[vvv,www] := the vector defined by the multilinear form

∑
i,j

∂2ψ
∂[xxx]i∂[xxx]j

(xxx0)[vvv]i[www]j,

where ψ(xxx) is a vector valued function.

∂3
xxxψ(xxx0)[uuu,vvv,www] := the vector defined by the multilinear form

∑

i,j,k

∂2ψ

∂[xxx]i∂[xxx]j∂[xxx]k
(xxx0)[uuu]i[vvv]j[www]k,

where ψ(xxx) is a vector valued function.

∇xxxf := gradient of the scalar function f with respect to the vector xxx.

∇f(xxx, β) := ∇xxxf(xxx, β).

∆xxxf := Hessian of the scalar function f with respect to the vector xxx.

∆f(xxx, β) := ∆xxxf(xxx, β).

sgn f(x) :=





1 if f(x) > 0
0 if f(x) = 0
−1 if f(x) < 0

O(xxxm) := ”big oh” of ||xxx||m. By definition, if f(xxx) = O(xxxm), then there exists n > 0
such that ‖f(xxx)‖ ≤ n‖xxx‖m if ‖xxx‖ is sufficiently small.

≤ := is a subgroup of, differentiated from ”is less than or equal to” when the argu-
ments being compared are sets.

< := is a proper subgroup of, differentiated from ”is strictly less than” when the
arguments being compared are sets

[G : H] := |G|
|H| , the index of H in G, when H ≤ G and |G| < ∞.

∼= := is isomorphic as a group to

〈g〉 := the cyclic group generated by g, where g is an element of some group G

|g| := the order of the element g in the group G, which is equivalent to |〈g〉|.
SM := the abstract group of M ! elements of all permutations on M objects.
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An n×n symmetric matrix A is positive definite if xxxT Axxx > 0 for all xxx ∈ <n and is
negative definite if xxxT Axxx < 0 for all xxx ∈ <n. The symmetric matrix A is non-positive
definite if xxxT Axxx ≤ 0 for all xxx ∈ <n and is non-negative definite if xxxT Axxx ≥ 0 for all
xxx ∈ <n.

A square matrix A has a singularity, or is singular, if at least one of its eigenvalues
is zero. The space spanned by the eigenvectors corresponding to the zero eigenvalues
of A is called the kernel or nullspace of A, denoted by ker A. Thus, A is singular if
and only if ker A 6= ∅ if and only if det A = 0.

A vector space B is called a normed vector space if there a norm defined on the
elements of B. The vector space B is said to be complete if every Cauchy sequence
converges to a point in B. A complete normed vector space is a called a Banach
space. A vector space B is called an inner product space if there is an inner product
(or dot product) defined on the elements of B. A complete normed inner product
space is called a Hilbert space.

A stationary point xxx∗ of a differentiable function f(xxx) is a point where

∇xxxf(xxx∗) = 000.

A Lie group is any continuous group. In this thesis, if G is a Lie group, then we
use the matrix representation of G, which has the form

G = {g ∈ <m ×<m|g is invertible},

together with the binary operation of matrix multiplication.

Information Theory

The basic object in information theory is an information source or a random
variable (measurable function)

X : (Ω,O) → (X ,B), (2.1)

where X is the probability space of symbols produced by X, a representation of the
elements of the probability space Ω. O and B are the respective σ-algebras. A source
X is a mathematical model for a physical system that produces a succession of symbols
{X1, X2, ... , Xn} in a manner which is unknown to us and is treated as random
[17, 35]. The sequence {Xi}n

i=1 is said to be i.i.d or identically and independently
distributed if Xi are mutually independent

p(Xi, Xj) = p(Xi)p(Xj)

for i 6= j, and if the probability density of Xi, is the same for every i and j,

p(Xi) = p(Xj).
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The sequence {Xi} is stationary if for each m and k, (X0, ..., Xm) and (Xk, ..., Xk+m)
have the same probability density. In other words, {Xi} is stationary if no matter
when one starts observing the sequence of random variables, the resulting observation
has the same probabilistic structure.

A measurable transformation ϕ : Ω → Ω is measure preserving if p(ϕ−1A) = p(A)
for all A ∈ O. A set A ∈ O is ϕ-invariant if ϕ−1A = A. Let I = {A|A is ϕ-invariant}.
The measurable transformation ϕ is ergodic if for every A ∈ I, p(A) ∈ {0, 1}. The
source Xi = X ◦ ϕi is said to be ergodic if ϕ is ergodic.

An information channel is a pair of information sources (X,Y ), an input

X : (ΩX ,OX) → (X ,BX), (2.2)

and an output
Y : (ΩY ,OY ) → (Y ,BY ) (2.3)

where the spaces and σ-algebras are defined as in (2.1).
The basic concepts of information theory are entropy and mutual information

[17]. In information theory, entropy is described as a measure of the uncertainty, or
of the self information, of a source, and is defined as

H(X) = −EX log p(X).

The conditional and joint entropy respectively given an information channel (X,Y )
are defined respectively as

H(Y |X) = −EX,Y log p(Y |X)

H(X, Y ) = −EX,Y log p(X, Y ).

It is easy to show that

H(X,Y ) = H(X) + H(Y |X) = H(Y ) + H(X|Y ).

The notion of mutual information I(X; Y ) is introduced as a measure of the degree
of dependence between a pair of sources in an information channel (X,Y ):

I(X; Y ) = H(X) + H(Y )−H(X,Y ) (2.4)

= EX,Y log
p(X, Y )

p(X)p(Y )
(2.5)

Both entropy and mutual information are special cases of a more general quantity –
the Kullback-Leibler directed divergence or relative entropy [43] between two proba-
bility measures, p and r, on the same discrete probability space X ,

KL(p‖r) = EX log

(
p(X)

r(X)

)
. (2.6)



33

The Kullback-Leibler divergence is always nonnegative and it is zero if and only if
p(X) = r(X) almost everywhere. However, it is not symmetric and so it is not a
proper distance on a set of probability measures. In spite of this it provides a sense
of how different two probability measures are.

The information quantities H, I and KL depend only on the underlying proba-
bility distributions and not on the structure of X and Y . This allows us to evaluate
them in cases where more traditional statistical measures (e.g. variance, correlation,
etc.) do not exist.

Why are entropy and mutual information valid measures to use when analyzing an
information channel between X and Y ? Let {Y1, Y2, ... , Yn} be i.i.d. observations
from an information source Y . Then the Strong Law of Large Numbers provides
theoretical justification for making inference about population parameters (such as
the mean and variance) from data collected experimentally [28]. In particular, the
Shannon Entropy Theorem [17, 28, 68] in this case assures that the entropy (and
hence the mutual information) calculated from data taken experimentally converges
to the true population entropy as the amount of data available increases.

Theorem 5 (Shannon Entropy Theorem). ([68]) If {Yi} are i.i.d. then

lim
n→∞

− 1

n
log p(Y1, Y2, ..., Yn) = H(Y ) a.s.

Proof. The random variables {log p(Yi)}n
i=1 are i.i.d. and so by the Strong Law of

Large Numbers

E(log(p(Y )) = lim
n→∞

1

n

n∑
i=1

log p(Yi)

= lim
n→∞

1

n
log Πn

i=1p(Yi)

= lim
n→∞

1

n
p(Y1, Y2, ..., Yn)

almost surely. 2

In many instances, as in the case of physiological recordings from a biological sensory
system, the data {Y1, Y2, ... , Yn} are not i.i.d.. For example, in the data presented
in this thesis, a single, “long” recording of a neural response is partitioned into ob-
servations of length, say, 10 ms. Inference made about population parameters from
data collected this way is justified if we can assume that Y is stationary ergodic. Now
we may appeal to the Ergodic Theorem [10, 28] and the Shannon-McMillan-Breiman
Theorem [17, 28] to justify the use of information theoretic quantities.

Theorem 6 (Ergodic Theorem). (Birkhoff, 1931, p. 113-5 [10], p. 341-3 [28]) If
ϕ is a measure preserving transformation on (Ω,O) and Y is a source with E(Y ) < ∞.



34

Then

lim
n→∞

1

n

n−1∑
i=0

Y (ϕiω) = E(Y |I) a.s.

Remark 7. If ϕ is ergodic, then E(Y |I) = E(Y ). The Ergodic Theorem in this
instance can be interpreted as a Strong Law of Large Numbers for ergodic processes.

Theorem 8 (Shannon-McMillan-Breiman Theorem). ([17] p.474-479 , [28]
p.356-360) If Yn for an integer n is an ergodic stationary sequence taking values in a
finite set Y, then

lim
n→∞

− 1

n
log p(Y0, Y1, ..., Yn−1) = H

where H ≡ limn→∞ E(− log p(Yn|Yn−1, ..., Y0)) is the entropy rate of {Yi}.

Remark 9. Theorem 5 is a special case of Theorem 8 when {Yi} are i.i.d..

Instead of considering the full space Y of all of the symbols elicited by Y , Theorem
8 gives justification for considering only a subset of Y which one ”typically observes.”
This set is defined rigourously in the following way. Each element of the output space
Y can be modelled as a sequence of symbols of a random variable

Z : (ΩZ ,OZ) → (Z,BZ)

where ΩZ and BZ are defined as in (2.1). Hence Y = Zk, the k-th extension of Z, can
be thought of as the set of all sequences of length k of symbols from Z ∈ Z. There
is a limited number of distinct messages which can be transmitted with sequences of
length k from the source Z. These are the typical sequences of Z [17].

Definition 10. The typical set Ak
ε with respect to probability density p(Z) on Z is

the set of sequences (z1, z2, . . . , zk) ∈ Zk for which

2−k(H(Z)+ε) ≤ p(z1, z2, . . . , zk) ≤ 2−k(H(Z)−ε).

(z1, z2, ..., zn) ∈ Ak
ε is called a typical sequence.

A reformulation of Theorem 8 shows that the typical set has the following prop-
erties:

Theorem 11 (Asymptotic Equipartition Property). (p. 360 [28], p. 51 [17])
If Z is stationary ergodic, then

1. If (z1, z2, ..., zk) ∈ Ak
ε then H(Z)− ε ≤ − 1

k
p(z1, z2, ..., zk) ≤ H(Z) + ε

2. p(Ak
ε ) > 1− ε for k sufficiently large
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3. (1 − ε)2k(H(Z)−ε) ≤ |Ak
ε | ≤ 2k(H(Z)+ε) for k sufficiently large. Here |A| is the

number of elements in set A.

Thus a typical set Ak
ε has probability nearly 1, typical sequences are nearly

equiprobable (with probability nearly 2−kH(Z)), and the number of typical sequences
is nearly 2kH(Z).

Now we rewrite X as a sequence of k symbols of a random variable

W : (ΩW ,OW ) → (W ,BW ),

so that X = W k. The next theorem considers the behavior of the pair (W,Z).

Definition 12. The set Ak
ε of jointly typical sequences {(wk, zk)} with respect to the

joint distribution p(w, z) on W × Z is the set

Ak
ε =

{
(wk, zk) ∈ W k × Zk :

2−k(H(W )+ε) ≤ p(wk) ≤ 2−k(H(W )−ε),

2−k(H(Z)+ε) ≤ p(zk) ≤ 2−k(H(Z)−ε),

2−k(H(W,Z)+ε) ≤ p(wk, zk) ≤ 2−k(H(W,Z)−ε)
}

,

Theorem 13 (Asymptotic Equipartition Property for jointly typical
sequences). (p. 195 of [17]) Let (W k, Zk) be a pair of i.i.d. sources. Then

1. p(Ak
ε ) > 1− ε.

2. (1− ε)2k(H(W,Z)−ε) ≤ |Ak
ε | ≤ 2k(H(W,Z)+ε) for n sufficiently large.

3. If (W̃ k, Z̃k) are a pair of random variables with joint probability p(wk, zk) =
p(wk)p(zk) (i.e. W̃ k and Z̃k are independent with the same marginal distribu-
tions as W k and Zk), then for sufficiently large k,

(1− ε)2−k(I(W ;Z)+3ε) ≤ p
(
(W̃ k, Z̃k) ∈ Ak

ε

)
≤ 2−k(I(W ;Z)−3ε).

Thus, a jointly typical set Ak
ε has probability close to 1. The number of jointly

typical sequences is nearly 2kH(W,Z) and they are each nearly equiprobable (with
probability close to 2−kI(W ;Z)). Cover and Thomas (p. 197 of [17]) give the following
argument to ascertain the number of distinguishable signals W k given a signal Zk.
Observe that there are about 2kH(W ) typical W sequences and about 2kH(Z) typical
Z sequences. However, as pointed out above, there are only about 2kH(W,Z) jointly
typical sequences. Since a jointly typical sequence has probability close to 2−kI(W ;Z),
then, for a fixed Zk, we can consider about 2kI(W ;Z) such pairs before we are likely
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to find a jointly typical pair. This suggests that the set of jointly typical sequences
can be divided into 2kI(W,Z) disjoint sets, such that projections of these sets to W k

as well as to Zk are almost disjoint. This justifies Figure 5B for spaces X = W k and
Y = Zk.

A source Y can be related to another random variable YN through the process of
quantization or lossy compression [17, 35]. YN is referred to as the reproduction of Y .
The process is defined by a conditional probability map

q(YN |Y ) : Y → YN ,

called a quantizer as in (1.20). Without loss of generality, and for simplification of
the notation, we assume that the elements or classes of YN are the natural numbers,

YN = {1, 2, ..., N}.

We will use Greek letters such as ν, δ, ω, µ and η when referring to the classes of YN .
As we point out in the Notation and Definition section of this chapter, we will write

q(YN = ν|Y = yk) = q(ν|yk) = qνk.

If we assume that |Y| = K, then q(YN |Y ) is defined by an N ×K matrix, given by




q(1|y1) q(1|y2) q(1|y3) ... q(1|yK)
q(2|y1) q(2|y2) q(2|y3) ... q(2|yK)

...
...

...
...

q(N |y1) q(N |y2) q(N |y3) ... q(N |yK)


 .

In general, quantizers are stochastic: q assigns to each y ∈ Y the probability that
the response y belongs to an abstract class ν ∈ YN . A deterministic quantizer is a
special case in which qνk takes the values of 0 or 1 for every ν and k. The uniform
quantizer, which we denote by q 1

N
, is the special case when

q 1
N

(ν|yk) =
1

N
(2.7)

for every ν and k. The constraint space ∆ from (1.11),

∆ :=

{
q(YN |Y ) |

∑
ν∈YN

q(ν|y) = 1 and q(ν|y) ≥ 0 ∀y ∈ Y
}

,

is the space of valid quantizers in <NK .
It can be shown [35] that the mutual information I(X; Y ) is the least upper

bound of I(X; YN) over all possible reproductions YN of Y . Hence, the original
mutual information can be approximated with arbitrary precision using carefully
chosen reproduction spaces.
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The new random variable YN produced by a quantization q(YN |Y ) has associated
probabilities p(YN), computed by

p(YN = ν) =
∑

y

q(ν|y)p(y).

Given an information channel (X, Y ), the random variables X,Y, YN form a Markov
chain [22]

X ↔ Y ↔ YN ,

which means that

p(X = x, Y = y, YN = ν) = p(x)p(y|x)q(ν|y)

and that

p(X = x, Y = y, YN = ν) = p(ν)p(y|ν)p(x|y)

= p(y)q(ν|y)p(x|y). (2.8)

The Distortion Function D(q)

The class of problems (1.9)

max
q∈∆

(G(q) + βD(q))

which we analyze in this thesis contain the cost functions used in Rate Distortion
Theory [17, 35], Deterministic Annealing [61], the Information Distortion [22, 20, 29]
and the Information Bottleneck methods [78, 70, 69]. We discuss the explicit form of
the function D(q), called a distortion function, for each of these scenarios.

Rate Distortion Theory is the information theoretic approach to the study of opti-
mal source coding systems, including systems for quantization and data compression
[35]. To define how well a source, the random variable Y , is represented by a partic-
ular representation using N symbols, which we call YN , one introduces a distortion
function between Y and YN

D(q(YN |Y )) = D(Y, YN) = EY,YN
d(Y, YN) =

∑
y

∑
ν∈YN

q(ν|y)p(y)d(y, ν)

where d(Y, YN) is the pointwise distortion function on the individual elements of Y and
YN . q(YN |Y ) is the quantization of Y into the representation YN . A representation
YN is said to be optimal if there is a quantizer q∗(YN |Y ) such that

D(q∗) = min
q∈∆

D(q). (2.9)
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In engineering and imaging applications, the distortion function is usually chosen as
the mean squared error [17, 61, 31],

D̂(Y, YN) = EY,YN
d̂(Y, YN) =

∑
y

∑
ν∈YN

q(ν|y)p(y)d̂(y, ν), (2.10)

where the pointwise distortion function d̂(Y, YN) is the Euclidean squared distance,

d̂(Y = y, YN = ν) = ‖y − ν‖2.

This requires that Y ,YN ⊂ <NK . In this case, D̂(Y, YN) is a linear function of the
quantizer q.

The Information Distortion Problem

In neural coding, as we have seen in chapter 1, one can model the neural decoder
by p(X|Y ), the stochastic map from the space of neural responses Y to the stimulus
space X . The Information Distortion method examined in chapter 1 determines an
approximation to p(X|Y ) by quantizing the neural responses Y into a reproduction
space YN by minimizing a distortion function as in (2.9). We now determine the
explicit form of the distortion function used by the Information Distortion method,
which we call the information distortion measure, then show how one optimizes this
function.

The Information Distortion Measure
Since the metric between spike trains may not coincide with Euclidean distance

[83, 84] (see (1.19)), the Information Distortion method does not impose D̂(q) from
(2.10) as the distortion function when searching for a neural decoder.

The natural measure of closeness between two probability distributions is the
Kullback-Leibler divergence (see (2.6)) [22]. For each fixed y ∈ Y and ν ∈ YN ,
p(X|Y = y) and p(X|YN = ν) are a pair of distributions on the space X. As a
pointwise distortion function, consider

d(Y, YN) = KL(p(X|y)||p(X|ν)).

Unlike the pointwise distortion functions usually investigated in information theory
[17, 61], DI explicitly considers a third space, X , of inputs, and it is a nonlinear
function of the quantizer q(YN |Y ) through

p(X = x|YN = ν) =
∑

y

p(x, y, ν)

p(ν)

=
∑

y

q(ν|y)p(y)p(x|y)

p(ν)
,
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where the last equality follows from (2.8) . The information distortion measure is
defined as the expected Kullback-Leibler divergence over all pairs (y, ν)

DI(q(YN |Y )) = DI(Y, YN) := EY,YN
KL(p(X|Y = y)||p(X|YN = ν)). (2.11)

We derive an alternate expression for DI . Starting from the definition

DI =
∑

y∈Y,ν∈YN

p(y, ν) KL
(
p(X|y)‖p(X|ν)

)

=
∑
y,ν

p(y, ν)
∑

x

p(x|y) log
p(x|y)

p(x|ν)

=
∑
x,y,ν

p(x, y, ν)
(
log p(x|y)− log p(x|ν)

)
(2.12)

=
∑
x,y

p(x, y) log
p(x, y)

p(x)p(y)
−

∑
x,ν

p(x, ν) log
p(x, ν)

p(x)p(ν)
(2.13)

= I(X; Y )− I(X; YN)

In (2.12) we used the Markov property (2.8), and (2.13) is justified by using the
identities p(x, y) =

∑
ν p(x, y, ν), p(x, ν) =

∑
y p(x, y, ν) and the Bayes property

p(x, y)/p(y) = p(x|y). This shows that the information distortion measure can be
written as

DI = I(X; Y )− I(X; YN).

Recall from (2.9) that the goal is to find a quantization q(ν|y) for a fixed reproduction
size N that minimizes the information distortion measure DI

min
q∈∆

DI . (2.14)

Since the only term in DI that depends on the quantizer is I(X; YN), we can replace
DI with the effective distortion

Deff := I(X; YN)

in the optimization problem. Thus, the minimizer of (2.14) is the maximizer of

max
q∈∆

Deff . (2.15)

Applying the information distortion measure to neural data, which, as we have
just seen, is equivalent to maximizing the mutual information between the stimulus
and the quantized neural responses, has theoretical justification [9, 20, 22, 37, 51, 59,
64, 72, 83, 84].

The Information Bottleneck method is another unsupervised non-parametric data
clustering technique [78, 70, 69] which has been applied to document classification,
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gene expression, neural coding [64] and spectral analysis. It also uses DI(q) as the
distortion function.

The Maximal Entropy Problem
Solving (2.15) directly is difficult using many numerical optimization techniques

since there are many local, suboptimal maxima on the boundary of ∆ [61, 22]. This
is not surprising since Deff is convex and ∆ is a convex domain. To deal with this
issue, the Information Distortion method introduces a strictly concave function, the
entropy H(YN |Y ), to maximize simultaneously with Deff , which serves to regularize
the problem (2.15) [61],

max
q∈∆

H(YN |Y ) constrained by (2.16)

Deff (q) ≥ I0

In other words, of all the local solutions q∗ to (2.15), the method seeks the one that
maximizes the entropy. Using the entropy as a regularizer is justified by Jayne’s
maximum entropy principle (see Remark 3), since among all quantizers that satisfy a
given set of constraints, the maximum entropy quantizer does not implicitly introduce
additional constraints in the problem [36]. Thus, the problem of optimal quantization
(2.15) is reformulated [22] as a maximum entropy problem with a distortion constraint
(2.16). The goal is to find the maximal entropy solution for a maximal possible value
of Deff .

Tishby et al. use the concave function I(Y ; YN) as a regularizer [70, 78]. The
fact that I(Y ; YN) is concave (and not strictly concave) causes some difficulties for
numerics, which we discuss in chapter 4.

The conditional entropy H(YN |Y ) and the function Deff , can be written explicitly
in terms of qνk = q(ν | yk)

H(YN | Y ) = −EY,YN
log q(YN |Y )

= −
∑

ν,k

p(yk)qνk log (qνk) (2.17)

and

Deff = I(X; YN) = EX,YN
log

p(X,YN)

p(X)p(YN)

=
∑

ν,k,i

qνkp(xi, yk) log

( ∑
k qνkp(xi, yk)

p(xi)
∑

k p(yk)qνk

)
. (2.18)

Derivatives
To find local solutions of (2.16) (see chapter 9), we compute the first and second

derivatives of H(YN |Y ) and Deff . To determine the bifurcation structure of these
solutions (see chapter 6), we compute the third and fourth derivatives.
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The gradient of H(YN |Y ) with respect to q is [22]

(∇H)νk ≡ −∂H(YN |Y )

∂qνk

(2.19)

= −p(yk)
(
log qνk +

1

ln2

)
.

The Hessian of H(YN |Y ) is [22]

∂2H(YN |Y )

∂qηl∂qνk

= − ∂

∂qηl

p(yk)
(
log qνk +

1

ln2

)
(2.20)

= − p(yk)

(ln2)qνk

δνηδkl.

The three dimensional array of third derivatives is

∂3H(YN |Y )

∂qδm∂qηl∂qνk

= − ∂

∂qδm

p(yk)

(ln2)qνk

δνηδkl (2.21)

=
p(yk)

(ln2)q2
νk

δνηδδklm.

The four dimensional array of fourth derivatives is

∂4H(YN |Y )

∂qµp∂qδm∂qηl∂qνk

=
∂

∂qµp

p(yk)

(ln2)q2
νk

δνηδδklm (2.22)

= − 2

(ln2)

p(yk)

q3
νk

δνηδµδklmp.

The gradient of Deff is [22]

(∇Deff )νk ≡ ∂Deff

∂qνk

=
∑

i

p(xi, yk) log

∑
k qνkp(xi, yk)

p(xi)
∑

k qνkp(yk)
.

The Hessian of Deff is [22]

∂2Deff

∂qηl∂qνk

=
∂

∂qηl

∑
i

p(xi, yk) log

∑
k qνkp(xi, yk)

p(xi)
∑

k qνkp(yk)

=
δνη

ln2

(∑
i

p(xi, yk) p(xi, yl)∑
k qνkp(xi, yk)

− p(yk)p(yl)∑
k qνkp(yk)

)
. (2.23)

The three dimensional array of third derivatives
∂3Deff

∂qδm∂qηl∂qνk
is

δνηδ

ln2

(
p(yk)p(yl)p(ym)

(
∑

k qνkp(yk))
2 −

∑
i

p(xi, yk) p(xi, yl)p(xi, ym)

(
∑

k qνkp(xi, yk))
2

)
. (2.24)
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The four dimensional array of fourth derivatives
∂4Deff

∂qµp∂qδm∂qηl∂qνk
is

2δνηδµ

ln2

(∑
i

p(xi, yk) p(xi, yl)p(xi, ym)p(xi, yp)

(
∑

k qνkp(xi, yk))
3 − p(yk)p(yl)p(ym)p(yp)

(
∑

k qνkp(yk))
3

)
. (2.25)

Dealing with Complex Inputs
To successfully apply the Information Distortion method to physiological data,

we need to estimate the information distortion Deff , which in turn depends on the
joint stimulus/response probability p(X, Y ). If the stimuli are sufficiently simple,
p(X,Y ) can be estimated directly as a joint histogram, and the method applied by
solving (2.16). In general, we want to analyze conditions close to the natural for
the particular sensory system, which usually entails observing stimulus sets of high
dimensionality. Characterizing such a relationship non-parametrically is extremely
difficult, since usually one cannot provide the large amounts of data this procedure
needs [51]. To cope with this regime, we model the stimulus/response relationship
[23, 25]. The formulation as an optimization problem suggests certain classes of
models which are better suited for this approach. We shall look for models that give
us strict lower bounds D̃eff of the information distortion function Deff . In this case,
when we maximize the lower bound D̃eff , the actual value of Deff is also increased,
since I(X; Y ) ≥ Deff ≥ D̃eff ≥ 0. This also gives us a quantitative measure of the
quality of a model: a model with a larger D̃eff is better.

In [24, 25, 29] the authors modelled the class conditioned stimulus p(X|YN = ν)
with the Gaussian:

p(X|YN = ν) = N(xν , CX|ν). (2.26)

The class conditioned stimulus mean xν and covariance matrix CX|ν can be estimated
from data. The stimulus estimate obtained in this manner is effectively a Gaussian
mixture model [18]

p(X) =
∑

ν

p(ν)N(xν , CX|ν)

with weights p(ν) and Gaussian parameters (xν , CX|ν). This model produces an upper

bound [59] H̃(X|YN) of H(X|YN):

H̃(X|YN = ν) =
∑

ν

p(ν)
1

2
log(2πe)|X| det

[ ∑
y

p(y|ν)(CX|y + x2
y)− (

∑
y

p(y|ν)xy)
2
]
.

(2.27)
Here x2

y is the matrix xyx
T
y .

Since H̃(X|YN) is an upper bound on H(X|YN) and

Deff = I(X; YN) = H(X)−H(X|YN),
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the quantity
D̃eff (q(YN |Y ) := H(X)− H̃(X|YN) (2.28)

is the lower bound to Deff . This transforms the optimization problem (2.16) for
physiological data to

max
q∈∆

H(YN |Y ) constrained by (2.29)

D̃eff (q(ν|y)) ≥ I0 and∑
ν∈YN

q(ν|y) = 1 and q(ν|y) ≥ 0 ∀y ∈ Y.

It is not immediately obvious that solutions to (2.29) have properties similar to the
solutions of (2.16). Gedeon et al. [29] showed that D̃eff is convex in q(YN |Y ). This
implies that for the problem (2.29), the optimal quantizer q∗(YN |Y ) will be generically
deterministic (Theorems 153 and 154). This means that D̃eff can be used in place of
Deff in the problem (2.34).

The Function G(q)

The class of problems (1.9)

max
q∈∆

G(q) + βD(q)

which we analyze in this thesis contain similar cost functions used in Rate Distortion
Theory [17, 35], Deterministic Annealing [61], the Information Distortion [22, 20, 29]
and the Information Bottleneck methods [78, 70, 69]. In this section we discuss the
explicit form of the function G(q) for each of these scenarios.

There are two related methods used to analyze communication systems at a dis-
tortion D(q) ≤ D0 for some given D0 ≥ 0 [17, 35, 61]. In rate distortion theory
[17, 35], the problem of finding a minimum rate at a given distortion is posed as a
minimal information rate distortion problem (as in (1.5)):

minq∈∆ I(Y ; YN)
D(Y, YN) ≤ D0

. (2.30)

This formulation is justified for i.i.d. sources by the Rate Distortion Theorem [17].
A similar exposition using the Deterministic Annealing approach [61] is a maximal

entropy problem (as in (1.2))

maxq∈∆ H(YN |Y )
D(Y ; YN) ≤ D0

. (2.31)

The justification for using (2.31) is Jayne’s maximum entropy principle [36] (see
Remark 3). The formulations (2.30) and (2.31) are related since

I(Y ; YN) = H(YN)−H(YN |Y ).
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Let I0 > 0 be some given information rate. In (2.16), the neural coding problem
is formulated as an entropy problem as in (2.31)

maxq∈∆ H(YN |Y )
Deff (q) ≥ I0

(2.32)

which uses the nonlinear effective information distortion measure Deff . Tishby et.
al. [78, 70] pose an information rate distortion problem as in (2.30)

minq∈∆ I(Y ; YN)
Deff (q) ≥ I0

. (2.33)

Using the method of Lagrange multipliers, the rate distortion problems (2.30),
(2.31), (2.32), (2.33) can be reformulated as finding the maxima of

max
q∈∆

F (q, β) = max
q∈∆

(G(q) + βD(q))

as in (1.9) where β ∈ [0,∞). This construction removes the nonlinear constraint
from the problem and replaces it with a parametric search in β(I0). For the maximal
entropy problem (2.32),

F (q, β) = H(YN |Y ) + βDeff (q) (2.34)

and so in this case G(q) from (1.9) is the conditional entropy H(YN |Y ) (compare with
(1.4)). For the minimal information rate distortion problem (2.33),

F (q, β) = −I(Y ; YN) + βDeff (q) (2.35)

and so here G(q) = −I(Y ; YN) (compare with (1.6)).
We now compare the two formulations (2.32) and (2.34). In [22, 29, 61], one

explicitly considers (2.34) for β = ∞. This involves taking

lim
β→∞

max
q∈∆

F (q, β) = max
q∈∆

Deff (q)

which in turn gives minq∈∆ DI . This observation can be made rigorous by noting
that Deff , as a continuous function on a compact domain ∆, has a maximal value I∗.
Therefore, for values of the parameter I0 > I∗ problem (2.32) has no solution. On the
other hand, problem (2.34) has a solution for all values of β, since F is a continuous
function on a compact set ∆. We have the following result

Lemma 14. [29] Let q∗ be a solution of (2.32) with I0 = I∗. Let q(β) be a solution of
problem (2.34) as a function of the annealing parameter β. Then

lim
β→∞

Deff (q(β)) → I∗.
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Proof. As β →∞ the solution q(β) converges to the solution of the problem

max
q∈∆

Deff .

The maximum of Deff on ∆ is I∗. 2

In the Information Bottleneck method, one may only be interested in solutions
to (2.35) for finite B which takes into account a tradeoff between I(Y ; YN) and Deff .
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CHAPTER 3

THE DYNAMICAL SYSTEM

When using the method of annealing, Algorithm 1, to solve (1.9),

max
q∈∆

(G(q) + βD(q)),

one obtains a sequence of solutions {(qk, βk)} that converge to (q∗,B), where B ∈
(0,∞), and

q∗ = argmaxq∈∆(G(q) + BD(q)).

As we explained in chapter 1, it has been observed that the solution branch which
contains {(qk, βk)} undergoes bifurcations or phase transitions. The purpose of this
chapter is to formulate a dynamical system so that we may study the bifurcation
structure of these solutions. First, we must present the rudiments of Constrained
Optimization Theory. Then we present the formulation of the dynamical system,
whose equilibria are the stationary points of (1.9).

The Optimization Problem

The objective of this thesis is to solve the problem (1.9). We now pose a slightly
different optimization problem, one which does not explicitly enforce the nonnega-
tivity constraints of ∆, which will help us to understand the bifurcation structure of
solutions to (1.9) (see Remarks 19 and 28).

Consider the optimization problem

max
q∈∆E

F (q, β) (3.1)

for fixed β = B ∈ [0,∞), where

F (q, β) = G(q) + βD(q) (3.2)

as in (1.9) and (1.10), and

∆E :=

{
q ∈ <NK |

∑
ν∈YN

qνk = 1 ∀ yk ∈ Y
}

(compare with (1.11)). As with Assumptions 2 on (1.9), we assume that

Assumption 15.
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1. G and D are real valued functions of q(YN |Y ), which depend on YN only through
q, are invariant to relabelling of the elements or classes ν of YN That is, G and
D are SN -invariant, with the explicit group action defined in (6.6).

2. G and D are sufficiently smooth in q and β on the interior of ∆.

3. The Hessians of G and D are block diagonal.

Assumption 15 holds for the Information Distortion and the Information Bottleneck
cost functions (2.34) and (2.35). We prove this claim in the former case in Theorem
73.

We rewrite (3.1) using its Lagrangian

L(q, λ, β) = F (q, β) +
K∑

k=1

λk

(
N∑

ν=1

qνk − 1

)
, (3.3)

where the scalar λk is the Lagrange multiplier for the constraint
∑N

ν=1 qνk − 1 = 0,
and λ is the K × 1 vector of Lagrange multipliers

λ =




λ1

λ2
...

λK


 .

The gradient of (3.3) is

∇q,λL(q, λ, β) =

( ∇qL
∇λL

)
, (3.4)

where

∇qL = ∇F (q, β) + Λ, (3.5)

and Λ =
(
λT λT ... λT

)T
, an NK × 1 vector. The gradient ∇λL is the vector of K

constraints

∇λL =




∑
ν qν1 − 1∑
ν qν2 − 1

...∑
ν qνK − 1


 (3.6)

imposed by ∆E . Let J be the K ×NK Jacobian of (3.6)

J := ∂q∇λL = ∂q




∑
ν qν1 − 1∑
ν qν2 − 1

...∑
ν qνK − 1


 =

(
IK IK ... IK

)
︸ ︷︷ ︸

N blocks

. (3.7)
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Observe that J has full row rank. The (NK + K)× (NK + K) Hessian of (3.3) is

∆q,λL(q, λ, β) =

(
∆F (q, β) JT

J 000

)
, (3.8)

where 000 is K × K. The NK × NK matrix ∆F is the block diagonal Hessian of F
(Assumption 15.3),

∆F =




B1 000 ... 000
000 B2 ... 000
...

...
...

000 000 ... BN


 , (3.9)

where 000 and Bi are K ×K matrices for i = 1, ..., N .
There are optimization schemes, such as the implicit solution (see (9.20)) and

projected Augmented Lagrangian methods (Algorithm 149), which exploit the struc-
ture of (3.3) and (3.4) to find local solutions to (3.1). This exploitation depends on
the following first order necessary conditions:

Theorem 16 (Karush-Kuhn-Tucker Conditions). ([50] p328) Let x∗ be a local
solution of

max
x∈Ω

f(x)

where the constraint space Ω is defined by some equality constraints, ci(x) = 0, i ∈ E ,
and some inequality constraints, ci(x) ≥ 0, i ∈ I. Suppose that the Jacobian of the
constraints has full row rank. Then there exists a vector of Lagrange multipliers, λ∗,
with components λi, i ∈ E ∪ I such that

∇xf(x∗) = −
∑

i∈E∪I
λi∇xci(x

∗)

ci(x
∗) = 0 , for all i ∈ E

ci(x
∗) ≥ 0 , for all i ∈ I
λ∗ ≥ 0 , for all i ∈ I

λ∗ci(x
∗) = 0 , for all i ∈ E ∪ I (3.10)

Remark 17. Using the notation from Theorem 16, the equality constraints from (1.9)
and (3.1) are represented as

{ci(q)}i∈E =

{∑
ν

qνk − 1

}K

k=1

. (3.11)

Thus, if q ∈ ∆E , then ci(q) = 0 for every i ∈ E . For the inequality constraints which
are present only in the problem (1.9), we have that

{ci(q)}i∈I = {qνk}ν∈YN ,1≤k≤K . (3.12)

In this case then, q ∈ ∆ implies that ci(q) ≥ 0 for every i ∈ I.
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The Karush-Kuhn-Tucker or KKT conditions for solutions of (3.1) only entail equality
constraints. Furthermore, the Jacobian of these equality constraints is the matrix with
full row rank given in (3.7). We have the following corollary.

Corollary 18. Let q∗ be a local solution of (3.1) for some fixed β. Then there exists
a vector of Lagrange multipliers, λ∗ ∈ <K, such that

∇qL(q∗, λ∗, β) = 000

[∇λL(q∗, λ∗, β)]k =
∑

ν

qνk − 1 = 0.

Recall that a stationary point of a differentiable function f(xxx) is a point where
∇xxxf(xxx∗) = 000. A stationary point of a constrained system such as (3.1) is a point where
∇q,λL = 0. In other words, it is a point where the KKT conditions are satisfied.

Remark 19. One reason we consider the problem (3.1) instead of (1.9) is the follow-
ing. The Lagrangian for the latter maximization problem is

L̂(q, λ, ξ, β) = F (q, β) +
K∑

k=1

λk(
N∑

ν=1

qνk − 1) +
K∑

k=1

N∑
ν=1

ξνkqνk, (3.13)

where {λk} are the Lagrange multipliers for the equality constraints (3.11) and {ξνk}
are the Lagrange multipliers for the inequality constraints (3.12). Thus, [∇ξL̂]νk =
qνk. From this, (3.6), and (3.7), we see that the Jacobian of the constraints in this
case is

∂q∇λ,ξL̂ =




J
eeeT

1

eeeT
2
...

eeeT
NK




,

which does not have full row rank as required by Theorem 16 since the row space of J
is a subspace of span(eee1, eee2, ..., eeeNK).

If (q, β) is a stationary point of (1.9) in the interior of ∆, then the inequality
constraints (3.12) are inactive: ci(q

∗) > 0 for i ∈ I. By requirement (3.10) of
Theorem 16 and the fact that {ci}i∈I = {qνk}ν∈YN ,yk∈Y , then for the vector of Lagrange
multipliers ξ from (3.13), ξνk = 0 for every ν and k. Thus,

∇q,λL̂ = ∇q,λL = 000 (3.14)

by Theorem 16, which shows that a stationary point to (1.9) in the interior of ∆ is a
stationary point of (3.1).

For a general optimization problem, the best that any optimization scheme can
accomplish is to procure a stationary point ([50] p.45). To determine whether a given



50

stationary point q ∈ <NK is truly a local solution of (3.1), one appeals to the following
theorem:

Theorem 20. ([50], p 345 and 348) Assume that the Jacobian of the constraints, J ,
has full row rank and that for some q∗ ∈ ∆E there is a vector of Lagrange multipliers
λ∗ such that the KKT conditions (Theorem 16) are satisfied. If

wwwT ∆qL(q∗, λ∗, β)www < 0

for all www ∈ ker J then q∗ is a local solution for (3.1). Conversely, if q∗ is a local
solution for (3.1), then

wwwT ∆qL(q∗, λ∗, β)www ≤ 0

for all www ∈ ker J .

Hence, to find a local solution of (3.1) for some β, we need to find q∗ such that
∇q,λL(q∗, λ∗, β) = 000 and that ∆q,λL(q∗, λ∗, β) is negative definite on ker J .

Remark 21.

1. The constraints of (3.1) are linear. It follows that ∆qL(q, λ, β) = ∆F (q, β).
Therefore, if we track q∗ where the KKT conditions are satisfied and where
∆F (q∗, β) is negative definite on ker J , then we satisfy the assumptions of The-
orem 20 which shows that q∗ is a local solution to (3.1).

2. Let d := dim ker J and let Z be the NK× d matrix with full column rank whose
columns span ker J . Thus, any www ∈ ker J can be written as Zuuu for some uuu ∈ <d.
The condition

wwwT ∆F (q∗, β)www ≤ 0 ∀www ∈ ker J

can be restated as
uuuT ZT ∆F (q∗, β)Zuuu ≤ 0 ∀uuu ∈ <d.

Hence, the conditions of Theorem 20 become that ZT ∆F (q∗, β)Z must be (non)-
negative definite.

The Gradient Flow

We wish to pose (3.1) as a dynamical system in order to study bifurcations of
its local solutions. This section provides the explicit dynamical system which we will
study. First, some terminology is introduced. Let

ẋxx = ψ(xxx, β), (3.15)

where xxx is in some Banach space B2 and β ∈ <, so that

ψ : B2 ×< → B0 (3.16)



51

for some Banach space B0. The solutions (xxx, β) ∈ B2 ×< which satisfy

ψ(xxx, β) = 000 (3.17)

are equilibria of the system. Such a continuum of solutions is called a solution branch
or a branch of equilibria of (3.15). The Jacobian of ψ is ∂xxxψ. Let n(β) be the number
of xxx’s for which (xxx, β) is a solution of (3.17).

Definition 22. (xxx∗, β∗) is a bifurcation point if n(β) changes as β varies in a neigh-
borhood of β∗.

Remark 23. This definition of bifurcation, as used in [33], may seem too restrictive.
However, the class of systems we study are gradient systems, ψ = ∇xxxf (compare
with (3.15)), where f is some scalar function. Thus, the bifurcations allowed by
Definition 22 are the only ones that can occur. This is because the Jacobian, ∂xxxψ =
∆xxxf , is a symmetric matrix , and so it has only real eigenvalues [65]. Bifurcations
not considered in Definition 22, such as Hopf bifurcations, require purely imaginary
eigenvalues [6].

Theorem 24. If (xxx∗, β∗) is a bifurcation of (3.17) then ∂xxxψ(xxx∗, β∗) is singular.

Proof. If ∂xxxψ(xxx∗, β∗) is not singular then the Implicit Function Theorem gives that
xxx∗ = xxx(β) is the unique solution of (3.17) about (xxx∗, β∗). Therefore, (xxx∗, β∗) cannot
be a bifurcation point. 2

Definition 25. If ∂xxxψ(xxx∗, β∗) is singular, but (xxx∗, β∗) is not a bifurcation point of
(3.17), then (xxx∗, β∗) is a degenerate singularity.

Now back to our purpose stated at the beginning of this section: We wish to pose
(3.1) as a dynamical system in order to study bifurcations of its local solutions. To
this end, consider the equilibria of the gradient flow

(
q̇

λ̇

)
= ∇q,λL(q, λ, β) (3.18)

for L as defined in (3.3) and β ∈ [0,∞). The equilibria of (3.18) are points

(
q∗

λ∗

)

where
∇q,λL(q∗, λ∗, β) = 0.

The Jacobian of this system is the Hessian ∆q,λL(q, λ, β) from (3.8).

Definition 26. An equilibrium (q∗, λ∗) of (3.18) is stable if ∆q,λL(q∗, λ∗, β) is neg-
ative definite. The equilibrium (q∗, λ∗) is unstable if ∆q,λL(q∗, λ∗, β) is not negative
definite.
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Remark 27. By Theorem 20 and Remark 21.1, the equilibria (q∗, β) of (3.18) where
∆F (q∗, β) is negative definite on ker J are local solutions of (3.1). Conversely local
solutions (q∗, β) of (3.1) are equilibria of (3.18) such that ∆F (q∗, β) is non-positive
definite on ker J .

By Remark 27, we determine the bifurcation structure of equilibria of (3.18), q∗,
such that ∆F (q∗, β) is non-positive definite on ker J for each β ∈ [0,∞). A note
of caution is in order: these equilibria need not be stable in the flow (3.18). In
fact, ∆q,λL(q∗, λ∗, β) need not be negative definite even when ∆F (q∗, β∗) is negative
definite. For example, for the Information Distortion in the case of the Four Blob
problem presented in chapter 1,where N = 4 and K = 52, the 260 × 260 Hessian
∆q,λL always has at least 52 positive eigenvalues along the solution branch (q 1

N
, β)

for every beta.

Remark 28. We now point out another reason why we choose to solve (3.1) instead
of (1.9). The gradient flow associated with (1.9) may be given as




q̇

λ̇

ξ̇


 = ∇q,λ,ξL̂(q, λ, ξ, β),

where L̂ is defined as in (3.13)

L̂(q, λ, ξ, β) = F (q, β) +
K∑

k=1

λk(
N∑

ν=1

qνk − 1) +
K∑

k=1

N∑
ν=1

ξνkqνk.

There are no equilibria of this system for any β since if ∇q,λ,ξL̂(q∗, λ∗, ξ∗, β) = 000, then

the equality constraints must be satisfied, ∇λL̂(q∗, λ∗, ξ∗, β) = 000 (see (3.6)), and all
of the inequality constraints are active: ∇ξL̂(q∗, λ∗, ξ∗, β) = q∗ = 000. These conditions
clearly cannot both be satisfied. One could instead define the flow

(
q̇

λ̇

)
= ∇q,λL̂(q, λ, ξ, β). (3.19)

As we point out in (3.14), for an equilibrium (q∗, λ∗, ξ∗, β) of (3.19) in the interior
of ∆,

∇q,λL̂(q∗, λ∗, ξ, β) = ∇q,λL(q∗, λ∗, β) = 000

if (3.10) holds, which shows that (q∗, λ∗, β) is an equilibrium of (3.18).
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CHAPTER 4

KERNEL OF THE HESSIAN

The kernel of ∆q,λL plays a pivotal role in the analysis that follows. This is due
to the fact that a bifurcation of equilibria of (3.18)

(
q̇

λ̇

)
= ∇q,λL(q, λ, β)

at β = β∗ happens when ker ∆q,λL(q∗, λ∗, β∗) is nontrivial (Theorem 24). In this
chapter, we determine some properties which any vector k ∈ ker ∆q,λL must satisfy.
We then derive a way to evaluate det ∆q,λL, which depends only on the blocks {Bi}
of ∆F . We describe the three types of generic singularities of ∆q,λL and ∆F which
can occur, and we also provide an overview of how the singularities of ∆q,λL and ∆F
dictate the bifurcation structure of equilibria of (3.18) (Figure 12). We conclude the
chapter by analyzing the singularities of ∆q,λL and ∆F for the Information Bottleneck
problem (2.35).

General Form of a Vector in the Kernel

Consider an element kkk ∈ ker ∆q,λL(q∗, λ∗, β∗). In this section, we determine some
properties which any vector k ∈ ker ∆q,λL must satisfy, which will prove useful in the
sequel. Decompose kkk as

kkk =

(
kkkF

kkkJ

)
(4.1)

where kkkF is NK × 1 and kkkJ is K × 1. Hence

∆q,λL(q∗, λ∗, β)kkk =

(
∆F (q∗, β∗) JT

J 000

) (
kkkF

kkkJ

)
= 000

=⇒
(

∆F (q∗, β)kkkF + JTkkkJ

JkkkF

)
= 000 (4.2)

=⇒ ∆F (q∗, β)kkkF = −JTkkkJ (4.3)

JkkkF = 000 . (4.4)

From (3.9), (3.7), and (4.3) we have



B1 000 ... 000
000 B2 ... 000
...

...
...

000 000 ... BN


kkkF = −




kkkJ

kkkJ
...

kkkJ


 . (4.5)
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We set

kkkF =




xxx1

xxx2
...

xxxN


 , (4.6)

where xxxi is K × 1, so that (4.5) becomes




B1xxx1

B2xxx2
...

BNxxxN


 = −




kkkJ

kkkJ
...

kkkJ


 . (4.7)

From (4.4), JkkkF = 000, and so (3.7) implies that

∑
ν

xxxν = 0. (4.8)

Theorem 29. Let (q∗, β∗) be a local solution to (3.1) such that ∆F (q∗, β∗) is negative
definite on ker J , and let λ∗ be the vector of Lagrange multipliers such that the KKT
conditions hold (Theorem 16). Then ∆q,λL(q∗, λ∗, β∗) is nonsingular.

Proof. Let d and Z be defined as in Remark 21.2. Let www ∈ ker J which implies
Zuuu = www for some uuu ∈ <d. Thus

wwwT ∆Fwww = uuuT ZT ∆FZuuu < 0 for every nontrivial uuu ∈ <d (4.9)

by the assumption on ∆F (q∗). Now let kkk ∈ ker ∆q,λL(q∗, λ∗, β∗) and decompose it as
in (4.1). By (4.4), kkkF ∈ ker J . From (4.3), we see that

kkkT
F ∆FkkkF = −kkkT

F JTkkkJ = −(JkkkF )TkkkJ = 000.

By (4.9), kkkF = 000. Substituting this into (4.3) shows that JTkkkJ = 000, and so kkkJ = 000
since JT has full column rank (by (3.7)). Therefore ker ∆q,λL = {000} and we are done.
2

Remark 30.

1. The proof to Theorem 29 does not depend on the particular form of the La-
grangian (3.3). The theorem holds for general optimization problems as long as
the constraints of the optimization problem are linear (from which it follows that
∆F = ∆qL) and the Jacobian of the constraints has full row rank (assumption
of Theorem 20) so that Theorem 20 and Remark 21.2 can be applied.
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2. The proof to Theorem 29 gives an interesting result. Assuming the hypotheses
of the theorem and that ∆F is negative definite, then (4.7) holds if and only if

xxxν = B−1
ν kkkJ ∀ν : 1 ≤ ν ≤ N.

It follows from (4.8) that (
∑

ν B−1
ν )kkkJ = 000, which has kkkJ = 000 as the unique

solution if and only if
∑

ν B−1
ν is nonsingular. Since the proof to the theorem

shows the former, then
∑

ν B−1
ν must be nonsingular.

For some equilibria of (3.18) such that ∆F (q∗, β) is negative definite on ker J , The-
orem 29 shows a relationship between ∆F (q∗, λ∗, β) and ∆q,λL(q∗, λ∗, β): ∆q,λL(q∗, λ∗, β)
is nonsingular. In fact, a much more complex relationship is shown later in this chap-
ter.

Determinant Forms of the Hessian

We now provide explicit forms of the determinant of ∆q,λL, which, of course,
determines whether ∆q,λL is singular. The interesting fact is that it depends only on
the blocks {Bi} of ∆F . In particular, Theorem 33 shows that

det ∆q,λL = (−1)K det




(B1 + BN) BN ... BN BN

BN (B2 + BN) ... BN BN

BN BN BN BN
...

...
...

...
BN BN ... BN (BN−1 + BN)




,

and Corollary 35 shows that when every block of ∆F is identically B, then

det ∆q,λL = (−N)K(det B)N−1.

Before proving these results, we present the following general theorem.

Proposition 31. ([65] p.250) Let A be a square matrix that can be partitioned as

A =

(
A11 A12

A21 A22

)

where A11 and A22 are square matrices. Then

det A = det A11 det(A22 − A21A
−1
11 A12)

if A11 is nonsingular, and

det A = det A22 det(A11 − A12A
−1
22 A21)

if A22 is nonsingular.
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An immediate consequence of Proposition 31 is the following theorem.

Theorem 32. If ∆F is nonsingular with blocks {Bi}N
i=1, then

det ∆q,λL = − det

(∑
i

B−1
i

)
ΠN

i=1 det Bi.

Proof. By (3.8),

det ∆q,λL = det

(
∆F JT

J 000

)
.

Applying Proposition 31 with A11 = ∆F , we have that

det ∆q,λL = det ∆F det(000− J∆F−1JT ).

Since ∆F is block diagonal as in (3.9), then det ∆F = ΠN
i=1 det Bi and

∆F−1 =




B−1
1 000 ... 000
000 B−1

2 ... 000
...

...
...

000 000 ... B−1
N


 .

This and the fact that J =
(

IK IK ... IK

)
(see (3.7)) prove the theorem. 2

The following theorem is more general since it does not require the condition that
∆F be nonsingular.

Theorem 33.

det ∆q,λL = (−1)K det




(B1 + BN) BN ... BN BN

BN (B2 + BN) ... BN BN

BN BN BN BN
...

...
...

...
BN BN ... BN (BN−1 + BN)




Proof. From (3.7), (3.8), and (3.9), we have that the determinant of the (NK +K)×
(NK + K) matrix ∆q,λL is given by

det ∆q,λL = det




B1 000 ... 000 IK

000 B2 ... 000 IK

000 000 000 IK
...

...
...

...
000 000 ... BN IK

IK IK ... IK 000
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where 000 is a K ×K matrices of zeros. Moving the last K rows of the determinant on
the right hand side NK rows up gives

det ∆q,λL = (−1)NK2

det




IK IK ... IK 000
B1 000 ... 000 IK

000 B2 ... 000 IK

000 000 000 IK
...

...
...

...
000 000 ... BN IK




.

Applying Proposition 31 with A22 = IK , we see that the right hand side becomes the
determinant of an NK ×NK matrix,

det ∆q,λL = (−1)NK2

det




IK IK ... IK IK

B1 000 ... 000 −BN

000 B2 ... 000 −BN

000 000 000 −BN
...

...
...

...
000 000 ... BN−1 −BN




.

Moving the first K rows of the determinant on the right hand side NK − K rows
down shows that

det ∆q,λL = (−1)2NK2−K2

det




B1 000 ... 000 −BN

000 B2 ... 000 −BN

000 000 000 −BN
...

...
...

...
000 000 ... BN−1 −BN

IK IK ... IK IK




.

Now applying Proposition 31 with A22 = IK yields

det ∆q,λL = (−1)(2N−1)K2

det




(B1 + BN) BN ... BN BN

BN (B2 + BN) ... BN BN

BN BN BN BN
...

...
...

...
BN BN ... BN (BN−1 + BN)




.

Since 2N−1 is always odd, and K2 is odd if and only if K is odd, then the coefficient
(−1)(2N−1)K2

= (−1)K . 2

A special case of this result occurs when ∆F (q, β) has N identical blocks, Bi = B,
for every i. We will see in chapter 6 that this occurs if q is fixed by the symmetry
defined by the relabelling of the classes of YN (Theorem 72). Before we can present
the result for this special case, we need the following Lemma.
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Lemma 34. The m×m matrix




2 1 ... 1
1 2 ... 1
1 1 1
...

...
...

1 1 ... 2




has determinant equal to m+1 and

its inverse is the m×m matrix




m
m+1

−1
m+1

... −1
m+1−1

m+1
m

m+1
... −1

m+1−1
m+1

−1
m+1

−1
m+1

...
...

...
−1

m+1
−1

m+1
... m

m+1




.

Proof. It is trivial to confirm the inverse. To compute the determinant, we multiply
the last row of the matrix by −1, then add it to each of the first m− 1 rows, which
shows that

det




2 1 ... 1
1 2 ... 1
1 1 1
...

...
...

1 1 ... 2




= det




1 0 ... 0 −1
0 1 ... 0 −1
0 0 0 −1
...

...
...

...
0 0 ... 1 −1
1 1 ... 1 2




.

Multiplying each of the first m− 1 rows of the determinant on the right by −1, and
adding it to the last row shows that

det




2 1 ... 1
1 2 ... 1
1 1 1
...

...
...

1 1 ... 2




= det




1 0 ... 0 −1
0 1 ... 0 −1
0 0 0 −1
...

...
...

...
0 0 ... 1 −1
0 0 ... 0 m + 1




.

2

Corollary 35. If the blocks, {Bi}N
i=1, of ∆F are identical so that Bi = B for every

i, then det ∆q,λL = (−N)K(det B)N−1.

Proof. By Theorem 33,

det ∆q,λL = (−1)K det




2B B ... B B
B 2B ... B B
B B B B
...

...
...

...
B B ... B 2B
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where the matrix on the right is (NK − K) × (NK − K). Using the Kronecker
product, this equation can be rewritten as

det ∆q,λL = (−1)K det







2 1 ... 1
1 2 ... 1
1 1 1
...

...
...

1 1 ... 2



⊗B




.

Since the matrix




2 1 ... 1
1 2 ... 1
1 1 1
...

...
...

1 1 ... 2




in the last equation is (N − 1)× (N − 1), then

det ∆q,λL = (−1)K(det B)N−1 det




2 1 ... 1
1 2 ... 1
1 1 1
...

...
...

1 1 ... 2




K

.

The last equality follows from the fact that if a matrix A is m ×m and a matrix B
is k × k, then det(A ⊗ B) = (det A)k(det B)m ([65] p.256). Now the desired result
follows by Lemma 34. 2

When ∆F has M identical blocks which are nonsingular, we can further simplify
the determinant given in Theorem 33.

Theorem 36. If there exists an M with 1 < M < N such that ∆F has M identical
blocks, B, which are nonsingular, and N−M other blocks, {Ri}N−M

i−1 , then det(∆q,λL)
is equal to

(−M)K(det B)M−1 det




(R1 + 1
M

B) 1
M

B ... 1
M

B 1
M

B
1
M

B (R2 + 1
M

B) ... 1
M

B 1
M

B
1
M

B 1
M

B 1
M

B 1
M

B
...

...
...

...
1
M

B 1
M

B ... 1
M

B (RN−M + 1
M

B)




.(4.10)

Proof. Observe that if BN 6= B, we can perform elementary row and column opera-
tions on ∆q,λL, so that Theorem 33 shows that det ∆q,λL is equal to the determinant
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of an (NK −K)× (NK −K) matrix

(−1)K det







(R1 + B) B ... B
B (R2 + B) ... B
B B B
...

...
...

B B ... (RN−M + B)




111⊗B

111T ⊗B T ⊗B




, (4.11)

where 111 is the (N −M) × (M − 1) matrix of ones and T is the (M − 1) × (M − 1)
matrix

T =




2 1 ... 1
1 2 ... 1
1 1 1
...

...
...

1 1 ... 2




, with T−1 =




M−1
M

−1
M

... −1
M−1

M
M−1

M
... −1

M−1
M

−1
M

−1
M

...
...

...
−1
M

−1
M

... M−1
M




,

and the inverse is from Lemma 34. We denote the (N −M)K× (N −M)K matrix in
the upper left block of (4.11) by S. Now applying Proposition 31 with A22 = T ⊗B,
gives

det ∆q,λL = (−1)K det(T ⊗B) det(S − (111⊗B)(T ⊗B)−1(111T ⊗B)). (4.12)

From the proof to Corollary 35, we saw taking determinants of Kronecker products
yields det(T ⊗B) = (det T )K(det B)M−1, and so Lemma 34 shows that

det(T ⊗B) = M(det B)M−1.

We proceed by using two more properties of Kronecker products: (A⊗B)(C ⊗D) =
(AC⊗BD) if the matrices A,B, C, D can be multiplied respectively, and (A⊗B)−1 =
(A−1 ⊗B−1) if A and B are invertible [65]. Thus, (4.12) becomes

det ∆q,λL = (−M)K(det B)M−1 det(S − (111⊗B)(T−1 ⊗B−1)(111T ⊗B))

= (−M)K(det B)M−1 det(S − (111⊗B)

(
1

M
111T ⊗ IK

)
)

= (−M)K(det B)M−1 det(S −
(

M − 1

M
IN−M ⊗B

)
),

which gives the desired result. 2

If ∆F is nonsingular, then its identical blocks must be nonsingular. Thus, The-
orem 36 shows that if ∆F is nonsingular, then ∆q,λL is singular if and only if the
(N − M)K × (N − M)K matrix in (4.10) is singular. We wait until chapter 8 to
explore this relationship more fully (Theorem 135). We now prove a slightly different
version of Theorem 36.
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Corollary 37. Let (q∗, β∗) be an isolated singularity of B and let M(q, β) be the
(N − M)K × (N − M)K matrix in (4.10) evaluated at (q, β). Suppose that there
exists an m > 0 such that | det(M(q, β))| < m for all (q, β) in some neighborhood
about (q∗, β∗). Then

det ∆q,λL = (−M)K(det B)M−1 detM(q, β)

for all (q, β) about (q∗, β∗).

Proof. Since (q∗, β∗) is an isolated singularity of B, then in some neighborhood of
(q∗, β∗), Theorem 36 shows that,

lim
(q,β)→(q∗,β∗)

| det ∆q,λL| ≤ lim
(q,β)→(q∗,β∗)

mM | det B(q, β)|M−1.

Thus, if we define det ∆q,λL(q∗, λ∗, β∗) = 0, then

det ∆q,λL = (−M)K(det B)M−1 detM(q, β)

for all (q, β) in a neighborhood of (q∗, β∗), and we can dispense with the assumption
in Theorem 36 that B is nonsingular. 2

We next give a necessary condition when M, the (N −M)K× (N −M)K matrix
given in (4.10), is singular. This condition is related to a pivotal requirement that we
must make in Assumptions 81 in chapter 6.

Lemma 38. Suppose that there exists 1 < M < N such that ∆F has M identical
blocks, B, which are nonsingular, and N −M other blocks, {Ri}N−M

i−1 , which are also
nonsingular. Then if the matrix M, the (N − M)K × (N − M)K matrix given in
(4.10), is singular, then B

∑
i R

−1
i + MIK is singular.

Proof. Let uuu ∈ kerM and decompose it as

uuu =




uuu1

uuu2
...

uuuN−M




where uuui is K × 1 for every i. Then the equation Suuu = 000 can be rewritten as the
system of equations

R1uuu1 +
1

M

M∑
i=1

Buuui = 000

R2uuu2 +
1

M

M∑
i=1

Buuui = 000

...

RN−MuuuN−M +
1

M

M∑
i=1

Buuui = 000.
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Thus,

uuuj = − 1

M
R−1

j B
∑

i

uuui

from which it follows that

∑
j

uuuj = − 1

M

∑
j

R−1
j B

∑
i

uuui.

The substitution vvv =
∑

i uuui shows that

(
∑

j

R−1
j B + MIK)vvv = 000.

We observe that since B is nonsingular, then multiplying this equation on the right
by B−1 and on the left by B completes the proof. 2

The converse of this lemma holds as well, which we will prove in chapter 8 (The-
orem 135). For now, we state the result.

Theorem 39. Suppose that ∆F is nonsingular. Then ∆q,λL is singular if and only
if B

∑
ν R−1

ν + MIK is singular.

Generic Singularities

In this chapter, we have considered the case where ∆F has M > 1 blocks that
are identical. As we have seen in the last section, these identical blocks can simplify
the form of the determinant of ∆q,λL. In fact, much more is true. In this section
we show that, generically, there are three types of singularities of ∆q,λL which can
occur, one of which gives rise to the symmetry breaking bifurcations we will study
in chapter 6, and another which gives rise to the saddle-node bifurcations which we
study in chapter 8.

First, we introduce some terminology. We will call the classes of YN which cor-
respond to the identical blocks of ∆F unresolved classes. The classes of YN which
are not unresolved will be called resolved classes (this terminology is consistent with
Definition 69 in chapter 6). We now partition the set YN into two disjoint sets. Let

U be the set of M unresolved classes

and let

R be the set of N −M resolved classes.

Thus U ∩R = ∅ and U ∪R = {1, ..., N} = YN .
Let Bν be the block of ∆F corresponding to class ν. For clarity, we denote

B = Bν for ν ∈ U
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and

Rν = Bν for ν ∈ R.

Now we define genericity.

Definition 40. Let T be a topological space. A set W ⊆ T is generic if W is open
and dense in T .

Remark 41. Let ∆F ν(q, β) denote the νth block of the Hessian ∆F (q, β). Consider
the class TU of singular NK ×NK block diagonal matrices of the form

∆F ν(q, β) =

{
B(q, β) if ν ∈ U
Rν(q, β) otherwise (i.e. if ν ∈ R)

over all (q, β) ∈ ∆ × <. Let W ⊆ TU such that a matrix ∆F ∈ W if and only if at
most one of the matrices B, {Rν}, and B

∑
ν R−1

ν + MIK is singular. We assume
that W is generic in TU . Thus, by generic, we mean that only one of the matrices B,
{Rν}ν∈R, or B

∑
ν R−1

ν + MIK is singular at a given point (q, β) ∈ ∆×<.

We are now ready to discuss the three types of generic singularities, which we have
depicted in Figure 12. We will cite the relevant results in the text which support these
claims.

The first type of singularity is when the M unresolved blocks of ∆F are singular.
A generic assumption in this instance is that the N −M resolved blocks, {Rν}, are
nonsingular at (q∗, β). By Corollary 89, ∆q,λL must be singular. Conversely, suppose
that ∆q,λL is singular. Generically, the resolved blocks of ∆F are nonsingular, and
B

∑
ν R−1

ν + MIK is nonsingular. Then Corollary 89 shows that ∆F is singular.
We will see in chapter 6 that this is the type of singularity that exhibits symmetry
breaking bifurcation (Theorem 110).

The second type of singularity is a special case in which no bifurcation occurs. If
only a single block, Rν , of ∆F is singular, and if the generic condition that B

∑
ν R−1

ν +
MIK is nonsingular holds, then we will show in chapter 6 (Theorem 114) that ∆q,λL
is nonsingular. Thus, generically, no bifurcation occurs for this case.

The third type of singularity is when ∆q,λL is singular, but when ∆F is nonsin-
gular. By Theorem 39, it must be that B

∑
ν R−1

ν +MIK is singular. This singularity
type manifests itself as saddle-node bifurcations in the numerical results of chapter
7. In chapter 8 (Theorem 138), we prove that ∆F is generically nonsingular at any
bifurcation that is not a symmetry breaking bifurcation, which includes saddle-node
bifurcations. Observe that if ∆F were singular, then, generically, we would be in one
of the first two cases of singularity just described.

Figure 12, which summarizes the preceding discussion, indicates how the singu-
larities of ∆q,λL and ∆F affect the bifurcation structure of equilibria of (3.18). At
the top of the diagram, we have the assumption that ∆q,λL is singular, which is a
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Figure 12. A hierarchical diagram showing how the singularities of ∆q,λL and ∆F
affect the bifurcation structure of equilibria of (3.18).

necessary condition given that a bifurcation occurs (Theorem 24). To proceed to the
second level of the of the diagram, one must further assume that either ∆F is singular
or nonsingular. To get to the third level, one must add to the list of assumptions that
either B

∑
i R

−1
i + MIK is either singular or nonsingular. At the base level of the

diagram, we have indicated the type of bifurcation possible given the assumptions
on ∆q,λL and ∆F above. We have indicated the chapter which justifies the different
conclusions. In particular, see Theorem 36 and Lemma 38 in chapter 4; see Corollary
111 and Theorems 110 and 114 in chapter 6; and see Theorems 135 and 141 in chapter
8.

Singularities of the Information Bottleneck

For the Information Bottleneck problem (2.35),

max
q∈∆

FB(q, β) = max
q∈∆

(−I(Y ; YN) + βI(X, YN)),
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the NK×1 vector q is always in the kernel of ∆FB(q, β) for every value of β (Lemma
42). This implies, for example, that the K × 1 vector of 1

N
’s is in the kernel of each

block of ∆FB(q 1
N

, β), for every β. We prove this observation in this section, which

shows that ∆FB is highly degenerate (Theorem 43).
First, we need to compute the quantities ∆I(Y, YN) and ∆I(X,YN). The second

quantity was computed in (2.23). To compute the first quantity, we notice that [17]

−I(Y ; YN) = H(YN |Y )−H(YN). (4.13)

Since we know the Hessian of the first term (2.20), we only need to compute ∆H(YN).
By definition

−H(YN) =
∑

µ∈YN

p(µ) log p(µ).

Using the fact that ∂p(µ)
∂qνk

= δµνp(yk), the gradient of H(YN) is

(−∇H(YN))νk ≡ −∂H(YN)

∂qνk

=
∂

∂qνk

∑
µ∈YN

p(µ) log p(µ)

=
∑

µ

δνµp(yk) log p(µ) + p(µ)
δνµp(yk)

(ln2)p(µ)

= p(yk)

(
log p(ν) +

1

ln2

)
.

Thus, the Hessian is given by

−∂2H(YN)

∂qηl∂qνk

=
∂

∂qηl

p(yk)

(
log p(ν) +

1

ln2

)

= p(yk)
δνηp(yl)

(ln2)p(ν)
.

From this calculation, (4.13) and (2.20), we get

−∂2I(Y ; YN)

∂qηl∂qνk

=
δνη

ln2

(
p(yk)p(yl)

p(ν)
− δlkp(yk)

qνk

)
. (4.14)

Equation (4.14) shows that δνη can be factored out of

∆FB = −∆I(Y ; YN) + β∆I(X; YN). (4.15)

This implies that ∆FB is block diagonal, with each block corresponding to a particular
class of YN .

Before proving the main theorem, we first show that each block of ∆FB is singular.



66

Lemma 42. Fix an arbitrary quantizer q and arbitrary class ν. Then the vector qν is
in the kernel of the νth block of ∆FB(q, β) for each value of β.

Proof. To show that the vector qν is in the kernel of ∆F ν
B(q, β), the νth-block of

∆FB(q), we compute the lth row of this matrix. From (4.15), (4.14), and (2.23), we
see that

[∆F ν
B(q)qν ]l =

1

ln2

(∑

k

p(yl)p(yk)qνk

p(ν)
−

∑

k

δlk
qνkp(yk)

qνk

)

+
β

ln2

∑

k

(∑
i

p(xi, yk)p(xi, yl)qνk

p(xi, ν)
− p(yk)p(yl)qνk

p(ν)

)

=
1

ln2
(p(yl)− p(yl)) +

β

ln2
(
∑

i

p(xi, yl)

p(xi, ν)

∑

k

qνkp(yk, xi)

−p(yl)

p(ν)

∑

k

qνkp(yk))

=
β

ln2

(∑
i

p(xi, yl)− p(yl)

)

= 0.

This shows that qν is in the kernel of the νth block ∆FB.

Theorem 43. For an arbitrary pair (q, β), the dimension of the kernel of the matrix
∆FB is at least N .

Proof. Define the vectors {vvvi}N
i=1 by

vvv1 =




q1

000
000
...
000




, vvv2 =




000
q2

000
...
000




, ... , vvvN =




000
000
000
...

qN




.

By Lemma 42, {vvvi}N
i=1 are in ker ∆FB(q, β). Clearly, these vectors are linearly inde-

pendent. 2
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CHAPTER 5

GENERAL BIFURCATION THEORY WITH SYMMETRIES

This chapter introduces the rudiments of bifurcation theory in the presence of
symmetries, which includes the Equivariant Branching Lemma (Theorem 47) and
the Smoller-Wasserman Theorem (Theorem 49). This theory shows the existence of
branches from symmetry breaking bifurcation of equilibria of systems such as (3.15)

ẋxx = ψ(xxx, β)

which have symmetry. We obtain results which can ascertain the structure of the
bifurcating branches. These results enable us to answer questions about equilibria
of (3.15) such as: Are symmetry breaking bifurcations pitchfork-like or transcritical?
Are the bifurcating branches subcritical or supercritical? Are the bifurcating branches
stable or unstable?

In order to apply the bifurcation theory to a system such as (3.15) in the presence
of symmetries, it is first necessary to determine the Liapunov-Schmidt reduction,
φ(www, β), of the system. We present the mechanics of this reduction, as well as the
symmetries of the reduction.

This theory is required so that later, in chapter 6, we may show the bifurcation
structure of equilibria of the gradient flow (3.18)

(
q̇

λ̇

)
= ∇q,λL(q, λ, β),

which we introduced in chapter 3. This will yield information about solutions to the
constrained optimization problem (1.9)

max
q∈∆

(G(q) + βD(q)).

We begin by introducing the required terminology and some preliminary results
which will prove useful in the sequel. Let

ẇww = φ(www, β) (5.1)

where www is in some Banach space V and β ∈ <, so that

φ : V ×< → V.

Let G be a compact Lie Group acting on V . The vector valued function φ is G-
invariant if

φ(gwww) = φ(www)
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for every www ∈ V and every g ∈ G. The function φ is G-equivariant if

φ(gwww) = gφ(www)

for every www ∈ V and every g ∈ G. Let H ≤ G and let W be a subspace of V . For the
vectors www ∈ V such that φ(www) = 000, the amount of symmetry present in www is measured
by its isotropy subgroup

H = Hwww = {h ∈ G|hwww = www}.

An isotropy subgroup of H < G is a maximal isotropy subgroup if there does not exist
any isotropy subgroup K < G that contains H,

H < K < G.

The fixed point space of any subgroup H ≤ G is

Fix(H) = {vvv ∈ V |hvvv = vvv for every h ∈ H}.

The subspace W is G-invariant if gwww ∈ W for all www ∈ W . The subspace W is H-
irreducible if the only H-invariant subspaces of W are {000} and W . The action of the
group G on V is absolutely irreducible if the only linear mappings on V that commute
with every g ∈ G are scalar multiples of the identity.

The following results will prove useful in the sequel.

Lemma 44. ([34] p.74) Let φ : V × < → V be a G-equivariant function for some
Banach space V and let H ≤ G. Then

φ(Fix(H)×<) ⊆ Fix(H).

Proposition 45. ([34] p.75) Let G be a compact Lie group acting on a Banach space
V . The following are equivalent:

1. Fix(G) = {000}.
2. Every G-equivariant map φ : V ×< → V satisfies φ(000, β) = 000 for all β.

3. The only G-equivariant linear function is the zero function.

Proposition 46. Let G be a compact Lie group such that φ : V × < → V is G-
equivariant. Further suppose that φ(000, 0) = 000, and that ∂wwwφ(000, 0) is singular. Then

1. ([33] p.304) The Jacobian ∂wwwφ(000, β) commutes with every g ∈ G.

2. ([34] p.82 or [33] p. 304) The spaces ker ∂wwwφ(000, 0) and range ∂wwwφ(000, 0) are each
G-invariant.
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3. ([34] p.69) Let g ∈ G. The vector www ∈ V has isotropy subgroup H ≤ G if and
only if gwww has isotropy subgroup gHg−1 ≤ G.

4. (Trace Formula) ([34] p.76) Let H ≤ G where |H| < ∞. Then

dim Fix(H) =
1

|H|
∑

h∈H

tr(h).

5. ([34] p.40) If the action of G on a vector space V is absolutely irreducible then
V is G-irreducible.

6. If V is G-irreducible with dim(V ) ≥ 1, then Fix(G) = {000}.

Proof. We prove 1, 2, and 6. Let

Φ := ∂wwwφ(000, 0).

For g ∈ G, we have φ(gwww, β) = gφ(www, β), giving ∂wwwφ(gwww, β)g = g∂wwwφ(www, β). Evaluat-
ing at (000, 0) gives

∂wwwφ(000, 0)g = g∂wwwφ(000, 0)

=⇒ g commutes with Φ = ∂wwwφ(000, 0).

This proves 1.
If kkk ∈ ker Φ then Φgkkk = gΦkkk = g000 = 000. Furthermore, if rrr ∈ rangeΦ, then there

exists www ∈ B2 such that Φwww = rrr. Then grrr = gΦwww = Φgwww from which it follows that
grrr ∈ rangeΦ. This proves 2.

To prove 6, we show the contrapositive. Suppose that Fix(G) 6= {000}. Then gvvv = vvv
for some vvv ∈ V , which implies that span(vvv) is an invariant subspace of V . Thus, V
is not irreducible. 2

Existence Theorems for Bifurcating Branches

We are interested in bifurcations of equilibria of the dynamical system (5.1),

ẇww = φ(www, β),

where φ : V × < → V for some Banach space V . If φ is G-equivariant for some
compact Lie group G, then the next three theorems are the main results which relate
the subgroup structure of G with the existence of bifurcating branches of equilibria of
(5.1). We first introduce the theorem attributed to Vanderbauwhede [82] and Cicogna
[12, 13].

Theorem 47 (Equivariant Branching Lemma). ([34] p.83) Assume that
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1. The sufficiently smooth function φ : V ×< → V from (5.1) is G equivariant for
a compact Lie group G, and a Banach space V .

2. The Jacobian ∂wwwφ(000, 0) = 000.

3. The group G acts absolutely irreducibly on ker ∂wwwφ(000, 0) so that ∂wwwφ(000, β) =
c(β)I for some scalar valued function c(β).

4. The scalar function c′(0) 6= 0.

5. The subgroup H is an isotropy subgroup of G with dim Fix(H) = 1.

Then there exists a unique smooth solution branch (twww0, β(t)) to φ = 000 such that
www0 ∈ Fix(H), and the isotropy subgroup of each solution is H.

Proof. Let φ̂ := φ|Fix(H)×< and let www0 ∈ Fix(H). By Lemma 44

φ̂ : Fix(H)×< → Fix(H) (5.2)

and so dim Fix(H) = 1 implies that

φ̂(www, β) = φ(twww0, β) = h(t, β)www0

for some scalar function h(t, β). Since G acts absolutely irreducibly on ker ∂wwwφ, then
Fix(G) = {000} (Proposition 46.6) which implies

φ(000, β) = 000 (5.3)

by Proposition 45. Hence, h(0, β) = 0. Therefore, the Taylor series for h is

h(t, β) = h′(0, β)t +
h′′(0, β)

2
t2 + ...

= tk(t, β)

where

k(t, β) :=
∞∑

n=1

∂nh(0, β)

n!
tn−1 (5.4)

and the nth derivative ∂nh(0, β) is with respect to t. Hence

φ̂(www, β) = φ(twww0, β) = tk(t, β)www0. (5.5)

Differentiating this equation yields

∂wwwφ(twww0, β)www0 = (k(t, β) + t∂tk(t, β))www0 (5.6)
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and so

k(t, β)www0 = ∂wwwφ(twww0, β)www0 − t∂tk(t, β)www0 (5.7)

from which it follows that

k(0, 0) = 0 (5.8)

since ∂wwwφ(000, 0) = 000 by assumption. From (5.7) we compute

∂βk(t, β)www0 = ∂β∂wwwφ(twww0, β)www0 − t∂β∂tk(t, β)www0. (5.9)

Thus
∂βk(0, 0)www0 = ∂β∂wwwφ(0, 0)www0.

Now, the absolute irreducibility of G on ker ∂wwwφ(000, 0) shows that

∂βk(0, 0) = c′(0). (5.10)

By assumption, c′(0) 6= 0 giving

∂βk(0, 0) 6= 0. (5.11)

By (5.8) and (5.11), the Implicit Function Theorem can be applied to solve

k(t, β) = 0 (5.12)

uniquely for β = β(t) in Fix(H), which shows that (twww0, β(t)) is a bifurcating solution
from (0, 0) of φ(www, β) = 000.

By assumption, www0 ∈ Fix(H), from which it follows that the isotropy group of
the branch (twww0, β(t)) is H. 2

Cicogna [12, 13, 14] has generalized the Equivariant Branching Lemma to show
the existence of bifurcating branches for every maximal isotropy subgroup where the
dimension of the fixed point space is odd.

We now present the theorem which deals with dynamical systems (5.1) that are
gradient flows, such as (3.18), where

ẇww = φ(www, β) = ∇wwwf(www, β).

First we present the theorem as posed by Smoller and Wasserman in [71]. We restate
a weaker form of this result in Theorem 49, which presupposes a bifurcation point,
so that the eigenvalue crossing condition is not required.

Theorem 48. ([71] p.85) Let G be a compact Lie group. Assume the following:

1. Let B2 and B0 be Banach spaces, and let H be a G-invariant Hilbert space, such
that

B2 ⊆ B0 ⊆ H,

where the embeddings are all continuous.
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2. There is a twice continuously differentiable function f on B2 ×<,

∇wwwf : B2 ×< → B0,

such that ∇wwwf is G-equivariant.

3. The equation ∇wwwf(000, β) = 000 holds for every β ∈ I where I is some interval in
<.

4. The matrices ∆wwwf(000, β1) and ∆wwwf(0, β2) are nonsingular for some β1, β2 ∈ I.

5. The compact Lie group G acts on www ∈ B2 such that the only G-invariant solution
of ∇wwwf(www, β) = 000 is (000, β) for every β ∈ I.

6. The kernel ker ∆wwwf(000, β) contains no nontrivial G-invariant subspaces.

7. There exists subgroups H, L < G such that

dim(peigenspace(∆wwwf(0, β1))∩Fix(H)) 6= dim(peigenspace(∆wwwf(0, β2))∩Fix(H)),

and that

dim(peigenspace(∆wwwf(0, β1))∩Fix(L)) 6= dim(peigenspace(∆wwwf(0, β2))∩Fix(L)).

8. The group generated by H and L, HL, is the full group, HL = G.

Then there exists βH , βL ∈ (β1, β2) such that the solutions (www = 000, βH) and (www = 000, βL)
are bifurcation points of solutions with isotropy groups H and L respectively. The
bifurcating solutions do not coincide.

The condition on the dimensionality of the peigenspaces in Theorem 48 assures
that an eigenvalue of ∂wwwφ(000, β) changes sign for some β∗ in the interval I ⊂ <, which
guarantees that bifurcation occurs at β = β∗. If we assume a priori that bifurcation
occurs at (000, β∗), then we may dispense with the assumption on the peigenspaces, as
well as the assumption that ∂wwwφ(000, β) is nonsingular at β = β1 and at β = β2.

The condition that the group, HL, generated by the subgroups H,L < G, be
equal to the full group G, is satisfied if we require that H and L are maximal isotropy
subgroups ([34] p.138).

Using these observations, as well as the terminology which we have developed
thus far, we have the following theorem.

Theorem 49 (Smoller-Wasserman Theorem). ([71] p.85, [33] p.138) Let G be
a compact Lie group. Assume the following:

1. Let B2 and B0 be Banach spaces, and let H be a G-invariant Hilbert space, such
that

B2 ⊆ B0 ⊆ H,

where the embeddings are all continuous.
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2. There is a twice continuously differentiable function f on B2 ×<,

∇wwwf : B2 ×< → B0,

such that ∇wwwf is G-equivariant.

3. The equation ∇wwwf(000, β) = 000 holds for every β ∈ I where I is some interval in
<.

4. Bifurcation of solutions to ∇wwwf(000, β) = 000 occurs at β = β∗.

5. The fixed point space Fix(G) = {000}.
6. The kernel ker ∆wwwf(000, β) is G-irreducible.

7. Let H be a maximal isotropy subgroup of G.

Then there exists bifurcating solutions to

∇wwwf(000, β) = 000

with isotropy subgroup H.

The advantage of using the Smoller-Wasserman Theorem over the Equivariant
Branching Lemma for a gradient system such as (3.18) is that we get the existence of
bifurcating branches for each and every maximal isotropy subgroup, not merely the
ones where the dimension of the fixed point space of the isotropy group is 1.

Bifurcation Structure

In this section, the bifurcation structure of the solution branches (www∗, β∗) to (5.1),

φ(www, β) = 000,

whose existence is guaranteed by the Equivariant Branching Lemma, is considered.
The independent variable www is in some Banach space V and β ∈ <, so that

φ : V ×< → V. (5.13)

We explicitly derive a condition (Lemma 53) which determines whether a bifurcation
is pitchfork-like or transcritical.

In the transcritical case, we present the results of Golubitsky [34] which ascertain
whether bifurcating branches are subcritical or supercritical (Remarks 54.1 and 54.3).
In the transcritical case, bifurcating branches are always unstable (Proposition 58 and
Theorem 60).
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To determine whether bifurcating branches are subcritical or supercritical when
the bifurcation is pitchfork-like, we have further developed the theory of Golubitsky
(Remark 54.4 and Lemma 63). Subcritical solutions are always unstable (Proposition
55). We have derived a condition (Proposition 65) which determines the stability of
the supercritical branches.

We begin by outlining the assumptions that are required to apply the theory
developed in this section.

Assumption 50. As in Theorem 47 we consider the bifurcation branch (twww0, β(t))
from (000, 0) of the flow (5.1) where www0 ∈ Fix(H) for an isotropy group H ≤ G. The
assumptions we make throughout this section are that

1. φ is G-equivariant and infinitely differentiable in www and β, with ∂wwwφ(000, 0) = 000.

2. G acts absolutely irreducibly on ker ∂wwwφ(000, 0) so that ∂wwwφ(000, β) = c(β)I for some
scalar function c(β).

3. c(0) = 0 and c′(0) > 0.

4. H ≤ G with dim Fix(H) = 1.

The prudent reader will note that the Equivariant Branching Lemma (Theorem
47) requires the Assumptions 50.1, 50.2, and 50.4. Instead of requiring Assumption
50.3, the Equivariant Branching Lemma requires that c(0) = 0 and that c′(0) 6=
0, which guarantees that bifurcation occurs at (000, 0) (see (5.10) and (5.11)). The
additional assumption that c′(0) > 0 is the basis for all of the results that we introduce
in this section. In the case where c′(0) < 0, similar results hold, as we point out in
Remarks 56 and 59.

Definition 51. The branch (twww0, β(t)) is subcritical if for all nonzero t such that
|t| < ε for some ε > 0, tβ(t)′ < 0. The branch is supercritical if tβ′(t) > 0.

Definition 52. The branch (twww0, β(t)) is transcritical if β′(0) 6= 0. If β′(0) = 0,
then the branch is called pitchfork-like.

Golubitsky ([34] p.90) shows that

sgnβ′(0) = −sgnc′(0)sgn < www0, ∂
2
wwwwwwφ(000, 0)[www0,www0] > .

We now prove the following generalization.

Lemma 53. If Assumption 50 holds, then

β′(0) =
− < www0, ∂

2
wwwwwwφ(000, 0)[www0,www0] >

2||www0||2c′(0)
.
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Proof. As in (5.5), we write

φ(twww0, β(t)) = tk(t, β)www0

where k(t, β) is defined in (5.4). Differentiating (5.12) shows that

∂tk(t, β(t)) + ∂βk(t, β(t))β′(t) = 0 (5.14)

=⇒ β′(t) = − ∂tk(t,β(t))
∂βk(t,β(t))

. (5.15)

By (5.10), ∂βk(0, 0) = c′(0). Differentiating (5.6) yields

∂2
wwwwwwφ(twww0, β)[www0,www0] = (2∂tk(t, β) + t∂2

ttk(t, β))www0 (5.16)

showing that

∂tk(0, 0) =
< www0, ∂

2
wwwwwwφ(000, 0)[www0,www0] >

2||www0||2 .

Substituting this and ∂βk(0, 0) = c′(0) into (5.15) gives the desired result. 2

Remark 54.

1. ([34] p.90) By Assumption 50.3, sgnβ′(0) = −sgn < www0, ∂
2
wwwwwwφ(000, 0)[www0,www0] >.

This simplification of Lemma 53 proves useful when one is interested in de-
termining whether bifurcating branches are subcritical or supercritical when the
bifurcation is transcritical.

2. If one were interested in β as a function of t about t = 0, then equations (5.15)
and (5.16) show that

β′(t) =
< www0, ∂

2
wwwwwwφ(twww0, β)[www0,www0] > ‖www0‖−2 − t∂2

ttk(t, β)

2∂βk(t, β)
. (5.17)

3. Assumptions 50.1, 50.3 and equations (5.10),(5.17) imply that β′(t) is contin-
uous at t = 0. Hence, for t > 0, β′(0) < 0 implies that the branch (twww0, β(t)) is
subcritical. If β′(0) > 0, then the branch is supercritical for t > 0.

4. To determine whether a branch (twww0, β(t)) is supercritical or subcritical when
β′(0) = 0, we consider β′′(0). β′′(0) > 0 implies that for small t < 0, β′(t) < 0,
and that for small t > 0, β′(t) > 0. Thus, when β′′(0) > 0, the branch is
supercritical. Similarly, if β′′(0) < 0, then the branch is subcritical.

Proposition 55. ([34] p.91) Suppose that Assumption 50 holds. If, for t > 0, the
unique branch of bifurcating solutions (twww0, β(t)) to φ(www, β), as guaranteed by Theorem
47, is subcritical, then it consists of unstable solutions.
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Proof. Write φ as in (5.5),

φ(twww0, β(t)) = tk(t, β).

Note that (5.6) shows that www0 is an eigenvector of ∂wwwφ(twww0, β), with eigenvalue

ζ(t, β) = k(t, β) + t∂tk(t, β). (5.18)

Along a branch of solutions, k(t, β) = 0 (see (5.12)). From (5.14), we see that

∂tk(t, β) = −∂βk(t, β)β′(t).

Substituting this and k(t, β) = 0 into (5.18), we have that

ζ(t, β) = −t∂βk(t, β)β′(t). (5.19)

By (5.10),
∂βk(0, 0) = c′(0)

which is positive by Assumption 50.3. By Assumption 50.1, ∂βk(t, β) is continuous,
and so ∂βk(t, β(t)) is positive for all sufficiently small t > 0. Furthermore, by the
assumption of subcriticality, we have that tβ′(t) < 0 for small t. Hence the eigenvalue

ζ(t, β) > 0. (5.20)

for small t and β. Thus, this branch is unstable for sufficiently small t. 2

Remark 56. If Assumptions 50.1, 50.2, and 50.4 hold, if c(0) = 0, and if c′(0) < 0,
then the argument above shows that supercritical branches are unstable.

To prove a result regarding supercritical branches from transcritical bifurcation,
we first need to prove the following claim.

Claim 57. ([34] p.93) If Assumption 50 holds, then

trace(∂wwwφ(twww0, β)) = dim(V )c′(0)β′(0)t +O(t2)

where V is the Banach space defined in (5.13).

Proof. The Taylor series for φ(www, β) about www = 000 is

φ(www, β) = φ(000, β) + ∂wwwφ(000, β)www + ∂2
wwwwwwφ(0, β)[www,www] +O(www3). (5.21)

Equation (5.3) shows that φ(000, β) = 000, and by Assumption 50.2, ∂wwwφ(000, β) = c(β)I.
Letting

Q(www, β) =
1

2
∂2

wwwwwwφ(0, β)[www,www] (5.22)
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gives
φ(www, β) = c(β)www + Q(www, β) +O(www3). (5.23)

Hence,
∂wwwφ(www, β) = c(β)I + ∂wwwQ(www, β) +O(www2)

from which it follows that

trace(∂wwwφ(www, β)) = dim(V )c(β) + trace(∂wwwQ(www, β)) +O(www2).

Observe that Q is G-equivariant by the equivariance of φ, from which we get Q(gwww, β) =
gQ(www, β) and so

∂wwwQ(gwww, β) = g∂wwwQ(www, β)g−1

giving
trace(∂wwwQ(gwww, β)) = trace(∂wwwQ(www, β)).

Thus, trace(∂wwwQ(www, β)) is a G-invariant function. Furthermore, trace(∂wwwQ(www, β)) is
linear in www since Q is quadratic. Therefore, Propositions 45 and 46.6 assure that

trace(∂wwwQ(www, β)) = 0.

Finally, we see that

trace(∂wwwφ(twww0, β(t))) = dim(V )c(β(t)) +O(t2),

which can be rewritten using the Taylor expansion of c(β(t)) about t = 0, showing
that

trace(∂wwwφ(twww0, β(t))) = dim(V )
(
c(0) + c′(0)β′(0)t +O(t2)

)

= dim(V )c′(0)β′(0)t +O(t2), (5.24)

where the last equality follows from Assumption 50.3. 2

Proposition 58. ([34] p.93) Suppose that Assumption 50 holds. If β′(0) > 0, then
for t > 0, the unique branch of bifurcating solutions (twww0, β(t)) to φ(www, β), as guar-
anteed by Theorem 47, is supercritical and consists of unstable solutions.

Proof. Remark 54.3 implies that (twww0, β(t)) is supercritical. Claim 57 shows that

trace(∂wwwφ(twww0, β)) = dim(V )c′(0)β′(0)t +O(t2).

from which it follows that trace(∂wwwφ(twww0, β)) is positive for sufficiently small t. Thus,
some eigenvalue of ∂wwwφ(twww0, β) has positive real part. 2

Remark 59. If Assumptions 50.1, 50.2, and 50.4 hold, if c(0) = 0, and if c′(0) < 0,
then the argument above shows that subcritical branches are unstable.
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We summarize Propositions 55 and 58 in the following theorem.

Theorem 60. ([34] p.90) Suppose that Assumptions 50.1, 50.2, and 50.4 hold, that
c(0) = 0, and that c′(0) 6= 0. Then at a transcritical bifurcation, each branch of
bifurcating solutions to φ(www, β) = 000, as guaranteed by Theorem 47, consists of unstable
solutions.

Proof. The theorem follows from Propositions 55 and 58, and Remarks 56 and 59. 2

We now examine the pitchfork-like case when β′(0) = 0.

Theorem 61. ([34] p.93) Suppose that β′(0) = 0. In addition to Assumption 50, we
further assume that some term in the Taylor expansion of φ̂ from (5.2) is non-zero
and that ∂wwwQ(www0, β) has an eigenvalue with nonzero real part, where Q(www, β) is the
quadratic part of φ as in (5.22). Then the unique branch of bifurcating solutions
(twww0, β(t)) to φ(www, β), as guaranteed by Theorem 47, consists of unstable solutions.

Remark 62. In addition to Assumption 50, Theorem 61 also requires that some
term in the Taylor expansion of φ̂ from (5.2) is non-zero and that ∂wwwQ(www0, β) has an
eigenvalue with nonzero real part. These hypotheses are automatically satisfied when
the bifurcation is transcritical, β′(0) 6= 0 [34].

To determine whether solution branches from a pitchfork-like bifurcation are ei-
ther subcritical or supercritical is to compute β′′(0) (see Remark 54.4).

Lemma 63. Suppose that Assumption 50 holds. If β′(0) = 0, then

β′′(0) =
−〈www0, ∂

3
wwwwwwwwwφ(000, 0)[www0,www0,www0]〉

3‖www0‖2c′(0)
.

Proof. As in (5.5), we write

φ(twww0, β(t)) = tk(t, β)www0

where k(t, β) is defined in (5.4). Twice differentiating (5.12) (or, equivalently, once
differentiating (5.14)) shows that

∂2
ttk + ∂β∂tkβ′(t) +

(
∂t∂βk + ∂2

ββkβ′(t)
)
β′(t) + ∂βkβ′′(t) = 0.

Thus

β′′(t) =
−∂2

ttk − 2∂β∂tkβ′(t)− ∂2
ββkβ′(t)2

∂βk

and so

β′′(0) =
−∂2

ttk(000, 0)

∂βk(000, 0)
. (5.25)
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By (5.10), ∂βk(0, 0) = c′(0). Differentiating (5.16) with respect to t gives

∂3
wwwwwwwwwφ(twww0, β)[www0,www0,www0] = (3∂2

ttk(t, β) + t∂3
tttk(t, β))www0

from which it follows that

∂2
ttk(0, 0) =

〈www0, ∂
3
wwwwwwwwwφ(000, 0)[www0,www0,www0]〉

3‖www0‖2
.

Substituting this and ∂βk(0, 0) = c′(0) into (5.25) gives the desired result. 2

The following corollary is a consequence of Lemma 63, Definition 51, and As-
sumption 50.3.

Corollary 64. If Assumption 50 holds, then at a pitchfork-like bifurcation,

sgn(β′′(0)) = −sgn(〈www0, ∂
3
wwwwwwwwwφ(000, 0)[www0,www0,www0]〉).

We conclude this section with a result which addresses the stability of supercritical
branches from pitchfork-like bifurcations.

Proposition 65. Suppose Assumption 50 holds. If the unique branch of bifurcating
solutions (twww0, β(t)), as guaranteed by Theorem 47, is pitchfork-like with β′′(0) > 0,
and if ∑

i,j,m

∂3φm(000, 0)

∂xi∂xj∂xm

[www0]i[www0]j > 0,

then the branch is supercritical and consists of unstable solutions.

Proof. The branch is supercritical by Remark 54.4. To show instability, we determine
trace(∂wwwφ(twww0, β)) as in (5.24). Since β′(0) = 0, it is necessary to compute the
quadratic term in the Taylor series given in each of (5.23) and (5.24). Letting

T (www, β) =
1

6
∂3

wwwwwwwwwφ(000, β)[www,www,www], (5.26)

then (5.23) can be rewritten as

φ(www, β) = c(β)www + Q(www, β) + T (www, β) +O(www4)

and from the proof to Proposition 58 it follows that

trace(∂wwwφ(twww0, β(t))) = dim(V )c(β(t)) + trace(∂wwwT (twww0, β)) +O(t3).

The Taylor expansion for c(β(t)) about t = 0 given in (5.24) becomes

c(β(t)) = c′(0)β′(0)t + (c′′(0)β′(0)2 + c′(0)β′′(0))
t2

2
+O(t3).
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Thus, trace(∂wwwφ(twww0, β(t))) is equal to

dim(V )

(
c′(0)β′(0)t + (c′′(0)β′(0)2 + c′(0)β′′(0))

t2

2

)
+ trace(∂wwwT (twww0, β)) +O(t3).

This and Assumption 50.3 show that when β′(0) = 0 and β′′(0) > 0,

trace(∂wwwφ(twww0, β(t))) > 0

if
trace(∂wwwT (twww0, β)) > 0

for sufficiently small t. Thus, if trace(∂wwwT (twww0, β)) > 0 for sufficiently small t, then
some eigenvalue of ∂wwwφ(twww0, β) is positive, which implies that the supercritical branch
(twww0, β(t)) is unstable .

We now show that sgn(trace(∂wwwT (twww0, β))) for small t is determined by

sgn

(∑

i,j,k

∂3φk(000, 0)

∂xi∂xj∂xk

[www0]i[www0]j

)
.

The function [T (www, β)]l from (5.26) can be written as

1

6
(

∑

i 6=m,j 6=m,k 6=m

∂3φl(000, β)

∂xi∂xj∂xk

xixjxk + 3
∑

i6=m,j 6=m

∂3φl(000, β)

∂xi∂xj∂xm

xixjxm

+ 3
∑

i6=m

∂3φl(000, β)

∂xi∂xm∂xm

xix
2
m +

∂3φl(000, β)

∂x3
m

x3
m). (5.27)

Thus, ∂xm [T (twww0, β)]l is

1

6
t2

(
3

∑

i6=m,j 6=m

∂3φl(000, β)

∂xi∂xj∂xm

[www0]i[www0]j + 6
∑

i6=m

∂3φl(000, β)

∂xi∂xm∂xm

[www0]i[www0]m + 3
∂3φl(000, β)

∂x3
m

[www0]
2
m

)

which shows that

[∂wwwT (twww0, β)]lm =
1

2
t2

∑
i,j

∂3φl(000, β)

∂xi∂xj∂xm

[www0]i[www0]j.

It follows that

trace(∂wwwT (twww0, β)) =
1

2
t2

∑
i,j,m

∂3φm(000, β)

∂xi∂xj∂xm

[www0]i[www0]j

which is positive for sufficiently small t if

∑
i,j,m

∂3φm(000, 0)

∂xi∂xj∂xm

[www0]i[www0]j > 0.
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2

Derivation of the Liapunov-Schmidt Reduction

In the last section, we developed the theoretical tools necessary to analyze bifur-
cation of equilibria, of a G-equivariant system (5.1)

ẇww = φ(www, β),

when two simplifying assumptions are made. These simplifying assumptions were
made so that the assumptions of the Equivariant Branching Lemma (Theorem 47)
are met. The first assumption is that (www = 000, β = 0) is an equilibrium of (5.1). The
second assumption is that ∂wwwφ(000, 0) = 000. In other words, we assumed that bifurcation
occurs at (000, 0), and that at the bifurcation, the Jacobian of φ vanishes.

This section examines in detail how to transform an arbitrary G-equivariant sys-
tem such as (3.15),

ẋxx = ψ(xxx, β),

where
ψ : B2 ×< → B0,

as in (3.16), to an equivalent system where the above two assumptions hold.
First, if a bifurcation of equilibria to (3.15) occurs at (xxx∗, β∗), then the translation

ψ(xxx +xxx∗, β + β∗) has a bifurcation at (000, 0) as required by Theorem 47. We continue
by assuming that any necessary translation has been performed so that ψ = 000 has a
bifurcation of solutions at (000, 0).

Secondly, the Equivariant Branching Lemma requires that

Ψ := ∂xxxψ(000, 0) = 000,

that the Jacobian of ψ must vanish at the bifurcation. Since this is not the case for
an arbitrary system, it is necessary to consider the Liapunov-Schmidt reduction of
(3.15), φ, which is the restriction of ψ onto ker Ψ about (000, 0). More precisely, ψ is
restricted to ker Ψ, and φ is the projection of that restriction onto ker Ψ. To make
this formal, decompose B2 and B0 from (3.16) as

B2 = ker Ψ⊕M and B0 = N ⊕ rangeΨ (5.28)

where M and N are vector space complements of ker Ψ and rangeΨ respectively.
The following derivation is from p.27-28 and p.292-293 of [33] . See also p.10 of

[34]. Let E be the projector onto rangeΨ with ker E = N . Thus I −E projects onto
N with ker(I − E) = rangeΨ. Observe that ψ = 000 if and only if the components of
ψ in rangeΨ and in N are zero:

ψ(xxx, β) = 000 ⇔ Eψ(xxx, β) = 000 and (I − E)ψ(xxx, β) = 000. (5.29)



82

Consider the decomposition xxx = www + U , where www ∈ ker Ψ and U ∈ M, so that the
problem Eψ(xxx, β) = 000 can be rewritten as

Eψ(www, U, β) = Eψ(www + U, β) = 000.

We define the matrix L as

L := EΨ|M, (5.30)

the Jacobian ∂xxxψ(000, 0) projected onto rangeΨ, and restricted to M. Thus, L is
invertible, and the Implicit Function Theorem shows that Eψ(www + U, β) = 000 can be
solved for U = U(www, β) near (000, 0),

Eψ(xxx, β) = Eψ(www + U(www, β), β) = 000. (5.31)

Substituting this expression into (5.29), we see that ψ(xxx, β) = 000 if and only if

(I − E)ψ(www + U(www, β), β) = 000.

This function is the Liapunov-Schmidt reduction φ(www, β):

φ : ker Ψ×< → N
φ(www, β) = (I − E)ψ(www + U(www, β), β). (5.32)

Using the chain rule, the Jacobian of (5.32) is the matrix

∂wwwφ(www, β) = (I − E) · ∂xxxψ(xxx, β) · (I + ∂wwwU) (5.33)

Since ker(I − E) = rangeΨ, then

∂wwwφ(000, 0) = 000 (5.34)

and so the Jacobian of φ vanishes as required. Furthermore, (5.29) and (5.31) show
that φ = 000 if and only if ψ = 000. Thus, the roots of (5.32) are the equilibria of (3.15).
By (5.34), the group and bifurcation theory from the last section can be applied to
φ = 000.

Consider the dynamical system formulated with respect to the Liapunov-Schmidt
reduction of ψ:

ẇww = φ(www, β).

Ascertaining the bifurcation structure of the equilibria of this system, solutions to
φ(www, β) = 000, means determining the bifurcating branches (twww, β(t)) from (000, 0) for
www ∈ ker Ψ. The associated bifurcating branch of ψ = 000 is straightforward to get:

(twww, β(t)) is a bifurcating branch of φ = 0

if and only if (5.35)(
xxx∗

β∗

)
+

(
twww
β(t)

)
is a bifurcating branch of ψ = 0.
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It is convenient to use an equivalent representation of the Liapunov-Schmidt re-
duction (5.32). Let

{wwwi}m
i=1 be a basis for ker Ψ

and let W be the (NK + K)×m matrix whose column space is ker Ψ. So

W =




| | |
www1 www2 ... wwwm

| | |


 .

Thus, for every www ∈ ker Ψ, there is a zzz ∈ <m such that Wzzz = www. Now define r by

r : <m ×< → <m

r(zzz, β) = W T φ(Wzzz, β) (5.36)

= W T (I − E)ψ(Wzzz + U(Wzzz, β), β)

where the last equality is from (5.32). We say that r is equivalent to φ since

r(zzz, β) = 000 ⇔ φ(www, β) = 000 ⇔ ψ(xxx, β) = 000,

which follows from (5.29), (5.31) and (5.32). The Jacobian of r, which is similar to
(5.33), is the m×m matrix

∂zzzr(zzz, β) = W T (I − E) · ∂xxxψ(xxx, β) · (W + ∂wwwUW ). (5.37)

So we have introduced the necessary ingredients to define a dynamical system
defined by r

żzz = r(zzz, β).

Ascertaining the bifurcation structure of the equilibria of this system, solutions to
r(zzz, β) = 000, means determining the bifurcating branches (tzzz, β(t)) from (000, 0) for
zzz ∈ <m. The bifurcating branch of ψ = 000 is found via the following relationship:

(tzzz, β(t)) is a bifurcating branch of r = 0

if and only if (5.38)(
zzz∗

β∗

)
+

(
tWzzz
β(t)

)
is a bifurcating branch of ψ = 0.

We now compute the derivative of r with respect to β, which we will need in
chapter 8 when examining saddle-node bifurcations. Beginning with the definition
(5.36), we see that

∂βr(zzz, β) = W T (I − E)
∂

∂β
ψ(xxx, β)

= W T (I − E)

(
∂βψ(xxx, β) + ∂xxxψ(xxx, β)

∂

∂β
(Wzzz + U(Wzzz, β))

)

= W T (I − E) (∂βψ(xxx, β) + ∂xxxψ(xxx, β)∂βU) .
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Since (I − E)∂xxxψ(000, 0) = 000, then

∂βr(000, 0) = W T (I − E)∂βψ(000, 0). (5.39)

Next, we compute the three dimensional array of second derivatives of r and
the 4 dimensional array of third derivatives of r. These prove necessary when we
compute β′(0) and β′′(0) in chapter 6 using Lemma 53 and Lemma 63 respectively.
To determine the three dimensional array of second derivatives of r, we write (5.37)
in component form as

∂ri

∂zj

=< wwwi, (I − E)∂xxxψ(xxx, β)

(
wwwj +

∂U

∂zj

)
> .

Thus, we get that

∂2ri

∂zj∂zk

=< wwwi, (I − E)

(
∂xxxψ(xxx, β)

∂2U

∂zj∂zk

+ ∂2
xxxψ(xxx, β)[wwwj +

∂U

∂zj

,wwwk +
∂U

∂zk

]

)
> .(5.40)

It can be shown that ([33] p.31)

∂wwwU(000, 0) = 000, (5.41)

from which it follows that ∂U
∂zj

(000, 0) = ∂wwwU(000, 0) ∂www
∂zj

(000) = 000. Furthermore, since (I −
E)∂xxxψ(000, 0) = 000, then

∂2ri

∂zj∂zk

(000, 0) =< wwwi, (I − E)∂2
xxxψ(000, 0)[wwwj,wwwk] > . (5.42)

Applying the chain rule to (5.40), we get the 4 dimensional array of third deriva-
tives

∂3ri

∂zj∂zk∂zl

= 〈wwwi , (I − E)(∂2
xxxψ(xxx, β)[wwwl +

∂U

∂zl

,
∂2U

∂zj∂zk

] + ∂xxxψ(xxx, β)
∂3U

∂zj∂zk∂zl

+ ∂3
xxxψ[wwwj +

∂U

∂zj

,wwwk +
∂U

∂zk

,wwwl +
∂U

∂zl

]

+ ∂2
xxxψ[wwwj +

∂U

∂zj

,
∂2U

∂zk∂zl

] + ∂2
xxxψ[wwwk +

∂U

∂zk

,
∂2U

∂zj∂zl

])〉 (5.43)

Using the fact that ∂zzzU(000, 0) = 000 and (I − E)∂xxxψ = 000, it follows that

∂3ri

∂zj∂zk∂zl

(000, 0) = 〈wwwi , (I − E)(∂2
xxxψ(000, 0)[wwwl,

∂2U

∂zj∂zk

(000, 0)]

+ ∂3
xxxψ(000, 0)[wwwj,wwwk,wwwl]

+ ∂2
xxxψ(000, 0)[wwwj,

∂2U

∂zk∂zl

(000, 0)]

+ ∂2
xxxψ(000, 0)[wwwk,

∂2U

∂zj∂zl

(000, 0)])〉. (5.44)
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To explicitly compute ∂3ri

∂zj∂zk∂zl
(000, 0), we first derive ∂2U

∂zj∂zk
(000, 0). To do this, define

θ(zzz, β) := Eψ(Wzzz + U(Wzzz, β), β).

Observe that ψ = 0 implies that θ = 0. Differentiating θ = 0 yields

∂θ

∂zj

= E∂xxxψ(wwwj +
∂U

∂zj

) = 0

and
∂2θ

∂zj∂zk

= E

(
∂2

xxxψ[wwwj +
∂U

∂zj

,wwwk +
∂U

∂zk

] + ∂xxxψ
∂2U

∂zj∂zk

)
= 0.

Since ∂zzzU(000, 0) = 000, we get

∂θ

∂zj∂zk

(000, 0) = E

(
∂2

xxxψ(000, 0)[wwwj,wwwk] + ∂xxxψ(000, 0)
∂2U

∂zj∂zk

)
= 0,

and E∂xxxψ(000, 0) = L (from (5.30)) shows that

∂2U

∂zj∂zk

(000, 0) = −L−1E∂2
xxxψ(000, 0)[wwwj,wwwk]. (5.45)

Finally, substituting (5.45) into (5.44) shows that

∂3ri

∂zj∂zk∂zl

(000, 0) = 〈wwwi , (I − E)(∂3
xxxψ(000, 0)[wwwj,wwwk,wwwl]

− ∂2
xxxψ(000, 0)[wwwj, L

−1E∂2
xxxψ(000, 0)[wwwk,wwwl]]

− ∂2
xxxψ(000, 0)[wwwk, L

−1E∂2
xxxψ(000, 0)[wwwj,wwwl]]

− ∂2
xxxψ(000, 0)[wwwl, L

−1E∂2
xxxψ(000, 0)[wwwj,wwwk]])〉. (5.46)

In chapter 6, it proves useful to use Lemma 63 to compute β′′(0),

β′′(0) = 〈xxx0, ∂
3
zzzzzzzzzr(000, 0)[zzz0, zzz0, zzz0]〉,

where r is the Liapunov Schmidt reduction of some function ψ, zzz0 is defined as
Wzzz0 = uuu, where zzz0 is a solution branch of r, and uuu is the corresponding solution
branch of ψ. The next Lemma writes < zzz0, ∂

3
zzzzzzzzzr(000, 0)[zzz0, zzz0, zzz0] > in terms of ψ and

uuu.

Lemma 66. Let Wzzz0 = uuu, where the columns of W are {wwwi}, a basis for ker ∂xxxψ(000, 0).
Then 〈zzz0, ∂

3
zzzzzzzzzr(000, 0)[zzz0, zzz0, zzz0]〉 is equal to

〈uuu, ∂3
xxxψ(000, 0)[uuu,uuu,uuu]− 3∂2

xxxψ(000, 0)[uuu, L−1E∂2
xxxψ(000, 0)[uuu,uuu]]〉
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Proof. The Lemma follows from (5.46). 2

Equivariance of the Reduction

By assumption, the vector valued function ψ from (3.15),

ẋxx = ψ(xxx, β),

is G-equivariant. The discussion in the previous section raises a few questions, the
first of which is

For what group is the Liapunov-Schmidt reduced function φ equivariant?

This is answered by Lemma 67.1: If M and N from (5.28) are G-invariant then φ is
G-equivariant. Another question is:

For what group is the Liapunov Schmidt reduction r equivariant?

By Lemma 67.2 , the Lie group that acts equivariantly on r is constructed from G in
the following way. Let {wwwi}m

i=1 be a basis for ker Ψ. For each g ∈ G Proposition 46.2
assures that gwwwj =

∑
i aijwwwi for aij ∈ <. Define the m×m matrix A(g) by setting

[A(g)]ij := aij. (5.47)

The group for which r is equivariant is

A := {A(g)|g ∈ G}. (5.48)

The previous discussion is summarized in the following Lemma.

Lemma 67.

1. ([33] p.306) If M and N , as defined in (5.28), are G-invariant subspaces of B2

and B0 respectively, then the Liapunov-Schmidt reduction of ψ is G-equivariant.

2. ([33] p.307) Let r be defined as in (5.36) and A defined as in (5.48). Then r is
A-equivariant.

The function r is not used explicitly as we proceed. However, the group A for
which r is equivariant is pivotal to the development of the theory that follows. The
reason for this is the following relationship between G and A.

Proposition 68. Let A be defined as in (5.48) and let W be the matrix whose
columns {wwwi}m

i=1 are a basis for ker Ψ. Then A(g) ∈ A fixes xxx ∈ <m if and only
if g ∈ G fixes y = Wxxx ∈ ker Ψ.
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Proof.

A(g)xxx = xxx

⇔




a11 ... a1m
...

...
am1 ... amm







x1
...

xm


 =




∑
j a1jxj

...∑
j amjxj


 =




x1
...

xm




⇔
∑

i

(
∑

j

aijxj)wwwi =
∑

j

xjwwwj

⇔
∑

j

xj

∑
i

aijwwwi =
∑

j

xjwwwj

⇔
∑

j

xjgwwwj =
∑

j

xjwwwj

⇔ g
∑

j

xjwwwj =
∑

j

xjwwwj

⇔ gWxxx = Wxxx.

2
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CHAPTER 6

SYMMETRY BREAKING BIFURCATION

Armed with the tools which we developed in the last chapter, we are now ready
to determine the bifurcation structure of local solutions to (1.9)

max
q∈∆

(G(q) + βD(q))

when Assumption 2 is satisfied. We determine this bifurcation structure by applying
the theory of the last chapter to the dynamical system (3.18)

(
q̇

λ̇

)
= ∇q,λL(q, λ, β).

We consider the equilibria of (3.18) that are fixed by SM . Bifurcations of these equi-
libria are symmetry breaking bifurcations since the Equivariant Branching Lemma
and the Smoller-Wasserman Theorem ascertain the existence of bifurcating branches
which have symmetry corresponding to the maximal isotropy subgroups of SM , M of
which are the subgroups SM−1.

At the conclusion of the chapter, we will have shown that symmetry breaking
bifurcations from SM to SM−1 are always pitchfork-like. We will provide conditions
which ascertain whether the bifurcating branches are subcritical or supercritical. All
subcritical bifurcations are unstable. We also provide a condition which determines
whether supercritical branches are stable or unstable. Furthermore, we determine
when unstable bifurcating branches contain no solutions to (1.9).

The bifurcation structure of equilibria of the above dynamical system is the bi-
furcation structure for stationary points of the optimization problem (3.1)

max
q∈∆E

(G(q) + βD(q))

which in turn gives us the bifurcation structure of local solutions to (1.9)

max
q∈∆

(G(q) + βD(q)).

We point out that in the case when G(q) from (1.9) and (3.1) is strictly concave,
as in the case for the Information Distortion method (2.34), then a singularity of the
Hessian of (3.18) always gives a bifurcation (Corollary 108), and so one can always
apply the bifurcation structure results, which we present in this chapter, to problems
of this type (Corollary 117).

The chapter proceeds as follows. We first determine the specific form of the group
for which this system is equivariant (Theorem 70), which is isomorphic to SN . We
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then determine an explicit basis for the kernel of the Hessian of L at the bifurcation
(Theorems 85 and 87), which enables us to determine the Liapunov-Schmidt reduction
of the system ((6.36) and (6.36)). Next, we determine some of the maximal isotropy
subgroups of SN (Lemma 100), and, using these, the existence of bifurcating branches
is proved (Theorem 110). Finally, we examine the structure and stability of the
branches.

Notation

Let (q∗, λ∗, β∗) denote a bifurcation point of (3.18). In the case where q∗ = q 1
N

, the

uniform solution defined in (2.7), we will use (q 1
N

, λ∗, β∗) to denote the corresponding
bifurcation point. The following notation will be used throughout the rest of this
chapter:

∆F (q 1
N

) := ∆F (q 1
N

, β∗)

∆L(q 1
N

) := ∆q,λL(q 1
N

, λ∗, β∗)

∆F (q∗) := ∆F (q∗, β∗)

∆L(q∗) := ∆q,λL(q∗, λ∗, β∗)

γνη := the element of some Lie group Γ which permutes class ν ∈ YN with class
η ∈ YN .

M -uniform Solutions

We now lay the groundwork to prove the existence of bifurcating branches of
equilibria of (3.18) from bifurcation of a special set of equilibria, which we define
next.

Definition 69. A stationary point q∗ of (3.1) (or, equivalently, an equilibrium (q∗, λ∗)
of (3.18)) is M-uniform if there exists an M , 1 ≤ M ≤ N , and a K×1 vector P such
that qνi = P for M and only M classes, {νi}M

i=1, of YN . These M classes of YN are
unresolved classes. The classes of YN that are not unresolved are resolved classes.

Hence, this section studies bifurcations of M -uniform stationary points q∗ of (3.1).
In this way, we will study symmetry breaking bifurcations of solutions to (1.9). Note
that the solution q 1

N
is N -uniform. Much of the discussion that follows addresses this

special case.
A particular solution of (3.1), q∗, may be both M1-uniform and M2-uniform for

some positive numbers M1 and M2 such that M1 + M2 ≤ N . In other words, qνi = P
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for {νi}M1
i=1 and qηi = R for {ηi}M2

i=1. For example, for N = 6, there exists a solution
which bifurcates from q 1

N
which is 2-uniform and 4-uniform. There also exists a

solution which is ”twice” 3-uniform. Furthermore, for arbitrary N , every q ∈ ∆ is
”at least” 1-uniform. In these instances, the classification of the classes of YN as
either resolved or unresolved depends upon how one views q. If we consider q as
M1-uniform, then we call the classes {νi}M1

i=1 unresolved, and the rest of the N −M1

classes, including the M2 classes {ηi}M2
i=1, are considered resolved. However, if one

views q as being M2-uniform, then we call the classes {ηi}M2
i=1 unresolved, and the

rest of the N −M2 classes, including the M1 classes {νi}M1
i=1, are resolved. We allow

this flexibility since, as we will see, viewing a stationary point q∗ as both M1 and
M2 uniform, for M1,M2 > 1, enables us to consider two different types of symmetry
breaking bifurcation from the solution branch which contains (q∗, λ∗, β).

Suppose that q∗ is M -uniform. Based on Definition 69, we now partition YN into
two disjoint sets. Let

U be the set of M unresolved classes (6.1)

and let

R be the set of N −M resolved classes. (6.2)

Thus U ∩R = ∅ and U ∪R = {1, ..., N} = YN .
Let Bν be the block of ∆F (q∗) corresponding to class ν. For clarity, we denote

B = Bν for ν ∈ U (6.3)

and

Rν = Bν for ν ∈ R. (6.4)

The Group of Symmetries

The action of ”relabelling of the classes of YN” addressed by Assumption 15.1 is
effected by the action of the finite group SN on the classes of YN . We now introduce
a finite matrix group, which we will call Γ, which effects the action of ”relabelling of
the classes of YN”, on the dynamical system (3.18). This introduction comes in two
stages. First we introduce the matrix group P , which is isomorphic to SN , which acts
on the elements q ∈ ∆, and on the function ∇F . Then, we can formally define Γ,
also isomorphic to SN , which acts on the elements

(
q
λ

)
∈ <NK+K ,

and on the function∇q,λL. It will be convenient to work with the subgroups SM ≤ SN ,
for 1 < M < N . Thus, we also present subgroups of P and of Γ which are isomorphic
to SM .
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We begin by ascertaining which Lie group representation will be used when SN

actions on q ∈ ∆ and on the function ∇F are considered. Let

P < O(NK),

where O(NK) is a the group of orthogonal matrices in <NK

O(NK) := {Q ∈ <NK×NK |QQT = INK}.

P acts on q ∈ <NK by permuting all the components of q associated with class δ
to class η. Formally, for ρ ∈ P , q̂ = ρq if and only if for each δ, 1 ≤ δ ≤ N , there
is an η, 1 ≤ η ≤ N such that q̂δk = qηk for every k. In words, P is the group of
block permutation matrices. For example, for N = 3, |P| = 6, then the elements
ρ13, ρ123 ∈ P are

ρ13 =




000 000 IK

000 IK 000
IK 000 000


 , ρ123 =




000 000 IK

IK 000 000
000 IK 000


 ,

where 000 is K × K. Hence, Assumption 15.1, which states that G and D must be
invariant to the relabelling of the classes of YN , is equivalent to saying that G and D
are P-invariant.

A word of caution is in order. The theory of chapter 5 can not be applied directly
to q ∈ ∆ or to ∇F for two reasons. First, ∆ is not a Banach space (∆ is not closed
under vector addition, and it does not contain the vector 000). Secondly, the theory
can describe bifurcations of equilibria to

q̇ = ∇F (q, β),

but these equilibria correspond to solutions of the unconstrained problem

max
q∈<NK

(G(q) + βD(q)),

which are not even stationary points of our problem (3.1).
Now we define the group that acts on the system (3.18) (i.e. on (q, λ) ∈ <NK×<K ,

and on ∇q,λL). Let Γ ≤ O(NK + K) such that

Γ :=

{(
ρ 000T

000 IK

)
| for ρ ∈ P

}
. (6.5)

Observe that γ ∈ Γ acts on ∇q,λL by

γ∇q,λL(q, λ) =

(
ρ 000T

000 IK

)( ∇qL
∇λL

)
=

(
ρ∇qL
∇λL

)
(6.6)
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and on

(
q
λ

)
by

γ

(
q
λ

)
=

(
ρq
λ

)
. (6.7)

Thus, γ ∈ Γ acts on q ∈ <NK as defined by ρ ∈ P but leaves the Lagrange multipliers
λ = (λ1 λ2, ..., λK)T fixed.

We have the following theorem.

Theorem 70. L(q, λ, β) is Γ-invariant, ∇q,λL(q, λ, β) is Γ-equivariant, and ∇F is
P-equivariant.

Proof. By definition of the group Γ, we see that L is Γ-invariant since F is P-invariant.

Differentiating both sides of the equation L(q, λ, β) = L(γ

(
q
λ

)
, β) for any γ ∈ Γ

shows that ∇q,λL = γT∇q,λL(γ

(
q
λ

)
, β). Since γ−1 = γT , this shows that ∇q,λL is

Γ-equivariant. A similar argument shows that ∇F is P-equivariant. 2

For the Information Distortion problem (2.34), Theorem 73 below shows explicitly
that ∇q,λL is Γ-equivariant, where Γ is defined in (6.5).

The maximal isotropy subgroup structure of Γ gives the existence of bifurcating
branches from q 1

N
because Γ fixes no nontrivial vector other than multiples of q 1

N
in

ker ∆L(q 1
N

) (see Theorem 47, Theorem 49 and Proposition 104). To get the existence
of bifurcating branches from an M -uniform solution q∗ 6= q 1

N
, we determine a sub-

group of Γ which fixes no nontrivial vector in ker ∆L(q∗) other than multiples of q∗

under generic assumptions (see Proposition 105). With this in mind, we now define
such a subgroup of Γ (Theorem 71) which is isomorphic to the subgroups SM < SN

for 1 < M < N .
The set YN is the set of N objects on which SN acts. Viewed as a subgroup of SN ,

SM is the group of permutations on only M of the elements of YN . The other N −M
elements of YN are left fixed by the action of SM . Thus, to determine a particular
instance of a subgroup SM ≤ SN , one must first determine which M elements of YN

are permuted freely by SM . Given an M -uniform solution, we are interested in the
subgroup SM ≤ SN which permutes the M unresolved classes of U ⊆ YN , and leaves
fixed the resolved classes YN \ U = R of YN . Define

ΓU :=

{(
ρ 000T

000 IK

)
|ρ ∈ PU

}
, (6.8)

where ρ is NK × NK, IK is a K ×K identity, and 000 is K × NK. The elements of
the subgroup

PU < P (6.9)
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(from (6.5)) fix the classes of R, and freely permute the M classes of U . Thus, PU
and ΓU are Lie groups isomorphic to SM . If U = YN , then we are back to the case
where q∗ = q 1

N
and ΓU = Γ.

Theorem 71. Let |U| = M . Then q ∈ Fix(PU) if and only if q is M-uniform.

Proof. Recall that PU from (6.9), which is isomorphic to SM , permutes the classes
of U and fixes the classes of R. Let ρνη ∈ PU . If q ∈ Fix(PU), then ρνηq = q which
implies that qν = qη for every ν and η in U , which shows that q is M -uniform.

Now suppose that q is M -uniform, which means that qν = qη for every ν, η ∈ U .
Then ρνηq = q̂, where

q̂c =





qν if c = η
qη if c = ν

qc otherwise
.

This shows that ρνηq = q. The theorem now follows from Proposition 76.1 since PU
is generated by the transpositions {ρνη} over all ν, η ∈ U . 2

The fact that q ∈ ∆ can be both M1-uniform and M2-uniform for M1 6= M2 shows
that q ∈ Fix(PU1) ∩ Fix(PU2) for two distinct subsets of U1,U2 ⊆ YN .

One of the basic assumptions on which this thesis relies is that ∆F (q∗) is block
diagonal (Assumption . Another basic but crucial observation about M -uniform
solution is the following theorem.

Theorem 72. If q ∈ Fix(PU) where |U| = M , then ∆F has M identical blocks.

Proof. Let q̂ ∈ Fix(PU). Let ρ be the transposition in PU which permutes the classes
ν and η in U , which exists since PU ∼= SM . By Theorem 70, we have that ∇F (ρq) =
ρ∇F (q), and now differentiation and evaluating at q = q̂ yields ∆F (q̂)ρ = ρ∆F (q̂).
Thus, using (3.9), we see that B = Bη = Bν . Since ν and η are arbitrary classes of
U , then it must be that B = Bν for every ν ∈ U . 2

The converse to the theorem does not hold. To see this, consider the Information
Distortion problem (2.34), so that G = H(YN |Y ) and D = Deff . Observe that the
(m,n)th component of the νth block of ∆Deff (q) is

[∆Dν(q)]mn =
∑

i

p(xi, ym)p(xi, yn)∑
k qνkp(xi, yk)

− p(ym)p(yn)∑
k qνkp(yk)

.

For N = 2 and some a such that 0 < a < 1, let q̂ be identically 1
2

except for

q̂(ν = 1|y = 1) = q(ν = 2|y = 2) = a

and
q̂(ν = 2|y = 1) = q(ν = 1|y = 2) = 1− a.
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If p(X, y1) = p(X, y2) = 000, then p(y1) = p(y2) = 0 and so ∆D1(q̂) = ∆D2(q̂). This
also shows that the corresponding components of ∆H(YN |Y ) are zero (see (2.20)).
Thus, ∆F (q̂, β) has identical blocks, but q̂ /∈ Fix(P).

Now for the result that deals specifically with (3.18) when F is defined as in
Information Distortion Problem (2.34), which was promised at the beginning of this
section.

Theorem 73. When F is defined as in (2.34), ∇q,λL is Γ-equivariant.

Proof. Since the transpositions generate SN (Proposition 76.1), then it just needs to
be shown that for each transposition γδη ∈ Γ which permutes qδk with qηk for all k,
1 ≤ k ≤ K

γδη∇q,λL(q, λ, β) = ∇q,λL(γδη

(
q
λ

)
, β).

By (6.6) and (6.7), this equation becomes
(

ρ∇qL(q, λ, β)
∇λL(q, λ, β)

)
=

( ∇qL(ρq, λ, β)
∇λL(ρq, λ, β)

)
,

where ρ ∈ P permutes class δ with class η. By (3.4), this requirement becomes

ρ∇F (q, β) = ∇F (ρq, β) (6.10)

∇λL(q, λ, β) = ∇λL(ρq, λ, β). (6.11)

We show (6.10) by showing that each term of ∇F is in fact Γ-equivariant, which is
really just a practice in subscripts. First, we consider

[ρ∇H]νk =




−p(yk)(log qνk + 1) if ν /∈ {δ, η}
−p(yk)(log qηk + 1) if ν = δ
−p(yk)(log qδk + 1) if ν = η

= [∇H(ρq)]νk.

Thus, ρ∇H(q) = ∇H(ρq). Lastly we consider

[ρ∇Deff ]νk =





∑
i p(xi, yk) log

P
k qνkp(xi,yk)

p(xi)
P

k qνkp(yk)
if ν /∈ {δ, η}∑

i p(xi, yk) log
P

k qηkp(xi,yk)

p(xi)
P

k qηkp(yk)
if ν = δ∑

i p(xi, yk) log
P

k qδkp(xi,yk)

p(xi)
P

k qδkp(yk)
if ν = η

= [∇Deff (ρq)]νk.

Hence, ρ∇Deff (q) = ∇Deff (ρq).
To get (6.11), we use (3.6), which implies that

[∇λL(q, λ, β)]k =
∑

ν

qνk − 1 = q1k + q2k+, ..., +qNk − 1

= [∇λL(ρq, λ, β)]k,
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where the last equality follows since permuting qδk with qηk leaves the sum
∑

ν qνk

unchanged. 2

The Group SM

In this section we examine the abstract group

S, the cycle representation of SM (6.12)

as defined in [8] and [27] for arbitrary M , which will prove useful in the sequel. We use
the notation γ(a1a2...am) to denote an element of Γ which is isomorphic to the M -cycle
(a1a2...am) ∈ S.

We will be working extensively with the subgroups of SM , and define a well studied
normal subgroup of SM next.

Definition 74. The alternating group on M symbols, AM , is the subgroup of all
elements of SM which can be decomposed into an even number of transpositions.

Remark 75. We will use four different group representations of SM in the discussion
that follows. The first two representations, PU and ΓU , have just been described in
(6.9) and (6.8) respectively. The latter two, S and A, are defined at (6.12) and (6.45)
in the text respectively.

Proposition 76. [27] Using the cycle representation S from (6.12):

1. (p.107) SM is generated by transpositions:

SM =< T > where T = {(ij)|1 ≤ i < j ≤ M}.

2. (p.28-31,116) Any element of SM can be written uniquely as a product of disjoint
cycles.

3. (p.31) An element in SM is of order M if and only if it is an M-cycle.

4. (p.110) An element σ ∈ SM is an m-cycle where m is odd if and only if σ ∈ AM .

5. (p.127) If τ, σ ∈ SM with
σ = Πi(ai1...aimi

)

then
τστ−1 = Πi(τ(ai1)τ(ai2)...τ(aimi

))

6. (p.127) σ and τ ∈ SM are conjugate ⇔ they have the same cycle decomposition.
In other words, for any σ, τ ∈ SM of a given cycle type, there exists ζ ∈ SM

such that ζτζ−1 = σ.
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The next result ascertains some of the maximal subgroups of SM . Liebeck et al.
[46] show that the next Theorem gives but one of six different types of the maximal
subgroups of SM for arbitrary M .

Theorem 77. For any finite M > 1, among the maximal subgroups of SM , there are
M subgroups which are isomorphic to SM−1.

Proof. Using the cycle representation S of SM from (6.12), Lemma 76.1 gives that
SM = 〈T 〉 where T = {(ij)|1 ≤ i < j ≤ M}. Consider the set Tk ⊂ T

Tk := {(ij) ∈ T |i, j 6= k}. (6.13)

It is clear that 〈Tk〉 ∼= SM−1. Suppose 〈Tk〉 < H ≤ SM . The theorem is proved
if H = SM . Note that H must have some element σ which acts on k non-trivially
(otherwise, 〈Tk〉 = H). Write σ (uniquely) as a product of disjoint cycles (Proposition
76.2)

σ = σ1σ2...σm

where m ≥ 1. Then k is contained in some cycle, say σl, for some l where 1 ≤ l ≤ m.
So k is not in any other cycle σn, for n 6= l. This implies σn ∈ 〈Tk〈< H and so
σ−1

n ∈ H. Therefore, we can multiply σ1σ2...σm on the left by σ−1
l−1σ

−1
l−2...σ

−1
1 and on

the right by σ−1
m σ−1

m−1...σ
−1
l to show that σl ∈ H. Now we repeat this strategy: if

σl = (a1a2...k...ap−1ap) then σl can be rewritten as

σl = (a1ap)(a1ap−1)...(a1k)...(a1a3)(a1a2)

where ar 6= k for each r, 1 ≤ r ≤ p. Hence, (a1ar) ∈ 〈Tk〉 < H and so we see that
(a1k) ∈ H after multiplying on the left and the right of σl by the appropriate inverses.
Now, (a1j) ∈ 〈Tk〉 for every j 6= k from which it follows that (a1j)(a1k)(a1j) = (jk) ∈
H. Hence, H contains T which implies that H = SM and so 〈Tk〉 is a maximal
subgroup of SM for each k ∈ {1, 2, ...,M}. 2

The Initial Solution q0

We now examine the solution q0 of (3.1)

q0 = argmaxq∈∆F (q, 0) = argmaxq∈∆G(q).

We show that under some conditions, q0 persists as a solution for β ∈ [0, β̃), and
then we show that this result holds for the Information Distortion problem (2.34).
We conclude the section by providing the location of singularities along the solution
branch which contains the initial solution q0.

Lemma 78. If q0 is a stationary point of (3.1) for all β ∈ [0, β̂) for some β̂ > 0, and
if ∆G(q0) is negative definite on ker J , then q0 is a solution of (3.1) for all β ∈ [0, β̃)
for some 0 < β̃ < β̂.
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Proof. Since q0 is a solution of (3.1) at β = 0, then there exists some vector λ0 such
that ∇q,λL(q0, λ0, 0) = 000. If we let Z be defined as the NK × (dim ker J) matrix
whose columns span ker J , then, by the assumption on ∆G(q0) and Remark 21.2, the
eigenvalues of ZT ∆G(q0, 0)Z = ZT ∆F (q0, 0)Z = ZT ∆qL(q0, λ0, 0)Z are negative and
bounded away from zero. Since ∆F changes continuously in β (Assumption 15.2),
then ZT ∆F (q0, β)Z has negative eigenvalues for every 0 < β < β̃ for some β̃ < β̂.
Applying Theorem 20 completes the proof. 2

Theorem 71 shows that for any problem (3.1), q0 is fixed by the action of the full
group P if and only if q = q 1

N
, where q 1

N
is the uniform quantizer defined in (2.7).

For F as defined for the Information Distortion and the Information Bottleneck cost
functions, (2.34) and (2.35), q0 = q 1

N
. In both cases, q 1

N
is a solution to (3.1) for all

β in some [0, β̃). We prove this claim for (2.34) in the following lemma.

Lemma 79. (q 1
N

, β) is a solution of (2.34) for all β ∈ [0, β̃) for some β̃ > 0.

Proof. Consider

max
q∈∆E

H(q). (6.14)

Now the Lagrangian (3.3) becomes

L(q, λ) = H(q) +
∑

k

λk(
∑

ν

qνk − 1).

By Theorem 16 and (2.19), solutions q̃ of (6.14) are determined by considering solu-
tions of

∇qLνk = −p(yk)

(
log2 qνk +

1

ln2

)
+ λk = 0 (6.15)

∇λLk =
∑

ν

qνk − 1 = 0. (6.16)

From (6.15), log2 qνk = λk

p(yk)
− 1

ln2
from which it follows qνk = 2

λk
p(yk)

− 1
ln2 . From (6.16),

1 =
∑

ν

qνk =
∑

ν

2
λk

p(yk)
− 1

ln2 = N2
λk

p(yk)
− 1

ln2

which implies λk = p(yk)
(

1
ln2
− log2 N

)
. Substituting this last expression for λk back

into (6.15) proves that qνk = 1
N

for every ν and k satisfies the KKT conditions. Since
∆H(q) is negative definite for every q (see (2.20)), then q 1

N
is the global solution of

(6.14) by Theorem 20.
Since ∇H(q 1

N
)+β∇Deff (q 1

N
) = 000 for every Thusβ, then q 1

N
is a stationary point

of (2.34) for every β. The Lemma now follows from Lemma 78 since ∆H(q) is negative
definite for every q ∈ ∆. 2
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Compare the result of the last Lemma to the unconstrained problem

max
q∈<NK

H(q), (6.17)

where H is the entropy function from (2.34). Since ∆H is negative definite, then the
unique point that satisfies ∇H = 000 (see (2.19)) is the global maximum:

∇H = 000 ⇔ −p(yk)

(
log2 qνk +

1

ln2

)
= 0

⇔ log2 qνk = − 1

ln2
⇔ ln qνk = −1

⇔ qνk =
1

e
.

Hence, for arbitrary N , the constrained maximum q 1
N

of (6.14) is not even a stationary

point of (6.17).
By Theorem 72, if q0 = q 1

N
∈ Fix(P), then all of the blocks of ∆F (q0, β) are

identical. Thus, the blocks {Bi}N
i=1 (from (3.9)) of ∆F (q0, β) = ∆F (q 1

N
, β) can be

written as

Bi = B. (6.18)

Consider the branch of equilibria (q 1
N

, λ∗, β) to (3.18) for 0 ≤ β ≤ β̂. If the

hypotheses of Lemma 78 are met, and if ∆G(q 1
N

) is nonsingular, then one can as-
certain the values of β at which bifurcation occurs along this branch by solving an
eigenvalue problem. In particular, this result holds for the Information Distortion
problem (2.34).

Theorem 80. Suppose that q 1
N

is a stationary point of (3.1) for all β ∈ [0, β̂) for some

β̂ > 0, and that ∆G(q 1
N

) is negative definite on ker J . Further suppose that ∆G(q 1
N

)

is nonsingular. Then the bifurcation from the solution (q 1
N

, β) can only occur at the

reciprocal of the eigenvalues of −∆G−1(q 1
N

)∆D(q 1
N

).

Proof. By Theorem 24, ∆L(q 1
N

) is singular at bifurcation. By Theorems 70 and 72,

∆F (q 1
N

) has identical blocks. Thus, by Corollary 35, ∆F (q 1
N

) is singular,

det(∆F (q 1
N

, β) = det(∆G(q 1
N

) + β∆D(q 1
N

)) = 0,

at bifurcation. By assumption, ∆G(q 1
N

) is nonsingular, and hence invertible so that

1

− det(∆G(q 1
N

))
det

(
∆G(q 1

N
) + β∆D(q 1

N
)
)

= 0
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from which it follows that

det

(
−∆G(q 1

N
)−1)∆D(q 1

N
)− 1

β
I

)
= 0

which is the eigenvalue problem for the matrix −∆G−1(q 1
N

)∆D(q 1
N

). 2

Kernel of the Hessian at Symmetry Breaking Bifurcation

Bifurcation of equilibria of (3.18)

(
q̇

λ̇

)
= ∇q,λL(q, λ, β)

at a point (q∗, λ∗, β∗) causes the Jacobian of the system, ∆L(q∗), to be singular
(Theorem 24). As we have seen, the bifurcating directions are contained in ker ∆L(q∗),
the kernel of the Hessian of the Lagrangian (3.3) (see (5.35) and (5.38)).

The purpose of this section is to determine a basis for ker ∆L(q∗) at symmetry
breaking bifurcation of an M -uniform solution (q∗, λ∗, β∗), given that the following
assumptions are met.

Assumption 81.

1. q∗ is M-uniform, for 1 < M ≤ N .

2. For B, the block(s) of the Hessian defined in (6.3),

ker B has dimension 1 with K × 1 basis vector vvv (6.19)

3. For {Rν}, the block(s) of the Hessian defined in (6.4), we have

Rν is nonsingular for every ν ∈ R. (6.20)

4. The matrix B
∑

ν R−1
ν + MIK is nonsingular.

Observe that Theorem 72 guarantees that the blocks of the Hessian have the
structure presupposed by Assumptions 81.2 and 81.3. When q∗ is N -uniform, then
all of the blocks of the Hessian are identical as in (6.18).

In chapter 8, we examine the type of bifurcation to be expected when Assumption
81 does not hold.

Remark 82. For the Information Bottleneck problem (2.35),

max
q∈∆

F (q, β) = max
q∈∆

(I(Y ; YN) + βI(X, YN)),
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Assumption 81.3 is never satisfied. This is due to the fact that q is always in the
kernel of ∆F (q, β) for every β (Theorem 43). This implies that the kernel of the νth

block of ∆F (q∗) contains the K × 1 vector [q∗]ν at bifurcation (q∗, β∗) in addition to
the vector vvv from Assumption 81.2. We comment on this scenario in the section at
the end of this chapter.

We begin by determining a basis for ker ∆F (q∗). Define the NK × 1 vectors

{vvvi}M
i=1

by

[vvvi]ν :=

{
vvv if ν is the ith unresolved class of U
000 otherwise

(6.21)

where 000 is K×1, which are clearly linearly independent. From Assumptions 81.2 and
81.3, we get that dim ker ∆F (q∗) = M . This shows the following:

Lemma 83. {vvvi}M
i=1 as defined in (6.21) is a basis for ker ∆F (q∗).

Thus, if q∗ = q 1
N

then ker ∆F (q 1
N

) has dimension N with NK × 1 basis vectors

vvv1 =




vvv
000
000
...
000




, vvv2 =




000
vvv
000
...
000




, ... , vvvN =




000
000
000
...
vvv




. (6.22)

Now, let

wwwi =

(
vvvi

000

)
−

(
vvvM

000

)
(6.23)

for i = 1, ..., M − 1 where 000 is K × 1. For example, if M = N − 1 and R = {2}, then
{wwwi}M−1

i=1 =

{




vvv
000
000
...
000
−vvv
000




,




000
000
vvv
...
000
−vvv
000




, ... ,




000
000
000
...
vvv
−vvv
000




︸ ︷︷ ︸
N−2 vectors

}.
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Lemma 84. Given that Assumption 81 holds, {wwwi}M−1
i=1 from (6.23) are linearly inde-

pendent vectors of ker ∆L(q∗).

Proof. To show {wwwi} ∈ ker ∆L(q∗), compute

∆L(q∗)wwwi =

(
∆F (q∗) JT

J 000

)
(

(
vvvi

000

)
−

(
vvvM

000

)
)

=

(
∆F (q∗)vvvi

Jvvvi

)
−

(
∆F (q∗)vvvM

JvvvM

)

=

(
000

Jvvvi

)
−

(
000

JvvvM

)
(by Lemma 83)

=

(
000

[IK IK ... IK ]vvvi

)
−

(
000

[IK IK ... IK ]vvvM

)
(by (3.7))

=

(
000
vvv

)
−

(
000
vvv

)

=

(
000
000

)
.

To get linear independence, suppose there exists ci ∈ < for i = 1, ..., M − 1 such that

M−1∑
i=1

ciwwwi = 000.

Then

M−1∑
i=1

(civvvi − civvvM) =
M−1∑
i=1

civvvi −
M−1∑
i=1

civvvM = 000. (6.24)

Set

di = ci for i = 1, ...,M − 1 and dM = −
M−1∑
i=1

ci. (6.25)

Then (6.24) and (6.25) imply that

M∑
i=1

divvvi = 000.

By Lemma 83, di = 0 for every i, from which it follows that ci = 0 for every i. 2

Now we are ready to prove the main results of this section.

Theorem 85. {wwwi}N−1
i=1 is a basis for ker ∆L(q 1

N
).
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Proof. By Lemma 84, ker ∆L(q 1
N

) ⊇ span{wwwi}. To get the other containment, let

kkk ∈ ker ∆L(q 1
N

) and decompose it as in (4.1) and (4.6). Since the blocks of ∆F (q 1
N

)

are identical (see (6.18)), kkk ∈ ker ∆L(q 1
N

) if and only if




Bxxx1

Bxxx2
...

BxxxN


 = −




kkkJ

kkkJ
...

kkkJ




(see (4.7)). Equation (4.8) implies that B
∑

ν xxxν = −∑
ν kkkJ = 000 from which we get

kkkJ = 000. Hence kkk =

(
kkkF

000

)
and (4.2) assures that kkkF ∈ (ker ∆F (q 1

N
)) ∩ (ker J).

Therefore kkkF =
∑

i civvvi (Lemma 83) and JkkkF = 000. The last equation can be written
as

JkkkF = J




c1vvv
c2vvv
...

cNvvv


 = 000

from which
∑

i civvv = vvv
∑

i ci = 000. Therefore
∑

i ci = 0 and so

cN = −
N−1∑
i=1

ci. (6.26)

Thus

kkkF =
N−1∑
i=1

civvvi + cNvvvN

=
N−1∑
i=1

civvvi −
N−1∑
i=1

civvvN

=
N−1∑
i=1

ci(vvvi − vvvN). (6.27)

Since kkk is arbitrary, then the vectors {wwwi} = {
(

vvvi − vvvN

000

)
} span ker ∆L(q 1

N
). By

Lemma 84, {wwwi} are linearly independent and so they are a basis for ker ∆L(q 1
N

). 2

Remark 86. Corollary 35 shows that

∆F (q 1
N

) is singular ⇔ ∆L(q 1
N

) is singular.

Theorem 85 gives a stronger result for N > 2. It shows that every kkk ∈ ker ∆L(q 1
N

) can

be written as kkk =

(
kkkF

000

)
where kkkF ∈ ker ∆F (q 1

N
)∩ker J so that kkk =

∑N−1
i=1 ci

(
vvvi − vvvN

000

)
.
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Conversely, if {vvvi}N
i=1 is the basis for ker ∆F (q 1

N
) from (6.22), then a vector in

ker ∆L(q 1
N

) is a linear combination of the vectors {
(

vvvi − vvvj

000

)
} for any i 6= j.

Theorem 87. Given that Assumption 81 holds, then {wwwi}M−1
i=1 from (6.23) are a basis

for ker ∆L(q∗).

Proof. By Lemma 84, ker ∆L(q∗) ⊇ span{wwwi}. To get the other containment, let
kkk ∈ ker ∆L(q∗) and decompose it as in (4.1) and (4.6). Then by (4.7) we have




B1xxx1

B2xxx2
...

BNxxxN


 = −




kkkJ

kkkJ
...

kkkJ


 . (6.28)

Using the notation from (6.3) and (6.4), (6.28) implies

Bxxxη = −kkkJ for η ∈ U (6.29)

Rνxxxν = −kkkJ for ν ∈ R

from which it follows that
xxxν = R−1

ν Bxxxη

for any η ∈ U . By (4.4), JkkkF = 000 which implies
∑N

i=1 xxxi = 000 and so

∑
ν∈Rxxxν +

∑
η∈U xxxη = 000 (6.30)

=⇒ ∑
ν∈R R−1

ν Bxxxη̂ +
∑

η∈U xxxη = 000

where η̂ is some fixed class in U . By (6.29), for every η ∈ U , xxxη can be written as

xxxη = xxxp + dηvvv (6.31)

where either xxxp = 000 or xxxp ∈ <K \ ker B, dη ∈ < and vvv is the basis vector of ker B
from (6.19). From (6.31) it follows that

B
∑
ν∈R

R−1
ν B(xxxp + dη̂vvv) + B

∑
η∈U

(xxxp + dηvvv) = 000

⇔ B
∑
ν∈R

R−1
ν Bxxxp +

∑
η∈U

Bxxxp = 000

⇔ (B
∑
ν∈R

R−1
ν + MIK)Bxxxp = 000

⇔ Bxxxp = 000
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since we are assuming that B
∑

ν∈R R−1
ν +MIK is nonsingular (Assumption 81.4). In

fact, xxxp = 000 since a nontrivial xxxp /∈ ker B. Therefore, xxxη = dηvvv for every η ∈ U . Now
(6.29) shows that kkkJ = 000 and so

xxxν = 000 for ν ∈ R. (6.32)

Hence kkk =

(
kkkF

000

)
where [kkkF ]ν =

{
dνvvv if ν ∈ U
000 if ν ∈ R from which it follows that kkkF ∈

ker ∆F (q∗). Therefore, (4.4) assures that kkkF ∈ (ker ∆F (q 1
N

))∩ (ker J) and so Lemma
83 gives

kkkF =
M∑
i=1

civvvi and JkkkF = 000

and now (6.26) implies

cM = −
M−1∑
i=1

ci.

Thus

kkkF =
M−1∑
i=1

ci(vvvi − vvvM)

as in (6.27). Therefore, the vectors {wwwi} = {
(

vvvi − vvvM

000

)
} span ker ∆L(q∗). By

Lemma 84, {wwwi} are linearly independent and so they are a basis for ker ∆L(q∗). 2

Remark 88. Theorem 36 shows that if the unresolved blocks of ∆F (q∗) are singular,
then ∆L(q∗) is singular. In particular, Theorem 87 shows that if Assumption 81 holds
(so that B is singular and B

∑
ν R−1

ν + MIK is nonsingular for M > 1), then every

kkk ∈ ker ∆L(q∗) can be written as kkk =

(
kkkF

000

)
where kkkF ∈ ker ∆F (q∗) ∩ ker J so that

kkk =
M−1∑
i=1

ci

(
vvvi − vvvM

000

)
.

Conversely, if ∆L(q∗) is singular, Rν is nonsingular, and if B
∑

ν R−1
ν + MIK is

nonsingular, then Theorem 87 shows that ker ∆F (q∗) ∩ ker J 6= ∅, so then ∆F (q∗)
(and B) must be singular. We examine the case when B

∑
ν R−1

ν + MIK is singular
(which does not necessarily cause a singularity in ∆F (q∗)) in chapter 8.

In light of the previous Remark, we have the following Lemma, which will prove
useful in chapter 8.
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Corollary 89. Suppose that q∗ is M-uniform. If the unresolved blocks of ∆F (q∗)
are singular and if the resolved blocks are nonsingular, then ∆L(q∗) is singular. Con-
versely, if ∆L(q∗) is singular, and if Assumptions 81.3 and 81.4 hold for M > 1, then
∆F (q∗) is singular. In both cases, dim ker ∆F = M and dim ker ∆q,λL = M − 1.

We have produced a basis of the kernel of ∆L(q∗) for arbitrary optimization
problems of the form (1.9)

max
q∈∆

(G(q) + βD(q))

as long as Assumption 81) is met. For the Information Distortion problem (2.34), we
have that G = H(YN |Y ), the conditional entropy (2.17), which is a strictly concave
function (see (2.20)). For any problem (1.9) where G is a strictly concave function,
we have the following Lemma.

Lemma 90. Let (q∗, β∗) be some singular point of ∆F (q∗) such that G is strictly con-
cave (and no further assumptions on D). Let uuu be any nontrivial vector in ker ∆F (q∗).
Then uuuT ∆D(q∗)uuu > 0.

Proof. ∆F (q∗)uuu = 000 implies uuuT ∆F (q∗)uuu = 0 which in turn gives

uuuT ∆G(q∗)uuu + β∗uuuT ∆D(q∗)uuu = 0. (6.33)

Since G is strictly concave, ∆G(q) is negative definite for any q which implies that
uuuT ∆G(q∗)uuu < 0. For (6.33) to hold, we must have uuuT ∆D(q∗)uuu > 0. 2

Liapunov-Schmidt Reduction

In order to apply the theory of chapter 5 to (3.18) at a given bifurcation point
(q∗, λ∗, β∗), we must translate the bifurcation to (000,000, 0) and require that the Jacobian
vanishes at bifurcation. To accomplish the former, consider the system

F(q, λ, β) = ∇q,λL(q + q∗, λ + λ∗, β + β∗), (6.34)

so that
∂q,λF(000,000, 0) = ∆q,λL(q∗, λ∗, β∗).

To assure that the Jacobian vanishes as required, we consider the Liapunov-Schmidt
reduction of F at bifurcation (000,000, 0). That is, we restrict ∇q,λL to ker ∆L(q∗) about
(q∗, λ∗, β∗). Since we will be using the explicit basis {wwwi}M−1

i=1 from (6.23), we require
that at the point (q∗, λ∗, β∗), Assumption 81 holds. First, we determine the relevant
spaces in the reduction. The Jacobian of the right hand side of (3.18), ∆L(q∗),
is symmetric. Furthermore, the spaces B2 and B0 defined in (5.28) are each the
finite dimensional Euclidean space <NK+K . Hence, we can take the vector space
complements M and N from (5.28) as

M = (ker ∆L(q∗))⊥ = range∆L(q∗)T = range∆L(q∗)
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and
N = (range∆L(q∗))⊥ = ker ∆L(q∗)T = ker ∆L(q∗).

Therefore, the Liapunov-Schmidt reduced equation of F is

φ : ker ∆L(q∗)×< → ker ∆L(q∗)

φ(www, β) = (I − E)F(www + U(www, β), β). (6.35)

As outlined in (5.32), I − E is the projection onto ker ∆L(q∗) with ker(I − E) =
range∆L(q∗), www ∈ ker ∆L(q∗) and U(www, β) ∈ range∆L(q∗). In particular, we define
the orthogonal projection onto range∆L(q∗) as

E = ∆L(q∗)(∆L(q∗)T ∆L(q∗))−∆L(q∗)T

= ∆L(q∗)(∆L(q∗)2)−∆L(q∗).

We now investigate an equivalent representation of the Liapunov-Schmidt re-
duction (6.35) on <M−1, a representation of ker ∆L(q∗), as in (5.36). Let W =
(www1 www2...wwwN−1), the (NK + K)× (M − 1) matrix whose column space is ker ∆L(q∗),
where wwwi are defined in (6.23) (Theorem 85). Thus, for every www ∈ ker ∆L(q∗), there
exists xxx ∈ <M−1 such that Wxxx = www. Now define

r : <M−1 ×< → <M−1

r(xxx, β) = W T φ(Wxxx, β) (6.36)

= W T (I − E)F (by (6.35))

= W TF −W T EF
= W TF (6.37)

where the last equality is justified by the fact that EF ∈ range∆L(q∗) and that the
column space of W is ker ∆L(q∗), which are orthogonal. The function r is equivalent
to φ in the sense that r = 000 if and only if φ = 000.

From (6.36) we see that the (M − 1)× (M − 1) Jacobian of r is

∂xxxr(xxx, β) = W T ∂wwwφ(www, β)W (6.38)

where www = Wxxx. Using (6.37), we see that ∂xxxr(xxx, β) as in (5.37) can be written as

∂xxxr(xxx, β) = W T ∆q,λL(q + q∗, λ + λ∗, β + β∗)(W + ∂wwwU(Wxxx, β)W ) (6.39)

where

(
q
λ

)
= Wxxx + U(Wxxx, β).

The three dimensional array of second derivatives of r from (5.40) becomes

∂2ri

∂xj∂xk

=< wwwi, (I − E)

(
∆q,λL ∂2U

∂xj∂xk

+ ∂3
QL[wwwj +

∂U

∂xj

,wwwk +
∂U

∂xk

]

)
>, (6.40)
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where Q =

(
q
λ

)
and ∆q,λL and ∂3

QL are both evaluated at (q + q∗, λ + λ∗, β + β∗).

From (5.42), we see that at bifurcation when (q, λ, β) = (000,000, 0), that

∂2ri

∂xj∂xk

(000, 0) = < wwwi, (I − E)∂3
QL(q∗, λ∗, β∗)[wwwj,wwwk] > (6.41)

= < wwwi, ∂
3
QL(q∗, λ∗, β∗)[wwwj,wwwk] > (6.42)

where the last equality follows from the fact that < wwwi, (I − E)V >=< wwwi, V > for
any vector V since wwwi ⊥ EV . Now let ŵwwi = vvvi − vvvM for each i between 1 and M − 1.

Then wwwi =

(
ŵwwi

000

)
. Thus, (6.42) simplifies to show that

∂2ri

∂xj∂xk

(000, 0) = < wwwi, ∂
3
QL(q∗, λ∗, β∗)[wwwj,wwwk] >

= < ŵwwi, ∂
3
qF (q∗, β∗)[ŵwwj, ŵwwk] >

=
∑

ν,δ,η∈YN

∑

l,m,n∈Y

∂3F (q∗, β∗)
∂qνl∂qδm∂qηn

[ŵwwi]νl[ŵwwj]δm[ŵwwk]ηn.

Recall that ∂2F
∂qνk∂qδm

= 0 if ν 6= δ (see (3.9)), and so ∂3F
∂qνk∂qδm∂qηl

= 0 unless ν = δ = η.

Thus, the last equation can be further simplified as

∂2ri

∂xj∂xk

(000, 0) =
∑
ν∈YN

∑

l,m,n∈Y

∂3F (q∗, β∗)
∂qνl∂qνm∂qνn

[ŵwwi]νl[ŵwwj]νm[ŵwwk]νn.

Now, substituting ŵwwi = vvvi−vvvM and using the definition of vvvi from (6.21) we get that

∂2ri

∂xj∂xk

(000, 0) =
∑
ν∈U

∑

l,m,n∈Y

∂3F (q∗, β∗)
∂qνl∂qνm∂qνn

(δijkν [vvv]l[vvv]m[vvv]n − δνM [vvv]l[vvv]m[vvv]n) . (6.43)

Finally, we use the fact that for any ν, η ∈ U , ∂2F
∂qνm∂qνn

= ∂2F
∂qηm∂qηn

which implies that
∂3F

∂qνl∂qνm∂qνn
= ∂3F

∂qηl∂qηm∂qηn
. Thus

∂2ri

∂xj∂xk

(000, 0) =
∑

l,m,n∈Y

∂3F (q∗, β∗)
∂qνl∂qνm∂qνn

(δijk[vvv]l[vvv]m[vvv]n − [vvv]l[vvv]m[vvv]n) . (6.44)

An immediate consequence of (6.44) is that ∂2ri

∂xi∂xi
(000, 0) = 0 for each i. Further-

more, (6.44) shows that ∂2ri

∂xj∂xk
(000, 0) =

∂2ri′
∂xj′∂xk′

(000, 0) for any (i, j, k) and (i′, j′, k′) such

that at least one of i, j and k are distinct and at least one of i′, j′ and k′ are distinct.
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Equivariance of the Reduction

Theorem 73 answered the question

For what group is ∇q,λL equivariant?

The next question

For what group is the Liapunov-Schmidt reduced function of ∇q,λL, φ, equivariant?

is answered by Proposition 46.2 and Proposition 67.1: Since M = range∆L(q∗) and
N = ker ∆L(q∗) from (5.28) are Γ-invariant, and ∇q,λL is Γ-equivariant (Theorem
73), then φ is Γ-equivariant. Since ΓU < Γ, then φ is also ΓU -equivariant .

The next question that arises is:

For what group is r equivariant?

By Lemma 67.2, the Lie group that acts equivariantly on r is constructed as in (5.47)
and (5.48): for each γ ∈ ΓU , and for {wwwi}M−1

i=1 as in (6.23), γwwwj =
∑

i aijwwwi for aij ∈ <.
Define the (M − 1)× (M − 1) matrix A(γ) by setting

[A(γ)]ij := aij.

Then

AM := A = {A(γ)|γ ∈ ΓU}. (6.45)

The previous discussion is summarized in the following Lemma.

Lemma 91.

1. Let φ be defined as in (6.35) and let ΓU be defined as in (6.5). Then φ is
ΓU -equivariant.

2. Let r be defined as in (6.36) and let A defined as in (6.45). Then r is A-
equivariant.

The group A for which r is equivariant is pivotal to the development of the theory
that follows. Therefore, we analyze A in more detail and, before giving an explicit
algorithm for generating any A(γ) ∈ A from γ ∈ ΓU , we first show an example.

Example 92. We derive the explicit groups AM from (6.45) for M = N = 2 and 3.
When N = 2, Γ ∼= S2 is a group of 2 (NK + K)× (NK + K) matrices,

Γ := {INK+K , γ12}
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(see (6.5)), and A2 is the group of scalars isomorphic to S2. To determine the two
scalar elements of A2, we observe that the basis of ker ∆F (q 1

N
) is {vvvi}2

i=1 where vvvi

are defined in (6.21), and so the single basis vector for ker ∆L(q 1
N

) is

www1 =

(
vvv1 − vvv2

000

)
=




vvv
−vvv
000




(Theorem 85). Thus

γ12www1 = γ12




vvv
−vvv
000


 =



−vvv
vvv
000


 ,

which shows that γ12www1 = −www1. By definition then, A(γ12) = −1. Together with the
group identity, this shows that A2 = {1,−1}.

For M = N = 3, Γ is a group of 6 (NK + K)× (NK + K) matrices,

Γ := {INK+K , γ12, γ13, γ23, γ123, γ132},

and A3 is the group of 2× 2 matrices isomorphic to S3. The basis for ker ∆F (q 1
N

) is

{vvvi}3
i=1, which implies that (Theorem 85) the two basis vectors of ker ∆L(q 1

N
) are

www1 =

(
vvv1 − vvv3

000

)
=




vvv
000
−vvv
000


 ,www2 =

(
vvv2 − vvv3

000

)
=




000
vvv
−vvv
000


 .

To determine A(γ12), we compute

γ12www1 = γ12




vvv
000
−vvv
000


 =




000
vvv
−vvv
000


 = www2,

γ12www2 = γ12




000
vvv
−vvv
000


 =




vvv
000
−vvv
000


 = www1
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which shows that A(γ12) =

(
0 1
1 0

)
. To compute the element A(γ123) ∈ A3, we

compute

γ123www1 = γ12




vvv
000
−vvv
000


 =




−vvv
vvv
000
000


 = −www1 + www2,

γ123www2 = γ12




000
vvv
−vvv
000


 =




−vvv
000
vvv
000


 = −www1.

Thus, A(γ123) =

( −1 −1
1 0

)
. One can continue in this fashion to show that the

elements of A3,

A(INK+K), A(γ12), A(γ13), A(γ23), A(γ123), A(γ132),

are
(

1 0
0 1

)
,

(
0 1
1 0

)
,

( −1 −1
0 1

)
,

(
1 0
−1 −1

)
,

( −1 −1
1 0

)
,

(
0 1
−1 −1

)

respectively.

Armed with the intuition provided by the preceding example, we now give the
following algorithm for generating any A(γ) ∈ A from γ ∈ ΓU .

Algorithm 93. Let ΓU be defined as in (6.8). Let {wwwi} be defined as in (6.23), the
basis of ker ∆L(q∗) for some M-uniform solution q∗ where Assumption 81 holds. Let
A := A(γ) (defined in (6.45)) for some γ ∈ ΓU . Suppose that γ maps class j to class
k and class M to class m. Then for 1 ≤ k ≤ M − 1,

[A(γ)]kth row =

{
jth row of IM−1 if m = M or if k 6= m 6= M
−1...− 1 if k = m 6= M

Proof. aaaj, the jth column of A, is constructed by considering

γwwwj = γ

(
vvvj

000

)
− γ

(
vvvM

000

)
.

There are a few cases to consider:
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1. If m = M then

γwwwj =

(
vvvk

000

)
−

(
vvvM

000

)

= wwwk

Therefore, if M is fixed and j 7→ k for any k,

aaaj =




0
...
1
0
0




(6.46)

where the 1 is in the kth row.

2. If m 6= M and k = M then

γwwwj =

(
vvvM

000

)
−

(
vvvm

000

)

= −wwwm.

Therefore, if M is not fixed and j 7→ M 7→ m,

aaaj =




0
...
−1
0
0




(6.47)

where -1 is in the mth row.

3. Lastly, if m 6= M and if k 6= M , then

γwwwj =

(
vvvk

000

)
−

(
vvvm

000

)

= wwwk −wwwm

Therefore, if M is not fixed, j 7→ k 6= M and M 7→ m,

aaaj =




0
...
−1
...
0
...
1
...
0




(6.48)
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where −1 is in the mth row and 1 is in the kth row.

Now, A is constructed by acting on wwwj for every j, 1 ≤ j ≤ M − 1. Thus, if M
is fixed, then A is a permutation matrix, where the kth row is the jth row of IM−1

(by (6.46)). If M is not fixed, then by (6.47) and (6.48), the mth row of A is −1.
Furthermore, by (6.48), the kth row (for k 6= M and k 6= m) is the jth row of IM−1.
2

Remark 94. For any γ ∈ Γ such that class M is fixed (i.e. m = M), A(γ) is a
permutation matrix.

Theorem 95. Let A be defined as in (6.45) such that Assumption 81 holds. The
action of A is absolutely irreducible on <M−1.

Proof. Assumption 81 is necessary since the explicit form of A depends on the basis
of ker ∆L(q∗) from Theorem 87. We use induction to show that if X is an (M − 1)×
(M − 1) matrix that commutes with every A ∈ AM , then X = c(β)IM−1.

For M = 2, A2 is the group {1,−1}. For M = 3, we have

X =

(
x11 x12

x21 x22

)
.

By algorithm 93

A3 ⊃
{
A(γ(12)), A(γ(13))

}
=

{(
0 1
1 0

)
,

( −1 −1
0 1

)}
.

If X commutes with all of the elements of A3, then X

(
0 1
1 0

)
=

(
0 1
1 0

)
X and

so

(
x12 x11

x22 x21

)
=

(
x21 x22

x11 x12

)
. Hence x12 = x21 = b and x11 = x22 = c for some

b, c ∈ <. Thus

X =

(
c b
b c

)
.

Furthermore, X

( −1 −1
0 1

)
=

( −1 −1
0 1

)
X, which shows that

( −c b− c
−b c− b

)
=

( −c− b −c− b
b c

)
.

Thus b = 0 and so

X = c

(
1 0
0 1

)
.
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Now assume the inductive hypothesis, that cIM−1 is the only matrix that commutes
with all of the elements of AM for some c ∈ <. Consider AM+1, the group of M ×M
matrices when there are M + 1 classes. Let X be an M ×M matrix such that

XA = AX ∀A ∈ AM+1 (6.49)

Write X as

X =

(
X0 xxx
yyyT dX

)

where X0 is (M − 1)× (M − 1), xxx and yyy are (M − 1) × 1 and dX ∈ <. Write every
A ∈ AM+1 as

A =

(
A0 aaa

bbbT dA

)

where A0 is (M −1)× (M −1), aaa and bbb are (M −1)×1 and dA ∈ <. Equation (6.49)
becomes

X0A0 + xxxbbbT = A0X0 + aaayyyT . (6.50)

For the element A := A(γM(M+1)), A0 = IM−1, aaa = 000, bbb = −111, and dA = −1
(Algorithm 93). Equation (6.50) becomes

X0 + xxxbbbT = X0

so that
xxxbbbT = (−xxx − xxx ...− xxx) = 000

which shows that xxx = 000. To show that yyy = 000, we consider the transposition A :=

A(γ1M). By Algorithm 93, A0 =

(
000
IM

)
, aaa = eee1, bbb = eee1, and dA = 0. Substituting

these and xxx = 000 into equation (6.50),

X0

(
000
IM

)
=

(
000
IM

)
X0 +




yyyT

000T

...
000T




shows that [yyy]1 = 0. Evaluating (6.50) for A := A(γiM) for every 1 ≤ i < M shows
that yyy = 000

To complete the proof, we need to show that dX = c, which is accomplished by
considering

XA(γ(M−1)M) = A(γ(M−1)M)X

which becomes

(
X0 000
000T dX

)



1 0 ... 0 0
0 1 ... 0 0
...

...
...

...
0 0 ... 0 1
0 0 ... 1 0




=




1 0 ... 0 0
0 1 ... 0 0
...

...
...

...
0 0 ... 0 1
0 0 ... 1 0




(
X0 000
000T dX

)
.
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Since X0 = cIM−1, then this equation can be rewritten as

(
X0 000
000T dX

) 


(
IM−2 000
000T 0

)
000
1

000T 1 0


 =




(
IM−2 000
000T 0

)
000
1

000T 1 0




(
X0 000
000T dX

)

where 000 is an (M −2)×1 vector of zeros. Multiplying these block matrices out shows
that




cIM−2 000 000
000T 0 c
000 dX 0


 =




cIM−2 000 000
000T 0 dX

000T c xxxM−1


 .

It follows that dX = c 2

Lemma 96. Let AM be defined as in (6.45) such that Assumption 81 holds. Then
AM

∼= SM .

Proof. Consider the map

ϕ : ΓU → AM

γ 7→ A(γ)

where the group ΓU , which is isomorphic to SM , is defined in (6.8). The proof is
complete if ϕ is shown to be a group homomorphism with ker ϕ = {INK+K} [27]. To
show the former, for γ1, γ2 ∈ ΓU , let [A(γ1)]ij = aij, [A(γ2)]ij = bij and [A(γ1γ2)]ij =
cij. Observe that A(γ1γ2) is constructed by considering

γ1γ2wwwj = γ1(γ2wwwj)

= γ1(
∑

i

bijwwwi)

=
∑

i

bijγ1wwwi

=
∑

i

bij(
∑

k

akiwwwk)

=
∑

k

(
∑

i

akibij)wwwk.

Thus, ckj =
∑

i akibij which implies that A(γ1γ2) = A(γ1)A(γ2) and so ϕ(γ1γ2) =
ϕ(γ1)ϕ(γ2). Hence, ϕ is a group homomorphism.
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To show that ker ϕ = {INK+K}, suppose ϕ(γ̂) = IM−1 ∈ AM for some γ̂ ∈ ΓU .
Then for every j,

γ̂wwwj =
∑

i

aijwwwi

=
∑

i

δijwwwi

= wwwj.

By (6.5), γ̂ =

(
ρ̂ 000
000 IK

)
for some ρ̂ ∈ P . By (6.23), wwwj =

(
vvvj − vvvM

000

)
. Hence, for

every j,

γ̂wwwj = wwwj

=⇒
(

ρ̂ 000
000 IK

)(
vvvj − vvvM

000

)
=

(
vvvj − vvvM

000

)

=⇒ ρ̂(vvvj − vvvM) = vvvj − vvvM . (6.51)

ρ̂ is a NK × NK permutation matrix in PU so that ρ̂ =




Eν1
1
...

EνN
N


 where Eνi

i is a

K×NK matrix of 0’s with identity IK in the K×K block component corresponding
to class νi. Hence, for every j, (6.51) becomes




Eν1
1
...

EνN
N


 (vvvj − vvvM) = vvvj − vvvM

which is true if and only if, for every j,

E
νj

j (vvvj − vvvM) = vvv (6.52)

EνM
M (vvvj − vvvM) = −vvv

Eνi
i (vvvj − vvvM) = 000 ∀i /∈ {j, M}

where vvv is defined in (6.19). Observe that

Eνk
k (vvvl − vvvM) =





vvv if νk = l
−vvv if νk = M
000 otherwise

. (6.53)

By (6.52), k = l for every k and l. By (6.52) and (6.53), νk = l for every k and l.
Thus, νk = k for every k so that

Eν1
1 = (IK 000...000)

Eν2
2 = (000 IK ...000)

...

EνM
M = (000 000...IK).
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Hence, ρ̂ = INK which implies γ̂ = INK+K from which it follows that ker ϕ =
{INK+K}. By the First Isomorphism Theorem ([27] p.97), ϕ is a group isomorphism
and so we have that AM

∼= ΓU ∼= SM . 2

Isotropy Subgroups

To show the existence of bifurcating branches from bifurcation of equilibria of
(3.18),

(
q̇

λ̇

)
= ∇q,λL(q, λ, β),

the Equivariant Branching Lemma and the Smoller-Wasserman Theorem require two
things. First, we must we work with the Liapunov Schmidt reduction r(xxx, β) (6.36)
of ∇q,λL,

r : <M−1 ×< → <M−1.

Secondly, we must determine the maximal isotropy subgroups ofAM , (6.45), the group
for which the reduction r(xxx, β) is equivariant (Lemma 91.2), as well as the elements
contained in the fixed point spaces for each of the maximal isotropy subgroups. For
arbitrary M , the lattice of maximal subgroups of SM , let alone the full lattice of
subgroups, is unknown [16, 46]. This section ascertains some of the maximal isotropy
subgroups of AM , in particular the subgroups which are isomorphic to SM−1 (Lemma
100), which enables us to show the existence of bifurcating solutions from an M -
uniform solution q∗ of (3.18) for any M > 1 when Assumption 81 holds.

First, we show a class of subgroups of AM that do not fix any vector in <M−1,
motivated by the following example.

Example 97. Recall the explicit construction of the group A3 in Example 92. Ob-
serve that an element A(γ) of AM fixes a vector in <M−1 if and only if A(γ) has

the eigenvalue 1. This shows for the elements of A3, A(γ123) =

( −1 −1
1 0

)
and

A(γ132) =

(
0 1
−1 −1

)
, Fix〈A(γ123)〉 and Fix〈A(γ132)〉 are empty.

The observation made in the previous example is true for the general case, which
we prove next.

Lemma 98. Let ΓU be defined as in (6.8). If γ is an element of order M in ΓU , then
dim(Fix〈γ〉 ∩ ker ∆L(q∗)) = 0. Equivalently, if AM is defined as in (6.45) and if A
is an element of order M in AM , then dim(Fix〈A〉) = 0.

Proof. Let γ be some element of order M in ΓU . Then A := A(γ) is an element
of order M in AM (Lemma 96). First, note that |A| = M ⇔ A is an M -cycle
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(Proposition 76.3), by which it is meant that A is isomorphic to an M -cycle in S (see
(6.12)). Suppose there exists xxx ∈ <M−1 such that Axxx = xxx. Next, let

C = BAB−1 for some B ∈ AM , (6.54)

which is possible if and only if C is (isomorphic to an element in S) of the same cycle
type as A (Proposition 76.6). Hence C is an M -cycle. Furthermore, all M -cycles can
be generated as in (6.54)(Proposition 76.6). Lastly, note that CBxxx = BAB−1(Bxxx) =
BAxxx = Bxxx if and only if C fixes Bxxx. Thus,

there is an M -cycle in AM which fixes some nontrivial xxx ∈ <M−1

if and only if (6.55)

every M -cycle in AM fixes some nontrivial vector in <M−1.

The proof is completed by showing that there is an M -cycle in AM which does not
fix any nontrivial vector in <M−1.

Consider the M -cycle γ ∼= (123...(M − 1)M) ∈ SM . By Algorithm 93,

A(γ) =




−1 −1 ... −1 −1
1 0 ... 0 0
0 1 ... 0 0
...

...
...

...
0 0 ... 1 0




is the (M − 1)× (M − 1) isomorphic matrix representation in AM of γ. Observe that
the characteristic polynomial for A(γ) is λM−1 + λM−2 + ... + λ + 1 which does not
have 1 as a root. This implies that there does not exist a nontrivial xxx ∈ <M−1 such
that A(γ)xxx = xxx. By (6.55), no M -cycle of AM fixes a nontrivial element of <M−1.
By Proposition 68, no M -cycle of ΓU fixes a nontrivial element of ker ∆L(q∗). 2

Theorem 99. For the alternating group AM (see Definition 74), dim Fix(AM) = 0.

Proof. Suppose that M is odd. Then AM contains elements of order M (by Def-
inition 74 and Proposition 76.4) which implies dim Fix(AM) = 0 by Lemma 98.
Now suppose that M is even. Then AM contains elements of cycle length M − 1
(Proposition 76.4). Consider the (M − 1)-cycles γ(1...(M−1)) and γ(2...M) ∈ AM . By
Algorithm 93, A(γ(1...(M−1))) ∈ A is a permutation matrix from which it follows that
〈A(γ(1...(M−1)))〉 fixes the (M − 1) × 1 vector 111. By Proposition 46.3, A(γ(1M))111 is
fixed by the group A(γ(1M))〈A(γ(1...(M−1)))〉A(γ(1M))

−1, which is equal to the group
〈A(γ(2...M)))〉 by Proposition 76.5. To compute A(γ(1M))111, we use the explicit form of
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A(γ(1M)) given by Algorithm 93,

A(γ(1M))111 =




−1 −1 −1 ... −1
0 1 0 ... 0
0 0 1 ... 0
...

...
...

0 0 0 ... 1




111 =




1−M
1
...
1


 .

The Trace Formula (Proposition 46.4) shows that

dim(Fix〈A(γ(1...(M−1)))〉) = 1,

since A(γ(1...(M−1))) is a permutation matrix, and the only element of 〈A(γ(1...(M−1)))〉
which contributes to

∑
A∈〈A(γ(1...(M−1)))〉 trace(A) is A(γ(1...(M−1)))

M−1 = IM−1. Thus,

dim(Fix〈A(γ(2...M)))〉) = 1,

from which it follows that dim(Fix(AM)) ≤ 1. Hence, any vector uuu fixed by AM must

be in
(
Fix〈A(γ(1...(M−1)))〉

) ∩ (
Fix〈A(γ(2...M)))〉

)
. Thus, uuu = a111 = b




1−M
1
...
1


 for

some a, b ∈ < which implies that a = b = 0. 2

M -uniform solutions are in the fixed point space of ΓU (Theorem 71), which is
isomorphic to SM . To apply the theory of chapter 5 to M -uniform solutions of the
gradient flow (3.18) at a bifurcation point (q∗, λ∗, β∗), one must ascertain the maximal
isotropy subgroups of ΓU . We now find some of these subgroups. In particular, we
show that the M subgroups of ΓU , that are isomorphic to SM−1 < SM , are maximal
isotropy subgroups of ΓU . The representation of these subgroups in ΓU is 〈Tk〉 (see
(6.13)). In fact, these maximal isotropy subgroups of ΓU have fixed point spaces
of dimension 1. We also obtain an explicit basis of the fixed point space for each
subgroup. This derivation is done in two parts, Lemma 100 and Lemma 103.

Lemma 100. Let ΓU be defined as in (6.8). Let Tk be the set of transpositions in ΓU
such that the kth unresolved class in U is fixed. (as in (6.13)). Let ûuuk be a NK × 1
vector such that

[ûuuk]ν =





(M − 1)vvv if ν is the kth unresolved class of U
−vvv if ν 6= k is any other unresolved class of U
000 otherwise

(6.56)

and let

uuuk =

(
ûuuk

000

)
(6.57)

where 000 is K × 1. Then 〈Tk〉 is the isotropy subgroup of uuuk. Equivalently, if Tk is the
set of transpositions in AM , then 〈Tk〉 is the isotropy subgroup of A(γkM)111.
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Proof. First, we show that 〈TM〉 fixes uuuM . By Algorithm 93 and Lemma 96, the
matrices in 〈TM〉 < ΓU map to each and every one of the (M−1)×(M−1) permutation

matrices, {Ai}(M−1)!
i=1 , in AM (see (6.45)). It is clear that {Ai}, being permutation

matrices, fix 111, an (M − 1)× 1 vector of ones. By Proposition 68, the corresponding
vector which is fixed in ker ∆L(q∗) by 〈TM〉 < ΓU is W111 =

∑M−1
i=1 wwwi = −uuuM . Here,

W is the NK × (M − 1) matrix

W =




| | | |
www1 www2 ... wwwM−1

| | | |


 ,

and {wwwi} are defined in (6.23). The group ΓU does not fix uuuM since γuuuM 6= uuuM for
any γ ∈ ΓU which does not fix class M . Therefore, since there does not exist a proper
subgroup of ΓU that is strictly larger than 〈TM〉 (Theorem 77), then 〈TM〉 must be
the isotropy subgroup for uuuM .

Let γkM be the transposition in ΓU that permutes class k with class M . Now
apply Proposition 46.3 which assures that γkMuuuM = uuuk has isotropy subgroup

γkM〈TM〉γ−1
kM .

By Proposition 76.5, the conjugation γkM〈TM〉γ−1
kM simply replaces each permutation

to and from the kth class in each element of 〈TM〉 with permutations to and from the
M th class. That is

γkM〈TM〉γ−1
kM = 〈Tk〉

2

Remark 101. When M = N , uuuk as defined in (6.57) is

uuuk =




−vvv
...
−vvv

(N − 1)vvv
−vvv
...
−vvv
000




(6.58)

where (N − 1)vvv is in the kth row.

Example 102. Recall the explicit form of the group A3 in Example 92. The elements
A(γ12), A(γ13), A(γ23), given by the 2× 2 matrices

(
0 1
1 0

)
,

( −1 −1
0 1

)
,

(
1 0
−1 −1

)
(6.59)
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Figure 13. The lattice of the maximal isotropy subgroups SM < SN for N = 4
from Lemma 100 and the corresponding basis vectors of the fixed point spaces of the
corresponding groups from Lemma 100.

in A3 respectively, are the sole generators of the subgroups 〈Tk〉 = A2 < A3 which are
isomorphic to S2. That is, 〈T3〉 = 〈A(γ12)〉, 〈T2〉 = 〈A(γ13)〉, and 〈T1〉 = 〈A(γ23)〉,
each group of which has order 2. The eigenvectors of each of the matrices of (6.59)
with the eigenvalue 1 are

(
1
1

)
,

(
1
−2

)
,

( −2
1

)
(6.60)

respectively, which shows that

dim Fix〈A(γ12)〉 = dim Fix〈A(γ13)〉 = dim Fix〈A(γ23)〉 = 1.

When M = N = 3, the vectors that correspond to (6.60) which are fixed in ker ∆L(q 1
N

) =

span({www1,www2}) by the corresponding subgroups 〈γ12〉, 〈γ13〉, and 〈γ23〉 of Γ are

www1 + www2 =




vvv
vvv
−2vvv
000


 ,www1 − 2www2 =




vvv
−2vvv
vvv
000


 ,−2www1 + www2 =




−2vvv
vvv
vvv
000
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respectively (see Figure 14).

Lemma 103. Let ΓU be defined as in (6.8). Let Tk be the set of transpositions in ΓU
such that the kth unresolved class in U is fixed (as in (6.13)). Then

dim Fix(〈Tk〉 ∩ ker ∆L(q∗)) = 1.

Equivalently, if Tk is the set of transpositions in AM , then dim〈Tk〉 = 1.

Proof. Consider 〈TM〉 < AM . By Algorithm 93, M is fixed, and so 〈TM〉 is a Lie group
of (M−1)×(M−1) permutation matrices. By the Trace Formula (Proposition 46.4),
dim Fix(〈TM〉) = 1

|〈TM 〉|
∑

A∈〈TM 〉 trace(A). Note that the ith row of an element of 〈TM〉
contributes to

∑
A∈〈TM 〉 trace(A) only when there is a 1 in the ith component of that

row. When there is a 1 in the ith component of the ith row, there are (M−2)! possible
combinations of the other (M − 2) rows. Thus, the first row of the elements of 〈TM〉
is counted (M − 2)! times in

∑
A∈〈TM 〉 trace(A), the second row of the elements of

〈TM〉 is counted (M − 2)! times, ... , and the (M − 1)st row of the elements of 〈TM〉
is counted (M − 2)! times. It follows that

∑
A∈〈TM 〉 trace(A) = (M − 1)(M − 2)! and

so dim Fix〈TM〉 = (M−1)!
|〈TM 〉| = 1. Thus Fix〈TM〉 has basis {xxx} for some xxx ∈ <M−1.

Now suppose that there exists k such that 〈Tk〉 is an isotropy subgroup of AM for
two vectors x1 and x2 in <M−1. By Proposition 76.6, there is a C ∈ AM such that
〈TM〉 = C〈Tk〉C−1. By Proposition 46.3, 〈TM〉 is the isotropy subgroup of Cx1 and
Cx2 which implies that Cx1 = axxx and Cx2 = bxxx for some nonzero a, b ∈ <. Thus,
x1 = b

a
x2 from which it follows that dim(Fix〈Tk〉) = 1 for every k. The Lemma now

follows from Proposition 68. 2

Two lines of reasoning have been developed to show that 〈Tk〉 is a maximal
isotropy subgroup of ΓU (or of AM). The first uses Theorem 77 and Lemma 100.
The second relies on the two previous Lemmas, Lemma 100 and Lemma 103, since
an isotropy group with a fixed point space of dimension 1 is necessarily maximal.

Theorem 71 shows that Fix(ΓU) is the vector space of points in <NK+K generated
by the vectors (q, λ) where q is M -uniform. The final ingredient that is required
to apply the theory of chapter 5 to a bifurcation point (q∗, λ∗, β∗) when q∗ is an
M -uniform solution is to show that

Fix(ΓU) ∩ ker ∆L(q∗) = {000},
which is equivalent to showing that

Fix(AM) = {000}.
This section is finished with two proofs which show this. When Assumption 81 is
satisfied, this result already follows from the fact that AM acts absolutely irreducibly
on <M−1 (Theorem 95) and Propositions 46.5 and 46.6. The next theorem deals with
the solution q 1

N
. It is presented separately because Assumptions 81.3 and 81.4 are

not required.
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A

B

Figure 14. Panel (A) shows the full lattice of subgroups S2 < S3 for N = 4 and the
corresponding basis vectors, from Theorem 99 and Lemma 100, of the fixed point
spaces of the corresponding groups. Panel (B) shows the full lattice of subgroups of
S2, and the corresponding basis vectors, from Lemma 100, of the fixed point spaces
of the corresponding groups.
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Proposition 104. Let (q 1
N

, λ∗, β∗) be some bifurcation point of (3.18) such that As-

sumptions 81.1 and 81.2 hold, and let Γ be defined as in (6.5). Then

Fix(Γ) ∩ ker ∆L(q 1
N

) = {000}.

Proof. Let kkk be a (NK + K)× 1 vector in Fix(Γ) ∩ ker ∆L(q 1
N

). Decompose kkk as in

(4.1) and (4.6). Then γkkk = kkk for every γ ∈ Γ. By Remark 86, γkkk becomes

γkkk =

(
ρ 000
000 IK

)(
kkkF

000

)
=

(
ρkkkF

000

)
∀ρ ∈ P (see (6.5)).

Hence ρkkkF = kkkF and so xxx = xxxi = xxxj for every i and j, 1 ≤ i, j ≤ N . From (4.8),∑
ν xxxν = 000 from which it follows that

∑
ν xxx = 000 which shows that xxx = 000 and so kkk = 000.

2

The result for an arbitrary M -uniform solution when Assumption 81 is satisfied
is next.

Proposition 105. Let ΓU be defined as in (6.8). Let (q∗, λ∗, β∗) be some bifurcation
point of (3.18) where q∗ is M-uniform such that Assumption 81 holds. Then Fix(ΓU)∩
ker ∆L(q∗) = {000}.

Proof. Let kkk ∈ Fix(ΓU) ∩ ker ∆L(q∗). Decompose kkk as in (4.1) and (4.6). Since
kkk ∈ Fix(ΓU), then γkkk = kkk for every γ ∈ ΓU . This and Remark 88 (which we can
apply since Assumption 81.4 holds) imply that

(
ρ 000
000 IK

)(
kkkF

000

)
=

(
kkkF

000

)

=⇒ ρkkkF = kkkF ∀ρ ∈ PU .

Hence, xxxν = uuu for some K × 1 vector uuu for every ν ∈ U . Thus (4.8) becomes

JkkkF =
∑
ν∈R

xxxν + Muuu = 000. (6.61)

Since Assumption 81.4 holds, then Remark 88 also shows that ∆F (q∗)kkkF = 000, which
gives

Buuu = 000
Rνxxxν = 000 ∀ν ∈ R (6.62)

and so
xxxν = 000 ∀ν ∈ R

since Rν are nonsingular. 2
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Bifurcating Branches from M -uniform Solutions

We have laid the groundwork so that in this section, we finally may present the
main result of this chapter, which is the existence of explicit bifurcating branches from
an M -uniform q∗ at some β∗ and vector of Lagrange multipliers λ∗ (110). To accom-
plish this, the Equivariant Branching Lemma or the Smoller-Wasserman Theorem is
applied to the Liapunov Schmidt reduction r(xxx, β) (6.36) of ∇q,λL at a bifurcation
point (q,∗ , λ∗, β∗), where ∇q,λL defines the dynamical system (3.18)

(
q̇

λ̇

)
= ∇q,λL(q, λ, β).

To satisfy the requirements of these theorems, in the last section, we found some
maximal isotropy subgroups of ΓU , and the corresponding elements of ker ∆L(q∗) in
the fixed point spaces of these subgroups. Equivalently, we have found some maximal
isotropy subgroups of AM , and the corresponding elements of <M−1 in the fixed point
spaces of these subgroups.

Before getting to the main result, we first prove that degenerate singularities
of ∆L(q∗) (see Definition 25) do not occur on any branch of equilibria (q∗, λ∗, β∗)
to (3.18) (i.e. not necessarily M -uniform) when D is convex on ker ∆F (q∗). In
particular, this condition holds when G from (3.2) is strictly concave (Corollary 108).
For the Information Distortion problem (2.34), G = H(YN |Y ) is strictly concave. For
the Information Bottleneck problem (2.35), G = I(Y, YN) is not strictly concave, and
in chapter 4, we showed that F is highly degenerate. Thus, this theorem does not
apply to this case.

Theorem 106. Let q∗ be any stationary point to (3.1) where ∆D(q∗) (defined in
(3.2)) is positive definite on ker ∆F (q∗) and Assumptions 81.2–81.4 hold. Then
(q∗, λ∗, β∗) is a singularity of ker ∆L(q∗) if and only if (q∗, λ∗, β∗) is a bifurcation
point.

Proof. Necessity follows from Theorem 24. To get sufficiency, let r(xxx, β) be the Lia-
punov Schmidt reduction from (6.37). By Proposition 46.1 and Theorem 95, we have
that ∂xxxr(000, β) = c(β)IM−1. The theorem is proved by showing that c′(0) 6= 0. In fact,
we will show that c′(0) > 0.

Let dim ker ∆q,λL(q∗, λ∗, β∗) = d > 0. By (6.39)

∂xxxr(000, β) = W T ∆q,λL(q∗, λ∗, β + β∗)(W + ∂wwwU(000, β)W ) = c(β)IM−1.

Choose some arbitrary zzz ∈ <d and let kkk = Wzzz so that kkk ∈ ker ∆q,λL(q∗, λ∗, β∗).
Multiplying on the left by zzzT and on the right by zzz gives

kkkT ∆q,λL(q∗, λ∗, β + β∗)(INK+K + ∂wwwU(000, β))kkk = c(β)zzzTzzz
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By Remark 88, kkk =

(
kkkF

000

)
where kkkF ∈ ker ∆F (q∗, β∗) ∩ ker J . Thus

kkkT ∆q,λL(q∗, λ∗, β + β∗) = (∆q,λL(q∗, λ∗, β + β∗)kkk)T =

(
∆F (q∗, β + β∗)kkkF

000

)T

where 000 is K × 1. It follows that

c(β) =

(
kkkT

F ∆F (q∗, β + β∗) 000T
)
(INK+K + ∂wwwU(000, β))

(
kkkF

000

)

||zzz||2 . (6.63)

From (3.2), we rewrite ∆F (q∗, β + β∗) = ∆G(q∗) + (β + β∗)∆D(q∗) = ∆G(q∗) +
β∗∆D(q∗) + β∆D(q∗). Then

kkkT
F ∆F (q∗, β + β∗) = (∆F (q∗, β + β∗)kkkF )T = β(∆D(q∗)kkkF )T .

Furthermore,
zzzTzzz = zzzT W T Wzzz = kkkTkkk = kkkT

FkkkF .

So (6.63) becomes

c(β) = β

(
kkkT

F ∆D(q∗) 000T
)
(INK+K + ∂wwwU(000, β))

(
kkkF

000

)

||kkkF ||2 .

Finally, we have that

c′(β) =

(
kkkT

F ∆D(q∗) 000T
) (

INK+K + ∂wwwU(000, β) + β ∂(∂wwwU(000,β))
∂β

∂www
∂β

) (
kkkF

000

)

||kkkF ||2

and now (5.41) shows that

c′(0) =
kkkT

F ∆D(q∗)kkkF

||kkkF ||2 . (6.64)

Since we are assuming that ∆D(q∗) is positive definite on ker ∆F (q∗, β∗), then

c′(0) =
kkkT

F ∆D(q∗)kkkF

||kkkF ||2 > 0

for all kkkF ∈ ker ∆F (q∗, β∗). 2

Remark 107.

1. Theorem 106 holds if ∆D(q∗) is negative definite on ker J .
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2. Equation (6.64) can be written as

c′(0) =
vvvT Bν

D(q∗)vvv
‖vvv‖2

,

where vvv is defined in (6.19), ν ∈ U , and Bν
D(q∗) is the νth block of ∆D(q∗).

This shows that c′(0) is well defined.

Corollary 108. Let q∗ be any stationary point to (3.1) when G (defined in (3.2))
is strictly concave and Assumptions 81.2–81.4 hold. Then (q∗, λ∗, β∗) is a singularity
of ker ∆L(q∗) if and only if (q∗, λ∗, β∗) is a bifurcation point.

Proof. Applying Lemma 90 to (6.64), we see that

c′(0) =
kkkT

F ∆D(q∗)kkkF

||kkkF ||2 > 0

for all kkkF ∈ ker ∆F (q∗, β∗). 2

Remark 109. If ∆D(q∗), where D is defined in (1.9), is positive definite on
ker ∆F (q∗), as is the case with the Information Distortion problem (2.34), then we
only need assume that (q∗, λ∗, β∗) is a singularity point since Theorem 106 assures
that a bifurcation occurs at the singularity.

We have developed enough theory to produce our main result of this chapter,
which is the existence of explicit bifurcating solutions from q∗ at some β∗ and vector
of Lagrange multipliers λ∗.

Theorem 110. Let (q∗, λ∗, β∗) be a bifurcation point of (3.18) such that Assumption

81 holds. Then there exists M bifurcating solutions,




q∗

λ∗

β∗


 +

(
tuuuk

β(t)

)
, where uuuk

is defined in (6.57) for 1 ≤ k ≤ M , each with isotropy group isomorphic to SM−1.

Proof. Let r(xxx, β) be the Liapunov-Schmidt reduction as defined in (6.36) which is
AM -equivariant by Lemma 91.2. By Theorem 95, AM acts absolutely irreducibly
on ker ∂xxxr(xxx, β) so that ∂xxxr(000, β) = c(β)IM−1 for some scalar function c(β). The
derivative c′(0) 6= 0 by the assumption that (q∗, λ∗, β∗) is a bifurcation point. By
(5.34) and (6.38), ∂xxxr(000, 0) = 000. Lemma 100 shows that 〈Tk〉 is an isotropy subgroup
in AM and Lemma 103 shows that dim Fix〈Tk〉 = 1. Therefore the hypotheses of the
Equivariant Branching Lemma (Theorem 47) are satisfied, whose application, along
with (5.38), proves the theorem. 2

When q∗ = q 1
N

, we can drop Assumptions 81.3 and 81.4, which state that

B
∑

ν R−1
ν + MIK is nonsingular.
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Corollary 111. From a bifurcation at (q 1
N

, λ∗, β∗) of (3.18) such that Assumptions

81.1 and 81.2 hold, there exists N bifurcating solutions,




q 1
N

λ∗

β∗


 +

(
tuuuk

β(t)

)
, where

uuuk is defined in (6.58) for 1 ≤ k ≤ N , each with isotropy group isomorphic to SN−1.

Proof. In the proof for Theorem 110, use Theorem 85 instead of Theorem 87 to
ascertain the basis of the kernel of ∆L(q 1

N
). The corollary then follows without the

hypothesis that B
∑

ν R−1
ν + MIK is nonsingular. 2

Using the relationship offered by Theorem 71, then we see that Theorem 110 and
Corollary 111 show that there exists M bifurcating (M − 1)-uniform solutions from
an M -uniform solution branch. This is the following corollary.

Corollary 112. Let (q∗, λ∗, β∗) be a bifurcation of (3.18) such that Assumption 81
holds. Then there exists M bifurcating (M − 1) uniform solutions.

Remark 113.

1. If ∆D(q∗), where D is defined in (1.9), is positive definite on ker ∆F (q∗), as
is the case with the Information Distortion problem (2.34), then we only need
assume that (q∗, λ∗, β∗) is a singularity point in Theorem 110, and Corollaries
111, since Theorem 106 assures that a bifurcation occurs at the singularity.

2. An alternate proof of Theorem 110 using the Smoller-Wasserman Theorem pro-
ceeds thusly. We can use the same line of reasoning presented in the proof to
Theorem 110, with the exception that we appeal to Theorem 77 and Lemma 100
to show that 〈Tk〉 < AM is a maximal isotropy subgroup of uuuk.

The advantage of using the Smoller-Wasserman Theorem for the proof is that
we get the existence of bifurcating branches for each and every maximal isotropy
subgroup, not merely the ones where the dimension of the fixed point space of
the isotropy group is 1.

By Corollary 112, when assuming Assumption 81, then bifurcation on an M -
uniform solution branch guarantees the existence of M bifurcating (M − 1)-uniform
solutions. When M = 3, Theorem 110 assures that three 2-uniform solutions bifurcate
from each of the 3-uniform solution branches. From bifurcation of these 2-uniform
solutions, then Theorem 110 assures that two 1-uniform solutions bifurcate from each
of the 2-uniform solution branches. A 1-uniform solution is one that is not fixed by
the action of the full group Γ. In other words, by Theorem 71, for every γ ∈ Γ,

γq 6= q if and only if q is 1− uniform.

Thus far we have excluded consideration of the possibility of bifurcation from 1-
uniform solution branches (Assumption 81.1). We now address this scenario. The



128

next theorem shows that, under generic assumptions, that 1-uniform solutions do not
bifurcate.

Theorem 114. Let (q∗, λ, β) be an equilibria of (3.18) such that q∗ is 1-uniform and
that Assumptions 81.2 and 81.3 hold. If B

∑
ν R−1

ν + IK is nonsingular, then ∆L(q∗)
is nonsingular and there are no bifurcating solutions at (q∗, λ, β).

Proof. The proof to Theorem 87 begins with considering an arbitrary

kkk ∈ ker ∆q,λL(q∗, λ, β),

and then decomposing kkk as in (4.1) and (4.6). For a 1-uniform solution, dim ker ∆L(q∗) =
1 by Assumption 81.2. The proof holds for the case where q∗ is 1-uniform, up until
we get (6.32),

xxxν = 000 for ν ∈ R (6.65)

which holds since we assume that B
∑

ν R−1
ν +IK is nonsingular. Furthermore, |U| = 1

since q∗ is 1-uniform and so the equation

∑
ν∈R

xxxν +
∑
η∈U

xxxη = 000

from (6.30) becomes

∑
ν∈R

xxxν + xxxη = 000. (6.66)

By (6.65) and (6.66), xxxη = 000, which implies that kkk = 000. Since kkk is an arbitrary
element of ker ∆q,λL(q∗, λ, β), then ker ∆q,λL(q∗, λ, β) = {000} and so ∆q,λL(q∗, λ, β) is
nonsingular. Therefore, it follows from Theorem 24 that no bifurcation can occur at
(q∗, λ, β). 2

Bifurcating Branches when M ≤ 4

In this section, we explain the types of bifurcation that the theory predicts when
the number of classes is N = 2, 3 and 4.

For the case when N = 2, symmetry breaking bifurcation is possible only along
the 2-uniform solution branch (q 1

2
, λ, β). Thus, symmetry breaking bifurcations will

be classical pitchforks [34]: there will be 2 1-uniform bifurcating branches, each with
isotropy group S1 (Corollary 111 and Figure 14(B)). In other words, these 1-uniform
solutions have no symmetry. It follows that further symmetry breaking bifurcations
are not possible on either of these 2 1-uniform branches. Furthermore, Theorem 114
shows that, generically, no other type of bifurcation is possible either.
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When N = 3, symmetry breaking bifurcation can occur either on the branch
(q 1

3
, λ, β), or on some 2-uniform branch. Thus, from each symmetry breaking bi-

furcation which occurs on the branch (q 1
3
, λ, β), the only bifurcating branches with

symmetry are the 3 2-uniform branches (Corollary 111) as depicted in Figure 14(A).
From symmetry breaking bifurcation on each of the 2-uniform branches, 2 1-uniform
solutions will bifurcate, each with isotropy group S1 (Theorem 110). Now, further
symmetry breaking bifurcations are impossible on any of the 1-uniform branches.
Furthermore, Theorem 114 shows that, generically, no other type of bifurcation is
possible either.

At symmetry breaking bifurcation when N = 4 along the branch (q 1
4
, λ, β), Corol-

lary 111 shows that there are 4 3-uniform bifurcating solutions. See Figure 13 for the
group lattice, and for a representation of the quantizers q∗ which have isotropy groups
isomorphic to S3, see panel (1) in Figure 18, and Figures 23(B) and 24. In addition to
these branches, Figure 25 shows the existence of 3 other bifurcating branches which
are ”twice” 2-uniform.

As we have seen for N = 3, at a symmetry breaking bifurcation on any of the
3-uniform branches, Theorem 110 shows that there exists 3 2-uniform bifurcating
solutions. See Figure 13 for the group lattice, and to see a representation of the
quantizers q∗ which have isotropy group isomorphic to S2, see panels (2)–(3) of Figure
18 and panels (2)–(5) of Figure 19. At symmetry breaking bifurcation on each of the
2-uniform branches, Theorem 110 shows that there exists 2 1-uniform bifurcating
solutions. See panel (5) of Figure 18.

Bifurcation Structure of M -uniform Solutions

This section examines the structure of bifurcating branches from M -uniform so-
lutions ((

q∗

λ∗

)
+ tuuuk, β

∗ + β(t)

)
, (6.67)

whose existence is guaranteed by Theorem 110, where uuuk is defined in (6.57). We
show that bifurcation from an M -uniform solution is always pitchfork-like (Theorem
120). We provide a condition, called the bifurcation discriminator, which ascertains
whether the bifurcating branches are subcritical or supercritical (Theorems 127 and
128). All subcritical bifurcations are unstable (Proposition 55). We also provide
a condition which determines whether supercritical branches are stable or unstable
(Theorem 128). We conclude by determining when unstable bifurcating branches
contain no solutions to (1.9) (Theorem 129).

To apply the tools that we developed earlier in chapter 6, one needs to check that
Assumption 50 holds for (3.18)

(
q̇

λ̇

)
= ∇q,λL(q, λ, β).
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We provide a condition in the next Lemma, which ascertains when Assumption
50 is met.

Lemma 115. Suppose that Assumption 81 holds. Then Assumption 50 is satisfied by
the Liapunov-Schmidt reduction r(xxx, β) as defined in (6.37) if and only if ∆D(q∗) is
positive definite on ker ∆F (q∗).

Proof. Lemma 91.2 shows that r is A-equivariant. Assumption 15.2 on F implies that
r is infinitely differentiable. Theorem 95 shows that A acts absolutely irreducibly on
<M−1 = ker ∂xxxr(000, 0) so that ∂xxxr(000, β) = c(β)IM−1. Condition (6.63) shows that
c(0) = 0 and condition (6.64),

c′(0) =
kkkT

F ∆D(q∗)kkkF

||kkkF ||2 ,

shows that c′(0) > 0 since we are assuming that ∆D(q∗) is positive definite on
ker ∆F (q∗). Finally, Lemma 103 shows that the isotropy subgroup 〈Tk〉 ≤ ΓU has a
fixed point space of dimension 1. 2

Remark 116. Condition (6.64) shows that ∆D(q∗) is negative definite on ker ∆F (q∗)
if and only if c′(0) < 0. In this case, symmetry breaking bifurcations are pitchfork-
like (Theorem 120), and the bifurcation discriminator defined in (6.81) still dictates
whether a bifurcating branch is subcritical or supercritical (Remark 125).

When G from (3.1) and (3.2),

max
q∈∆

(G(q) + βD(q)),

is strictly concave, as in the case of the Information Distortion problem (2.34), then
the condition in Lemma 115 is satisfied.

Corollary 117. Assumption 50 is satisfied by the Liapunov-Schmidt reduction r(xxx, β)
as defined in (6.37) when G is strictly concave.

Proof. Lemma 90 shows that ∆D(q∗) is positive definite on ker ∆L(q∗). 2

Remark 118. One can determine whether or not ∆D(q∗) is positive definite on
ker ∆L(q∗) by applying the argument from Remark 21.2 to the case where Z is the
NK×M matrix with full column rank whose columns span ker ∆F (q∗). Thus, ∆D(q∗)
is positive definite on ker ∆F (q∗) if and only if the matrix ZT ∆D(q∗)Z is positive def-
inite on <M .

The next theorem shows that the bifurcating solutions (6.67) are pitchfork-like.
Before getting to this result, we first prove a necessary Lemma.
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Lemma 119. Let Di = ∂2
xxxri(000, 0). If ν 6= η are any two integers between 1 and M −1,

and if neither k nor h are in {η, ν}, then the following are true:

1.
∑M−1

l=1 [Dl]νν = −[Dν ]νν.

2. [Dη]kk = [Dν ]kk

Proof. Since r(xxx, β) is A-equivariant, then for every A ∈ A,

Ar(xxx, β) = r(Axxx, β).

From the Taylor expansion in (6.75), it follows that

A




r1(xxx, 0)
r2(xxx, 0)

...
rM−1(xxx, 0)


 =




c(0)xxx1 + xxxT AT D1Axxx +O((Axxx)3)
c(0)xxx2 + xxxT AT D2Axxx +O((Axxx)3)

...
c(0)xxxM−1 + xxxT AT DM−1Axxx +O((Axxx)3)


 .

Since the quadratic terms on each side must be equal, we have that

A




xxxT D1xxx
xxxT D2xxx

...
xxxT DM−1xxx


 =




xxxT AT D1Axxx
xxxT AT D2Axxx

...
xxxT AT DM−1Axxx


 . (6.68)

First, we prove part 2. Consider the element A := A(γνη) ∈ A, the (M − 1) ×
(M − 1) permutation matrix that permutes class ν with class η, where both ν and
η are less than M , and all the other classes fixed. We equate the νth component on
each side of (6.68) where A = A(γνη)

[A




xxxT D1xxx
xxxT D2xxx

...
xxxT DM−1xxx


]ν = [




xxxT AT D1Axxx
xxxT AT D2Axxx

...
xxxT AT DM−1Axxx


]ν . (6.69)

The left hand side of equation (6.69) is

∑
i,j

xixj[Dη]ij =
∑

j

x2
j [Dη]jj +

∑

i,j 6=i

xixj[Dη]ij. (6.70)

Now we compute the right hand side of (6.69). Since

[Axxx]i =





xν if i = η
xη if i = ν
xi otherwise

,
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the right hand side of (6.69) is

(Axxx)T DνAxxx =
∑
i,j

[Axxx]i[Axxx]j[Dν ]ij

= [Axxx]2k[Dν ]kk + 2
∑

j 6=k

[Axxx]j[Axxx]k[Dν ]jk +
∑

i 6=k,j 6=k

[Axxx]i[Axxx]j[Dν ]ij

= x2
k[Dν ]kk + 2

∑

j 6=k

[Axxx]jxk[Dν ]jk +
∑

i6=k,j 6=k

[Axxx]i[Axxx]j[Dν ]ij, (6.71)

where the last equality follows if k /∈ {ν, η}. Comparing the coefficients of the x2
k in

(6.70) and (6.71), we get that
[Dη]kk = [Dν ]kk

as long as k /∈ {ν, η}, proving part 2.
To get part 1, we now consider A := A(γνM), the element which permutes class

ν 6= M with class M and leaves all other classes fixed. By Algorithm 93

A =




Iν−1 000
−1 −1 ... −1
000T IM−1−ν




where 000 is a (ν− 1)× (M − 1− ν) matrix of zeros. Computing (6.69) for A = A(γνM)
yields

[A




xxxT D1xxx
xxxT D2xxx

...
xxxT DM−1xxx


]k = [




xxxT AT D1Axxx
xxxT AT D2Axxx

...
xxxT AT DM−1Axxx


]k. (6.72)

The left hand side of (6.72) is

−xxxT
∑

l

Dlxxx = −
∑
i,j

xixj

∑

l

[Dl]ij. (6.73)

Now we compute the right hand side of (6.72). First, observe that

[Axxx]i =

{
xi if i 6= ν

−∑
l xl if i = ν

.

The right hand side of (6.72) is
∑

i,j[Axxx]i[Axxx]j[Dν ]ij which is equal to

[Axxx]2ν [Dν ]νν + 2
∑

j 6=ν

[Axxx]j[Axxx]ν [Dν ]jν +
∑

i6=ν,j 6=ν

[Axxx]i[Axxx]j[Dν ]ij

= (−
∑

l

xl)
2[Dν ]νν − 2

∑

j 6=ν

xj(
∑

l

xl)[Dν ]jν +
∑

i 6=ν,j 6=ν

xixj[Dν ]ij. (6.74)
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Now, we equate the coefficients of the x2
ν terms in (6.73) and (6.74), which yields

−
∑

l

[Dl]νν = [Dν ]νν .

2

Now, as promised, we use Lemma 119 to prove the desired result. Observe that we
need not assume that c′(0) 6= 0, and so we do not make any assumption on ∆D(q∗).

Theorem 120. All of the bifurcating branches guaranteed by Theorem 110 and Corol-
lary 111 are pitchfork-like. That is, for each branch, β′(0) = 0.

Proof. By Lemma 53, we need to show that < xxx0, ∂
2
xxxr(000, 0)[xxx0,xxx0] >= 0, for every xxx0

such that Wxxx0 = uuuk for some k. In fact, we show that ∂2
xxxr(000, 0) = 000. As in (5.21), for

each integer i between 1 and M − 1, consider the Taylor series of the ith component
of r, ri(xxx, β), about xxx = 000 for fixed β,

ri(xxx, β) = ri(000, β) + ∂xxxri(000, β)Txxx + xxxT ∂2
xxxri(0, β)xxx +O(xxx3).

Equation (5.3) shows that ri(000, β) = 0, and by Assumption 50.2, ∂xxxri(000, β) = c(β)eeei,
so that

ri(xxx, β) = c(β)xi + xxxT ∂2
xxxri(0, β)xxx +O(xxx3).

Evaluating at β = 0 and letting Di be the (M − 1) × (M − 1) matrix ∂2
xxxri(0, 0), we

get
ri(xxx, 0) = c(0)xxxi + xxxT Dixxx +O(xxx3). (6.75)

Now we show that the diagonal of Di is identically 000. Equation (6.44) shows that
[Di]ii = 0. This and Lemma 119.1 show that

∑

i 6=ν

[Di]νν = 0 (6.76)

for every 1 ≤ ν ≤ (M − 1). Lemma 119.2 shows that [Di]νν = [Dj]νν for every i and
j not equal to ν. This and (6.76) shows that the diagonal of Di is zero,

[Di]νν = 0,

whenever i 6= ν.
To complete the proof, we again appeal to (6.44) which shows that [Dj]kl =

[Di]νν = 0 for every j, k and l. Thus, Di is identically zero. 2

As in Definition 51, the orientation of the branch

((
q∗

λ∗

)
+ tuuuk, β

∗ + β(t)

)
is

determined by the sign of tβ′(t) for sufficiently small t. Theorem 120 shows that
β′(0) = 0, so that by Remark 54.4 we need to consider β′′(0) to determine whether
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a branch is subcritical or supercritical. By Lemma 63 and Corollary 64, β′′(0) de-
pends on < xxx0, ∂

3
xxxr(000, 0)[xxx0,xxx0,xxx0] >, where xxx0 is the bifurcating direction for so-

lutions to r = 0. That is, Wxxx0 = uuuk, where uuuk, defined in (6.57), is the bifur-
cating direction of equilibria of (3.18). We explicitly compute the multilinear form
< xxx0, ∂

3
xxxr(000, 0)[xxx0,xxx0,xxx0] > in terms of the original problem (3.18) in the next theo-

rem.

Theorem 121. If Assumption 81 holds, then 〈xxx0, ∂
3
xxxr(000, 0)[xxx0,xxx0,xxx0]〉 is equal to

(M2 −M)((M2 − 3M + 3)ζ2 − 3ζ1)

where

ζ1 = 〈uuuk, ∂
3
QL[uuuk, L

−1E
∑
s,t

∂2∇QL
∂qνs∂qνt

[vvv]s[vvv]t]〉,

ζ2 = 〈vvv, f [vvv,vvv,vvv]〉.
The multilinear form < vvv, f [vvv,vvv,vvv] > denotes

< vvv, f [vvv,vvv,vvv] >=
∑

r,s,t,u∈Y

∂4F (q∗, β∗)
∂qνr∂qνs∂qνt∂qνu

[vvv]r[vvv]s[vvv]t[vvv]u,

∂3
QL is evaluated at (q∗, λ∗, β∗), Q =

(
q
λ

)
, vvv is defined in (6.19), uuuk is the bifur-

cating direction from (6.57), and ν is any class in U .

Proof. Assumption 81 is required because we assume the specific basis from The-
orem 87 when decomposing uuuk ∈ ∆L(q∗). By definition of the Liapunov Schmidt
reduction (6.36), there exists a uuuk ∈ ∆L(q∗) such that Wxxx0 = uuuk. By Lemma 66,
〈xxx0, ∂

3
xxxr(000, 0)[xxx0,xxx0,xxx0]〉 is equal to

〈uuuk, ∂
3
QF(000, 0)[uuuk,uuuk,uuuk]− 3∂2

QF(000, 0)[uuuk, L
−1E∂2

QF(000, 0)[uuuk,uuuk]]〉.
Using the definition of F in (6.34), this becomes

〈uuuk, ∂
4
QL(q∗, λ∗, β∗)[uuuk,uuuk,uuuk]〉

− 3〈uuuk, ∂
3
QL(q∗, λ∗, β∗)[uuuk, L

−1E∂3
QL(q∗, λ∗, β∗)[uuuk,uuuk]]〉. (6.77)

The first term of (6.77) can be rewritten as

〈ûuuk, ∂
4
qqqqF (q∗, β∗)[ûuuk, ûuuk, ûuuk]〉

using (6.57). The component form is

∑

ν,δ,η,ω∈YN

∑
r,s,t,u∈Y

∂4F (q∗, β∗)
∂qνr∂qδs∂qηt∂qωu

[ûuuk]νr[ûuuk]δs[ûuuk]ηt[ûuuk]ωu. (6.78)
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Recall that ∂2F
∂qνr∂qδs

= 0 if ν 6= δ (see (3.9)), and so ∂4F (q∗,β∗)
∂qνr∂qδs∂qηt∂qωu

= 0 unless ν = δ =

η = ω. This and (6.56) allow us to simplify (6.78) as

(M − 1)4
∑

r,s,t,u∈Y

∂4F

∂qµr∂qµs∂qµt∂qµu

[vvv]r[vvv]s[vvv]t[vvv]u

+
∑

ν∈U\{µ}

∑
r,s,t,u∈Y

∂4F

∂qνr∂qνs∂qνt∂qνu

[vvv]r[vvv]s[vvv]t[vvv]u (6.79)

where µ is the kth unresolved class of U and ∂4
qqqqF is evaluated at (q∗, β∗). Since

∂2F
∂qνr∂qνs

= ∂2F
∂qµr∂qµs

, then ∂4F
∂qνr∂qνs∂qνt∂qνu

= ∂4F
∂qµr∂qµs∂qµt∂qµu

for any ν, µ ∈ U . Since

|U| = M , then (6.79) becomes

((M − 1)4 + (M − 1))
∑

r,s,t,u∈Y

∂4F (q∗, β∗)
∂qνr∂qνs∂qνt∂qνu

[vvv]r[vvv]s[vvv]t[vvv]u.

Observe that (M − 1)4 + (M − 1) = (M2 −M)(M2 − 3M + 2).
Now we consider the second term of (6.77)

−3〈uuuk, ∂
3
QL(000, 0)[uuuk, L

−1E∂3
QL(000, 0)[uuuk,uuuk]]〉.

In particular, we examine the (NK + K)× 1 vector

L−1E∂3
QL(000, 0)[uuuk,uuuk] = L−1E

∑

δ,η∈YN

∑
r,s∈Y

∂2∇QL
∂qδr∂qηs

[uuuk]δr[uuuk]ηs. (6.80)

Note that the derivatives with respect to λ on the left hand side of (6.80) are ignored
since they are zero. Now, using (6.56) as before, we rewrite (6.80) as

((M − 1)2 + (M − 1))L−1E
∑

δ,η∈YN

∑
r,s∈Y

∂2∇QL
∂qδr∂qηs

[vvv]r[vvv]s.

Since (M − 1)2 + (M − 1) = M2 −M , we are done. 2

Remark 122. The term

−3〈uuuk, ∂
3
QL[uuuk, L

−1E
∑
r,s

∂2∇QL
∂qνr∂qνs

[vvv]r[vvv]s]〉

in Theorem 121 can not be written in terms of F due to multiplication by the (NK +
K)× (NK + K) matrix L−1E.

Definition 123. The discriminant of the bifurcating branch,
((

q∗

λ∗

)
+ tuuuk, β

∗ + β(t)

)
,
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is defined as

ζ(q∗, β∗,uuuk) = 3〈uuuk, ∂
3
QL[uuuk, L

−1E
∑

r,s
∂2∇QL

∂qνr∂qνs
[vvv]r[vvv]s]〉

−(M2 − 3M + 3)〈vvv, f [vvv,vvv,vvv]〉, (6.81)

where the derivatives of L are evaluated at (q∗, λ∗, β∗), and

< vvv, f [vvv,vvv,vvv] >=
∑

r,s,t,u∈Y

∂4F (q∗, β∗)
∂qνr∂qνs∂qνt∂qνu

[vvv]r[vvv]s[vvv]t[vvv]u.

We now have the following result.

Corollary 124. If ∆D(q∗) is positive definite on ker ∆F (q∗), and if Assumption 81
holds, then sgn(β′′(0)) = sgn(ζ(q∗, β∗,uuuk))

Proof. Corollary 64 and Theorem 121. 2

Remark 125. If ∆D(q∗) is negative definite on ker ∆F (q∗), then Lemma 63 shows
that

sgn(β′′(0)) = −sgn(ζ(q∗, β∗,uuuk)).

The following lemma provides a way to compute the discriminant, ζ(q∗, β∗,uuuk),
for the Information Distortion problem (2.34), where F = H(q) + βDeff (q).

Lemma 126. For the Information Distortion problem (2.34), the sign of ∂3L
∂qνr∂qνs∂qνt

is equal to

δrst
p(yr)

q2
νr

+ β

(
p(yr)p(ys)p(yt)

(
∑

j p(yj)qνj)2
−

∑
i

p(xi, yr)p(xi, ys)p(xi, yt)

(
∑

j p(xi, yj)qνj)2

)
.

The sign of the expression ∂4F
∂qνr∂qνs∂qνt∂qνu

is equal to

2β

(∑
i

p(xi, yr)p(xi, ys)p(xi, yt)p(xi, yu)

(
∑

j p(xi, yj)qνj)3
− p(yr)p(ys)p(yt)p(yu)

(
∑

j p(yj)qνj)3

)
− 2δrstu

p(yr)

q3
νr

.

Proof. The lemma follows from (2.21),(2.22),(2.24), and (2.25) 2

We now present the results for the general case which determine whether a bifur-
cating branch from symmetry breaking bifurcation is subcritical or supercritical.

Theorem 127. Suppose that Assumption 81 holds and that ∆D(q∗) is positive definite
on ker ∆F (q∗). If ζ(q∗, β∗,uuuk) < 0, then the bifurcating branch

((
q∗

λ∗

)
+ tuuuk, β

∗ + β(t)

)
,

guaranteed by Theorem 110, is subcritical and consists of unstable solutions.
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Proof. The theorem follows from Lemma 115, Corollary 124, Remark 54.4, and Propo-
sition 55. 2

Theorem 128. Suppose that Assumption 81 holds and that ∆D(q∗) is positive definite
on ker ∆F (q∗). If ζ(q∗, β∗,uuuk) > 0, then the bifurcating branch

((
q∗

λ∗

)
+ tuuuk, β

∗ + β(t)

)
,

guaranteed by Theorem 110, is supercritical. Furthermore, if

θ(q∗, β∗,uuuk) :=
∑
m

〈wwwm, θ1 − 2θ2 − θ3〉 > 0

where

θ1 = ∂4
QL[uuuk,uuuk,wwwm],

θ2 = ∂3
QL[uuuk, L

−1E∂3
QL[uuuk,wwwm]],

θ3 = ∂3
QL[wwwm, L−1E∂3

QL[uuuk,uuuk]],

where Q =

(
q
λ

)
, then the branch consists of unstable solutions.

Proof. Lemma 115, Corollary 124 and Remark 54.4 show that the branch is super-
critical. By Theorem 120, we can now invoke Proposition 65. The proof is complete

once we show that
∑

i,j,m
∂3rm(000,0)

∂xi∂xj∂xm
[xxx0]i[xxx0]j is equal to θ(q∗, β∗,uuuk).

From (5.46), we have that ∂3rm(000,0)
∂xi∂xj∂xm

is equal to

〈wwwm, ∂4L[wwwi,wwwj,wwwm]− LE−1(∂3L[wwwj,wwwm] + ∂3L[wwwi,wwwm] + ∂3L[wwwi,wwwj])〉. (6.82)

The theorem now follows from the linearity of each of the multilinear forms in (6.82).

We show this explicitly for the first term. To get
∑

i,j,m
∂3rm(000,0)

∂xi∂xj∂xm
[xxx0]i[xxx0]j, we first

simplify
∑

ij〈wwwm, ∂4L[wwwi,wwwj,wwwm]〉[xxx0]i[xxx0]j, which is

∑
i,j

∑
r,s,t,u

∂4Lrstu[wwwm]r[wwwi]s[wwwj]t[wwwm]u[xxx0]i[xxx0]j. (6.83)

Since

[uuuk]s =
∑

i

[wwwi]s[xxx0]s and [uuuk]t =
∑

j

[wwwj]t[xxx0]t, (6.84)

then the term (6.83) is 〈wwwm, θ1〉. Using the same observation as in (6.84) for the
second, third and fourth terms of (6.82), the theorem is proved 2



138

The following Theorem shows that if a bifurcating branch corresponds to an
eigenvalue of ∆L(q∗) changing from negative to positive, then the branch consists of
stationary points (q∗, β∗) which are not solutions of (1.9). This is a nontrivial result.
In general, if (q∗, λ∗, β∗) is an equilibrium of (3.18) such that ∆L(q∗) has a positive
eigenvalue, then q∗ may or may not be a solution to the optimization problem (3.1)
at β = β∗ (see Remark 27).

Theorem 129. Suppose that Assumption 81 holds. If
((

q∗

λ∗

)
+ tuuuk, β

∗ + β(t)

)

is a bifurcating branch, guaranteed by Theorem 110, then uuuk is an eigenvector of

∆q,λL(

(
q∗

λ∗

)
+ tuuuk, β

∗ + β(t)) for sufficiently small t. Furthermore, if the corre-

sponding eigenvalue is positive, then the branch consists of stationary points which
are not solutions to (3.1).

Proof. By assumption, bifurcation occurs at the M -uniform solution (q∗, λ∗, β∗) which

is fixed by ΓU , and uuuk =

(
ûuuk

000

)
∈ ker ∆L(q∗) (see (6.56) and (6.57)). We first show

that uuuk is an eigenvector of ∆q,λL(q∗ + tûuuk, λ
∗, β + β(t)) for small t. Let Q =

(
q
λ

)

and let
L(Q, β) := ∇q,λL(q∗ + q, λ∗ + λ, β∗ + β).

Thus, bifurcation of solutions to

L(Q, β) = 000

occurs at (000, 0). By Lemma 100, uuuk is the sole basis vector of Fix〈Tk〉, where 〈Tk〉 < ΓU
is isomorphic to SM−1. By Lemma 44,

L(tuuuk, β) = h(t, β)uuuk

for some scalar function h(t, β). Taking the derivative of this equation with respect
to t, we get

∂QL(tuuuk, β)uuuk = ∂th(t, β))uuuk, (6.85)

from which it follows that uuuk is an eigenvector of ∆q,λL(q∗ + tûuuk, λ
∗, β + β(t)), with

corresponding eigenvalue
ξ = ∂th(t, β).

We now show that if ξ > 0, then the bifurcating branch consists of stationary
points which are not solutions to (3.1). Using (3.8) and letting ∆̂F := ∆F (q∗ +
tûuuk, β + β(t)), we see that (6.85) can be rewritten as

(
∆̂F JT

J 000

)(
ûuuk

000

)
= ξ

(
ûuuk

000

)
,
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which shows that

∆̂Fûuuk = ξûuuk

Jûuuk = 000.

Thus, ûuuk is an eigenvector of ∆F (q∗ + tûuuk, β + β(t)) with corresponding positive
eigenvalue ξ, and ûuuk ∈ ker J . The desired result now follows from Theorem 20. 2

The Theory Applied to the Information Bottleneck

For the Information Bottleneck problem (2.35),

max
q∈∆

F (q, β) = max
q∈∆

(I(Y ; YN) + βI(X; YN)),

Assumptions 81.2 and 81.3 are never satisfied. This is due to the fact that q is always
in the kernel of ∆F (q, β) for every β (Theorem 43). In particular, this shows that
on the N -uniform solution branch (q 1

N
, λ, β), we have that the K × 1 vector of 1

N
’s,

is in the kernel of each of the identical blocks of ∆F (q(yN |y), β) for every β. In this
section, we review some results which deal with this scenario at bifurcation.

Consider any problem of the form (1.9),

max
q∈∆

(G(q) + βD(q)),

where Assumption 81.2 is replaced by the condition that for B, the blocks of the
Hessian defined in (6.3), then

ker B has dimension 2 with K × 1 basis vectors {vvv,zzz}. (6.86)

Suppose that bifurcation of the problem (1.9) occurs at (q 1
N

, λ∗, β∗) when (6.86) holds.

Observe that all of the blocks of the Hessian ∆F (q 1
N

) are identical, and so Assump-
tions 81.3 and 81.4 are not required. We review the following conditions, which must
hold at (q 1

N
, λ∗, β∗), without proof:

1. The space ker ∆F (q 1
N

) has dimension 2N .

2. The basis of ker ∆F (q 1
N

) is {{vvvi}N
i=1, {zzzi}N

i=1}, where vvvi and zzzi are defined as in

(6.21).

3. The space ker ∆L(q 1
N

) has dimension 2N − 2.

4. The basis of ker ∆L(q 1
N

) is {wwwi} where

wwwi =





(
vvvi

000

)
−

(
vvvN

000

)
for i = 1, ..., N − 1

(
zzzi−N+1

000

)
−

(
zzzN

000

)
for i = N, ..., 2N − 2



140

5. The group A ∼= SN , for which the Liapunov-Schmidt reduction r(xxx, β) is equiv-
ariant, is a subgroup of the group of all (2N − 2)× (2N − 2) matrices.

6. The subspaces span({wwwi}N−1
i=1 }) and span({wwwi}2N−2

i=N }) are invariant subspaces of
ker ∆L(q 1

N
), which shows that ker ∆L(q 1

N
) is not irreducible and that A is not

absolutely irreducible.

7. The group 〈Tk〉 ∼= ΓU < Γ, which is isomorphic to SN−1, is a maximal isotropy
subgroup, and it has a two dimensional fixed point space.

8. The fixed point space Fix〈Tk〉 has basis {aaak, bbbk}, where

aaak =




−vvv
...
−vvv

(N − 1)vvv
−vvv
...
−vvv
000




, bbbk =




−zzz
...
−zzz

(N − 1)zzz
−zzz
...
−zzz
000




,

and (N − 1)vvv and (N − 1)zzz are in the kth row of aaak and bbbk respectively.
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CHAPTER 7

CONTINUATION

In chapter 6, we developed the theory which gives the existence, as well as the
structure, of bifurcating branches from symmetry breaking bifurcation of M -uniform
solutions. We would like to numerically confirm this theory. To do this, we employed
continuation techniques [6, 26] to analyze the explicit behavior of the equilibria of the
dynamical system (3.18)

(
q̇

λ̇

)
= ∇q,λL(q, λ, β)

for the Information Distortion problem. Continuation techniques are numerical meth-
ods for tracking equilibria of a general dynamical system (3.15),

ẋxx = ψ(xxx, β),

by constructing a sequence of equilibria {(xxxk, βk)} which reside on some solution
branch. The scalar β ∈ < is considered a continuation parameter. This is analogous
to the scenario when using Algorithm 1 to solve (1.9), where β could be interpreted
as an annealing parameter.

Recall that equilibria (xxx∗, β) of (3.15) satisfy

ψ(xxx, β) = 000.

If (xxxk, βk) is some equilibrium on some branch, then continuation techniques compute

the vector tangent to the curve ψ(xxx, β) = 000 to give an initial guess (xxx
(0)
k+1, β

(0)
k+1) for

Newton’s method, which computes the equilibrium (xxxk+1, βk+1) on the same branch
as (xxxk, βk) for some βk+1 close to βk. If bifurcation is detected, then one might choose
to continue along some particular bifurcating branch. This is effected by a branch
switch.

Parameter Continuation

Parameter continuation is the simplest type of continuation, an algorithm for
which is given at the end of this section (Algorithm 130). It uses the tangent vector

∂βxxxk−1 at (xxxk−1, βk−1) to compute an initial guess (xxx
(0)
k , βk) for the equilibrium (xxxk, βk)

by setting
(

xxx
(0)
k

βk

)
=

(
xxxk−1 + ∆β∂βxxxk−1

βk−1 + ∆β

)
(7.1)



142

Figure 15. Conceptual figure depicting continuation along the curve ∇q,λL(q, λ, β) =

000. From the point (q
(0)
k+1, λ

(0)
k+1, β

(0)
k+1), the dashed line indicates the path taken by

parameter continuation. The dotted line indicates the path taken by pseudoarclength
continuation as the points {(q(i)

k+1, λ
(i)
k+1, β

(i)
k+1)}i converge to (qk+1, λk+1, βk+1}.

for some ∆β > 0. Given this guess, Newton’s method is used to determine (xxxk, βk).
Thus, βk is kept fixed as we search for xxxk (see Figure 15).

We proceed by showing how to compute the vector, ∂βxxxk, which is tangent to the
curve ψ(xxx, β) = 000 at the equilibrium (xxxk, βk) when ∂xxxψ(xxxk, βk) is nonsingular. By the
Implicit Function Theorem, we can take the total derivative of ψ = 000 with respect to
β, which shows that

∂

∂β
ψ(xxx, β) = 000

so that

∂xxxψ(xxx, β)∂βxxx(β) + ∂βψ(xxx, β) = 000. (7.2)

Thus, the tangent vector at an equilibrium (xxxk, βk) is found by solving

∂xxxψ(xxxk, βk)∂βxxx(βk) = −∂βψ(xxxk, βk) (7.3)

which shows that
∂βxxx(βk) = −∂xxxψ(xxxk, βk)

−1∂βψ(xxxk, βk).

In practice, the tangent vector

∂βxxxk := ∂βxxx(βk) (7.4)



143

is found by solving (7.3).
Newton’s method is used to find the next equilibrium (xxxk, βk) since this method

is not dependent on the stability of (xxxk, βk). Newton’s method can be used to find
solutions of any equation

ψ(xxx, β) = 000

by considering a sequence of linear approximations {ψ̂i} to ψ, and determining the
solutions of

ψ̂i(xxx, β) = 000

for each of these. By Taylor’s Theorem, the linear approximation of ψ about xxx
(i)
k for

a fixed β is
ψ̂i(xxx, β) = ∂xxxψ(xxx

(i)
k , β)(xxx− xxx

(i)
k ) + ψ(xxx

(i)
k , β).

Thus, the solution, xxx
(i+1)
k , of ψ̂ = 000 at βk is found by solving

∂xxxψ(xxx
(i)
k , βk)(xxx

(i+1)
k − xxx

(i)
k ) = −ψ(xxx

(i)
k , βk). (7.5)

In this way, if ∂xxxψ(xxx
(i)
k , βk) is nonsingular for each i, and if xxx

(0)
k is sufficiently close to

xxxk, then [6]

lim
i→∞

xxx
(i)
k → xxxk.

We conclude the previous discussion with the following algorithm.

Algorithm 130 (Parameter continuation). [6, 26] Suppose that (xxx0, β0) is a
given equilibria to (3.15). Let ∆β > 0. For k ≥ 0, iterate the following steps until
βk = B for some B > 0.

1. Find the tangent vector ∂βxxxk from (7.4) by solving (7.3).

2. Get the initial guess xxx
(0)
k+1 for xxxk+1 from (7.1) and set βk+1 = βk + ∆β.

3. Find the equilibrium xxxk+1 using the initial guess xxx
(0)
k+1 by iterating Newton’s

method (7.5), giving {xxx(i)
k+1}i → xxxk+1.

Pseudoarclength Continuation

This method, due to Keller [39], uses Newton’s method to find the next equilib-
rium (xxxk, βk) by allowing both xxx and β to vary. The explicit algorithm is given at the
end of this section (Algorithm 131). The advantage of this approach is twofold. First,
the step size in β, ∆βk+1 = βk+1 − βk, changes depending on the ”steepness” of the
curve ψ(xxxk, βk) = 0. Secondly, since β is varying, this method allows for continuation
of equilibria around a saddle-node bifurcation (see Figure 15).
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Pseudoarclength continuation works in two steps. First, we parameterize xxx and
β with respect to some variable s, so that the tangent vector to ψ = 000 at (xxxk, βk),(

∂sxxxk

∂sβk

)
, is found by taking the total derivative as in (7.2),

∂xxxψ(xxxk, βk)∂sxxx(sk) + ∂βψ(xxxk, βk)∂sβ(sk) = 000, (7.6)

and solving for ∂sxxx(sk) when the scalar ∂sβ(sk) = 1. Thus, we determine ∂sxxx(sk) as
in (7.3)

∂xxxψ(xxxk, βk)∂sxxx(sk) = −∂βψ(xxxk, βk). (7.7)

Setting ∂sβ(sk) = 1 is justified by the following argument. If we set ∂sβ̂(sk) = a 6= 0,
then ∂sx̂xx(sk) = −a∂xxxψ(xxxk, βk)

−1∂βψ(xxxk, βk) = a∂sxxx(sk). Thus,

(
∂sxxx(sk)

1

)
=

1

a

(
∂sx̂xx(sk)

∂ŝ̂β(sk)

)
.

Therefore, these vectors are equivalent up to a scaling factor, which we may ignore
since we will normalize in (7.9).

In order that subsequent tangent vectors

{(
∂sxxx(sk)

1

)
,

(
∂sxxx(sk−1)

1

)}

k

always

have the same orientation, if we let

θk = ∠
((

∂sxxx(sk)
1

)
,

(
∂sxxx(sk−1)

1

))
, (7.8)

then we require that

−π

2
≤ θk ≤ π

2
.

Thus, the normalized tangent vector (∂sxxx
T
k ∂sβk)

T at (xxxk, βk) which has the same
orientation as (∂sxxx(sk)

T 1)T which we will use in all of computations that follow is
(

∂sxxxk

∂sβk

)
:=

sgn(cos θk)√
‖∂sxxx(sk)‖2 + 1

(
∂sxxx(sk)

1

)
. (7.9)

Now we see that the initial guess for (xxxk+1, βk+1) given an equilibrium (xxxk, βk) is
(

xxx
(0)
k+1

β
(0)
k+1

)
=

(
xxxk + d∂sxxxk

βk + d∂sβk

)
(7.10)

for some

d > 0. (7.11)

The second step of the pseudoarclength method finds the next equilibrium (xxxk+1, βk+1)

using (7.10) by creating a sequence of points, {(xxx(i)
k+1, β

(i)
k+1)}i, that converge to (xxxk+1, βk+1)
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such that the norm of the projection of the vector

(
xxx

(i)
k+1 − xxxk

β
(i)
k+1 − βk

)
onto

(
∂sxxxk

∂sβk

)
for

every i is always d from (7.11). To effect this constraint, we use the fact that the
projection of a vector www onto a vector vvv is given by [65]

projvvv(www) =
wwwTvvv

‖vvv‖2
vvv

from which it follows that

‖projvvv(www)‖ =
wwwTvvv

‖vvv‖ .

Thus

‖proj(∂sxxx ∂sβ)T

(
xxx

(i)
k+1 − xxxk

β
(i)
k+1 − βk

)
‖ = d

for every i if and only if

P (xxx
(i)
k+1, β

(i)
k+1) :=

(
xxx

(i)
k+1 − xxxk

β
(i)
k+1 − βk

)T (
∂sxxxk

∂sβk

)
= d, (7.12)

since ‖
(

∂sxxxk

∂sβk

)
‖ = 1 by (7.9). So now we have the vector function

Ψ(xxx, β) :=

(
ψ(xxx, β)

P (xxx, β)− d

)
(7.13)

for which we are interested in solutions to Ψ = 000 for some d > 0.
We use Newton’s method to solve Ψ = 000 as in (7.5), but now we must differentiate

Ψ with respect to the vector

(
xxx
β

)
, which we write as ∂xxx,βΨ. Hence, one can find

(xxx
(i+1)
k , β

(i+1)
k ) given (xxx

(i)
k , β

(i)
k ) by solving

∂xxx,βΨ(xxx
(i)
k , β

(i)
k )

((
xxx
β

)
−

(
xxx

(i)
k

β
(i)
k

))
= −Ψ(xxx

(i)
k , β

(i)
k )

for xxx and β, which is equivalent to solving

(
∂xxxψ(xxx

(i)
k , β

(i)
k ) ∂βψ(xxx

(i)
k , β

(i)
k )

∂sxxx
T
k ∂sβk

) ((
xxx
β

)
−

(
xxx

(i)
k

β
(i)
k

))
= −

(
ψ(xxx

(i)
k , β

(i)
k )

P (xxx
(i)
k , β

(i)
k )− d

)
.(7.14)

We conclude the previous discussion with the following algorithm.

Algorithm 131 (Pseudoarclength continuation). [6, 26] Suppose that (xxx0, β0)
is a given equilibria to (3.15). For k ≥ 0, iterate the following steps until βk = B for
some B > 0.
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1. Find the tangent vector (∂sxxx
T
k ∂sβk)

T by solving (7.7), and then normalize as
in (7.9).

2. Get the initial guess (xxx
(0)
k+1, β

(0)
k+1) from (7.10).

3. Find the equilibrium (xxxk+1, βk+1) using the initial guess (xxx
(0)
k+1, β

(0)
k+1) by iterating

Newton’s method (7.14), giving {(xxx(i)
k+1, β

(i)
k+1)}i → (xxxk+1, βk+1).

Remark 132. We have used an algorithm, which is a simple merger of the parameter
and pseudoarclength continuation methods, which we call tangent continuation. Using
tangent continuation, the tangent vector and the initial guess are found by steps 1-2
as in pseudoarclength continuation (Algorithm 131), and xxxk is found as in step 3 in
parameter continuation (Algorithm 130).

Branch Switching

Suppose that a symmetry breaking bifurcation has been located at the equilibria
(xxx∗, β∗) of (3.15)

ẋxx = ψ(xxx, β)

such that the assumptions of the Equivariant Branching Lemma (Theorem 47) are
satisfied. To proceed, one can use the explicit form of the bifurcating direction, uuu,
to search for a bifurcating solution of interest, say (xxxk+1, βk+1), whose existence is
guaranteed by Theorem 47. As an initial guess for xxxk+1, we implement a branch
switch

xxx
(0)
k+1 = xxx∗ + duuu. (7.15)

Now, either Parameter, Tangent (Remark 132), or Pseudoarclength continuation can

be used to create a sequence {(xxx(i)
k+1, β

(i)
k+1)} which converges to (xxxk+1, βk+1).

Continuation of the Gradient Flow

We now show how to apply Algorithms 130 and 131 to the gradient flow (3.18)
(

q̇

λ̇

)
= ∇q,λL(q, λ, β)

when ∆q,λL is nonsingular. We use Algorithm 131 to provide the numerical results at
the end of this chapter. To determine the tangent vector in step 1 of either algorithm,
one needs to solve a matrix equation of the form

∆q,λL(qk, λk, βk)

(
∂sq(sk)
∂sλ(sk)

)
= −∂β∇q,λL(qk, λk, βk).
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Thus, by (3.4) and (3.6), the normalized tangent vector, (∂sq
T
k ∂sλ

T
k ∂sβk)

T , to the
curve ∇q,λL = 000 at (qT

k λT
k )T which preserves orientation is found by solving

∆q,λL(qk, λk, βk)

(
∂sq(sk)
∂sλ(sk)

)
= −

( ∇D(qk)
000

)
(7.16)

and then normalizing as in (7.9). This shows that



∂sqk

∂sλk

∂sβk


 =

sgn(cos θ)√
||∂sqk||2 + ||∂sλk||2 + 1




∂sq(sk)
∂sλ(sk)

1


 (7.17)

where

θ = ∠







∂sq(sk)
∂sλ(sk)

1


 ,




∂sxxx(sk−1)
∂sλ(sk−1)

1





 (7.18)

as in (7.8).

Remark 133. Equation (3.8) shows that (7.16) can be written as
(

∆F (q, β) JT

J 000

)(
∂sq(sk)
∂sλ(sk)

)
= −

( ∇D(qk)
000

)

which shows that the vector ∂sqk ∈ ker J , where J is the Jacobian of the constraints
from (3.7).

To begin any continuation algorithm, one needs a starting point (q0, λ0, β0) at
k = 0. To find this initial equilibrium , we consider the case where q0 = q 1

N
and

β0 = 0, as in the case for the Information Distortion and the Information Bottleneck
cost functions (2.34) and (2.35) respectively. First, we decompose

∇F (q, β) =




g1

g2
...

gN


 ,

for some K × 1 vectors {gν}. By (3.5), we see that at any equilibrium (q∗, λ∗, β),

λ∗ = gν

for any ν ∈ YN . In other words,

∇F (q∗, β∗) =




g
g
...
g


 ,
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and in particular,

∇F (q 1
N

, β) =




g
g
...
g




for some K × 1 vector g. Thus, the vector of Lagrange multipliers corresponding to
(q 1

N
, 0) is

λ0 = g. (7.19)

As we will see in the numerical analysis section of this chapter, there are many
saddle-node bifurcations of equilibria of (3.18). Thus, it is imperative to track equi-
libria by implementing pseudoarclength continuation which can navigate about such
structures. We now give the Jacobian necessary to implement the Newton step (7.14)
of Algorithm 131:

∂q,λ,β

( ∇q,λLi
k

P i
k − d

)
=

(
∆q,λLi

k ∇D(q)
(∂sq

T
k ∂sλ

T
k )T ∂sβk

)
. (7.20)

where the notation f i
k for a function f(q, λ, β) indicates f(q

(i)
k , λ

(i)
k , β

(i)
k ).

As we use a continuation method to create a sequence of equilibria {(qk, λk, βk)}
along a solution branch of (3.18), it is possible that bifurcation of equilibria occurs at
some (q∗, λ∗, β∗) for some β∗ ∈ (βk, βk+1) (or in (βk+1, βk), if βk > βk+1, such as when
continuing along a subcritical branch of equilibria). To determine whether a symme-
try breaking bifurcation has occurred from an M -uniform solution, we assume that
Assumption 81 holds, and rely on Corollary 89. Thus, we detect for symmetry break-
ing bifurcation by comparing the determinant of an unresolved block of ∆F (qk, βk)
with the determinant of an unresolved block of ∆F (qk+1, βk+1). This is important
computationally, because we have reduced the problem of taking the determinant of
the (NK + K) × (NK + K) Hessian ∆q,λL, to that of taking the determinant of a
K×K block of ∆F . If a bifurcation is detected, then one can use the explicit form of
the bifurcating directions, {uuum}M

m=1 from (6.57) to search for the bifurcating solution
of interest, say (qk+1, λk+1, βk+1), whose existence is guaranteed by Theorem 110 and
Corollary 111. To do this, let uuu = uuum for some m ≤ M , then implement a branch
switch as in (7.15) (

q
(0)
k+1

λ
(0)
k+1

)
=

(
qk

λk

)
+ d · uuu

for some d > 0. Knowledge of the explicit bifurcating directions is important compu-
tationally because, in practice, attempting to find equilibria after a bifurcation can
incur significant computational cost [6, 29, 61].

In chapter 9, we apply these ideas to Algorithm 1 which gives a numerical algo-
rithm (Algorithm 157) to find solutions of the problem (1.9).
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1.038706e+000 1.133929e+000 1.390994e+000 4.287662e+000
5.413846e+000 3.112109e+001 4.629049e+001 3.827861e+002
5.961492e+002 7.165659e+003 1.010679e+004 1.866824e+005
2.052584e+005 4.683332e+006 6.366756e+006

Table 2. Bifurcation Location: Theorem 80 is used to determine the β values where
bifurcations can occur from (q 1

N
, β) when ∆G(q 1

N
) is nonsingular. Using Corollary

111 and Remark 113.1 for the Information Distortion problem (2.34), we predict
bifurcation from the branch (q 1

4
, β), at each of the 15 β values given in this table.

N 2 3 4 5 6
ζ(q 1

N
, β∗,uuuk) 6.04393e-4 -5.06425e+1 -5.40219e+2 -2.53231e+3 -8.10344e+3

Table 3. The bifurcation discriminator: Numerical evaluations of the bifurca-
tion discriminator ζ(q 1

N
, β∗ ≈ 1.038706,uuuk) (6.81) as a function of N for the four

blob problem (see Figure 1a) when F is defined as in (2.34). We interpret that
ζ(q 1

2
, 1.038706,uuuk) = 0. Thus, further analysis is required to determine whether

the bifurcating branches guaranteed by Theorem 110 are supercritical or subcritical
(numerical evidence indicates that the branches in this case are supercritical). For
N = 3, 4, 5 and 6, we have that ζ(q 1

N
, β∗,uuuk) < 0, predicting that bifurcating branches

from q 1
N

are subcritical and unstable in these cases (Theorem 127).

Numerical Results

We created software in MATLAB which implemented pseudoarclength continu-
ation (Algorithm 131) to numerically confirm the bifurcation structure guaranteed
by the theory of chapter 6. All of the results presented here are for the Information
Distortion problem (2.34),

max
q∈∆

(H(q) + βDeff (q))

and for the Four Blob Problem introduced in chapter 1 and Figure 1.
When ∆G(q0) is nonsingular, Theorem 80 determines the β values at which sin-

gularity occurs on the branch of equilibria (q0, λ
∗, β) of (3.18). In Table 2, we com-

pute the location of singularities from the solution branch (q 1
N

, λ, β) of (3.18). Since

G = H(YN |Y ) is strictly concave, then Corollary 111 and Remark 113.1 predict sym-
metry breaking bifurcation from (q 1

N
, β∗) for every β∗ value in Table 2.

Theorem 127 shows that the bifurcation discriminator, ζ(q∗, β∗,uuuk), can deter-
mine whether the bifurcating branches guaranteed by Theorem 110 are subcritical
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1.034 1.036 1.038 1.04 1.042 1.044 1.046 1.048 1.05
0

0.5

1

1.5

2

2.5

3
||q

* −
q 1/

N
||

β

Subcritical Bifurcating Branch for F=H(Y
N

|Y)+β I(X;Y
N

) from uniform solution q
1/N

 for N=4

Local Maximum
Stationary Solution

Figure 16. [54] The subcritical bifurcation from the 4-uniform solution
(q 1

4
, β∗ ≈ 1.038706) to a 3-uniform solution branch as predicted by the fact that

ζ(q 1
4
, 1.038706,uuuk) < 0. Here, the bifurcation diagram is shown with respect to

||q∗ − q 1
N
||. It is at the saddle node that this 3-uniform branch changes from being a

stationary point to a local solution of the problem (2.34).

(ζ < 0) or supercritical (ζ > 0). The numerical results obtained by calculating
ζ(q 1

N
, β∗,uuuk) for N = 2, 3, 4, 5 and 6 at β∗ ≈ 1.038706 are shown in Table 3. The

subcritical bifurcation predicted by the discriminator for the Information Distortion
problem (2.34) at β∗ ≈ 1.038706 is shown in Figures 16 and 17.

The Figures 16–24 show numerical confirmation of symmetry breaking bifurcation
from SM to SM−1 for N = 4 and M ∈ {1, 2, 3, 4}, as guaranteed by Theorem 110
and Corollary 111. We have used both the mutual information I(X; YN) and the
norm ‖q∗ − q 1

N
‖ as the vertical axis in the bifurcation diagrams. Figure 20 shows a

comparison of the observed bifurcation structure given in Figure 3 (triangles), and
the actual bifurcation structure given in Figures 18 and 19 (dots). Observe the shift
in β, which we explain in Remark 152.

Figure 25 is numerical confirmation of symmetry breaking bifurcation from SN

to the subgroups 〈γp〉 < SN when N = 4 and γ is an element of order N in SN , as
guaranteed by Theorem ??.
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0
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β
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Figure 17. At symmetry breaking bifurcation from (q 1
4
, β∗ ≈ 1.038706),

dim ker ∆F (q 1
N

) = 4 and dim ker ∆L(q 1
N

) = 3 as predicted by Theorem 85. Along the

subcritical branch, shown here with respect to the mutual information I(X,YN), one
eigenvalue of ∆F (q∗) is positive. The (first) block of ∆F (q∗), which by necessity also
has a positive eigenvalue, is the resolved block of ∆F (q∗). Observe the saddle-node
at β ≈ 1.037485, where ∆L(q∗) is singular, but where ∆F (q∗) is nonsingular. Later
on, however, (at the asterisk) the single positive eigenvalue of ∆F (q∗) crosses again,
which does not correspond to a singularity of ∆L(q∗).
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Figure 18. Actual bifurcation structure of M -uniform solutions for (2.34) when
N = 4. Figure 3 showed an incomplete bifurcation structure for this same sce-
nario. Observe that Figure 17 is a closeup of the subcritical branch which bifurcates
from (q∗, λ∗, 1.038706). Symmetry breaking bifurcation from the 4-uniform branch
(q 1

N
, λ, 1.038706), to the 3-uniform branch whose quantizer is shown in panel (1), to

the 2-uniform branch whose quantizer is shown in panels (2) and (3), and finally, to
the 1-uniform solution branch whose quantizer is shown in panels (4) and (5).

1.1 1.2 1.3 1.4 1.5 1.6 1.7
0
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1

1.5
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Y
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Y
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Y

2

Y

3

Y

4

Y

5

Figure 19. Symmetry breaking bifurcation from the 4-uniform branch
(q 1

N
, λ, 1.038706), as in Figure 18, but now we investigate the bottom 2-uniform

branch, panels (2)-(5).
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Bifurcation diagram of equilibria of the information distortion.

Figure 20. Comparison of the observed bifurcation structure from the 4-uniform
branch given in Figure 3 (triangles), and the actual bifurcation structure given in
Figures 18 and 19 (dots) when N = 4 for the Four Blob problem. Qualitatively,
the bifurcation structure is the same, except for the shift in β, which we explain in
Remark 152.
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1.1 1.15 1.2 1.25 1.3 1.35 1.4
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1.2
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β
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Figure 21. A close up, from Figure 18, of the 2-uniform branch which connects the 3
uniform branch below to the 1-uniform solution above. The bifurcating branch from
symmetry breaking bifurcation of the 3 uniform solution is subcritical (see Figure 22),
and an eigenvalue of ∆F (q∗) becomes positive. As we saw in Figure 17, this positive
eigenvalue of ∆F (q∗) crosses back at the asterisk shown, which does not correspond
to a singularity of ∆L(q∗).

In each of the Figures 16–24, a ”*” indicates a singularity point of ∆F (q∗), and
a square indicates a singularity point of ∆L(q∗). These pictures show that there are
points where both ∆L(q∗) and ∆F (q∗) are singular (at symmetry breaking bifurca-
tions), points where just ∆F (q∗) is singular (explained by Theorem 114), and points
where just ∆L(q∗) is singular (at the saddle-node bifurcations). These three types of
singularities are depicted in Figure 12.
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Figure 22. Panel (A) shows a close up, from Figure 18, of the subcritical bifurcation
from the 3-uniform branch to the 2-uniform branch. Observe that at the saddle node,
which occurs at β ≈ 1.1254, only ∆L(q∗) is singular. In panel (B), we show a close
up, from Figure 18, where the 1-uniform branch bifurcates from symmetry breaking
bifurcation of the 2-uniform solution. It is not clear whether this branch is subcritical
or supercritical.
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Figure 23. Panel (A) is a log-log plot of 3-uniform branches, some of which
are shown in Figure 20, which bifurcate from the q 1

N
branch at the β values

{1.133929, 1.390994, 4.287662, 5.413846, 31.12109, 46.29049} shown in Table 2. Panel
(B) shows some of the particular quantizers along the 3-uniform branches which bi-
furcate from (q 1

N
, 1.133929) and (q 1

N
, 1.390994).
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Figure 24. In panel (A) we show a 3-uniform branch, from Figure 23, which
bifurcates from (q 1

N
, 4.28766) and some of the particular quantizers. Panel (B)

shows the 3-uniform solutions, from Figure 23, which bifurcate from q 1
N

when

β ∈ {5.413846, 31.12109, 46.29049}, and some of the associated quantizers as well.
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Figure 25. Bifurcating branches from the 4-uniform solution branch at the values
β ∈ {1.038706, 1.133929, 1.390994} in addition to those explained by Theorem 110.
when N = 4. The isotropy group for all of the solution branches shown is 〈γ(12), γ(34)〉
which is isomorphic to S2 × S2. This group fixes the quantizers which are ”twice”
2-uniform: 2-uniform on the classes U1 = {1, 2}, and 2-uniform on the classes U2 =
{3, 4}.
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CHAPTER 8

SADDLE-NODE BIFURCATION

This chapter examines bifurcations, which are not symmetry breaking bifurca-
tions, in the bifurcation structure of equilibria of (3.18),

(
q̇

λ̇

)
= ∇q,λL(q, λ, β).

We show that generically, these types of bifurcations are saddle-node bifurcations,
which we confirmed numerically in chapter 7.

We will call bifurcations which are not symmetry breaking bifurcations non-
symmetry breaking bifurcations. We derive an explicit basis of ker ∆q,λL at non-
symmetry breaking bifurcations. We also show necessary and sufficient conditions for
the existence of a saddle-node bifurcation.

Suppose that a bifurcation of equilibria of (3.18) occurs at (q∗, λ∗, β∗), with a

bifurcating branch

((
q∗

λ∗

)
+ uuu(t), β∗ + β(t)

)
. Furthermore, let n(β) be the number

of equilibria of (3.18). We use the following definition for a saddle-node bifurcation.

Definition 134. A bifurcation at (q∗, λ∗, β∗) is a saddle-node bifurcation if β′(0) = 0,
n(β∗) = 1, and if either

n(β) =

{
0 for β < β∗

2 for β > β∗

or

n(β) =

{
0 for β > β∗

2 for β < β∗
.

Let the K × K matrices B and {Rν}ν∈R be defined as in (6.3) and (6.4). We
assume that generically, only one of the matrices B, {Rν}ν∈R, or B

∑
ν R−1

ν + MIK

is singular at a given point (q, β) ∈ ∆×< (see Definition 40 and Remark 41).

Kernel of the Hessian at Non-symmetry Breaking Bifurcation

The Hessian ∆q,λL plays a pivotal role in determining the bifurcation structure of
M -uniform equilibria (q∗, λ∗, β) of (3.18) since bifurcation at β = β∗ happens when
ker ∆q,λL(q∗, λ∗, β∗) is nontrivial (Theorem 24). Furthermore, as we have seen in
chapter 6 for symmetry breaking bifurcation, the bifurcating branches are tangent to
certain linear subspaces of ker ∆q,λL(q∗, λ∗, β∗) (Theorem 110). Theorems 36 and 114,
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and Corollary 89, show that the Hessian ∆F plays a part in predicting bifurcation
as well (see Figure 12). In this section, we examine the singularities of ∆q,λL and
∆F which give rise to non-symmetry breaking bifurcations, which we observed as
saddle-node bifurcations in chapter 7.

We begin by deriving an explicit basis for ker ∆L(q∗) when ∆F (q∗) is nonsingular.
Theorem 139 shows that, under the genericity assumption given in Remark 41, this is
the basis for ker ∆L(q∗) at a non-symmetry breaking bifurcation. The next theorem
was presented in chapter 4 as Theorem 39.

Theorem 135. Suppose that ∆F (q∗) is nonsingular. Then ∆q,λL is singular if and
only if B

∑
ν R−1

ν + MIK is singular.

The next two lemmas prove this theorem. Lemma 136 gives a basis of ker ∆q,λL
with respect to the matrix

∑
ν R−1

ν B + MIK . Lemma 137 relates this result with the
matrix B

∑
ν R−1

ν + MIK

Lemma 136. Suppose that ∆F (q∗) is nonsingular. Then ∆q,λL is singular if and only
if

∑
ν R−1

ν B + MIK is singular. Furthermore, vvv is in the kernel of
∑

ν R−1
ν B + MIK

if and only if kkk is in the kernel of ∆L(q∗) where

kkk =

(
k̂kk

−Bvvv

)
(8.1)

and

[k̂kk]η =

{
R−1

ν Bvvv if η is the νth resolved class of R
vvv otherwise (i.e. if η ∈ U)

. (8.2)

Proof. We first prove sufficiency. Let vvv ∈ ker(
∑

ν R−1
ν B + MIK). Constructing a

vector kkk as in (8.1) and (8.2), and rewriting ∆L(q∗) as in (3.8), we see that

∆L(q∗)kkk =

(
∆F JT

J 000

)(
k̂kk

−Bvvv

)
=

(
∆F (q∗)k̂kk − JT Bvvv

Jk̂kk

)
, (8.3)

which is the left hand side of (4.2). Multiplying out (8.3) (see (4.7) and (4.8)), we
see that

(
∆F (q∗)k̂kk − JT Bvvv

Jk̂kk

)
=




Bvvv
Bvvv
...

Bvvv
(
∑

ν R−1
ν B + MIK)vvv



−




Bvvv
Bvvv
...

Bvvv
000




= 000.
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To prove necessity, let kkk ∈ ker ∆L(q∗) and decompose it as in (4.1) and (4.6).
Then by (4.7) we have




B1xxx1

B2xxx2
...

BNxxxN


 = −




kkkJ

kkkJ
...

kkkJ


 .

This equation implies

Bxxxη = −kkkJ for η ∈ U
Rνxxxν = −kkkJ for ν ∈ R .

Since ∆F (q∗) is nonsingular, then

xxxη = xxx = −B−1kkkJ (8.4)

for every η ∈ U , from which it follows that

xxxν = R−1
ν Bxxx (8.5)

for every ν ∈ R. This shows that if kkk ∈ ker ∆L(q∗), then it has the form specified by
(8.1) and (8.2) for some vector xxx ∈ <K . To show that xxx ∈ ker(

∑
i R

−1
i B + MIK), we

use the relationship (4.8), ∑
µ∈YN

xxxµ = 000,

which implies that ∑
ν∈R

xxxν +
∑
η∈U

xxxη = 000,

and so (8.4) and (8.5) give

∑
ν∈R

R−1
ν Bxxx +

∑
η∈U

xxx =
∑
ν∈R

R−1
ν Bxxx + Mxxx = 000

which shows that xxx is in the kernel of
∑

i R
−1
i B + MIK . 2

The previous lemma explicitly considered the matrix
∑

i R
−1
i B + MIK . To

rephrase the result of Lemma 136 in terms of B
∑

i R
−1
i +MIK , we prove the following

lemma.

Lemma 137. Suppose that ∆F (q∗) is nonsingular. Then
∑

i R
−1
i B +MIK is singular

with a single basis vector vvv if and only if B
∑

i R
−1
i + MIK is singular with a single

basis vector xxx = Bvvv.
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Proof. Let vvv be the basis vector for ker(
∑

i R
−1
i B + MIK). Then

(
∑

i

R−1
i B + MIK)vvv = 000

⇔ (
∑

i

R−1
i + MB−1)Bvvv = 000

⇔ (B
∑

i

R−1
i + MIK)Bvvv = 000.

To show that Bvvv is the basis vector of B
∑

i R
−1
i +MIK , consider some xxx ∈ ker(B

∑
i R

−1
i +

MIK). Then

(B
∑

i

R−1
i + MIK)xxx = 000

⇔ B(
∑

i

R−1
i + MB−1)xxx = 000

⇔ (
∑

i

R−1
i B + M)B−1xxx = 000.

Thus, B−1xxx ∈ ker(
∑

i R
−1
i B + MIK). Since vvv is the basis vector of ker(

∑
i R

−1
i B +

MIK), then vvv = cB−1xxx for some c ∈ <, which shows that Bvvv is a basis vector for
ker(B

∑
i R

−1
i + MIK). 2

Necessary Conditions

We are ready to prove some necessary conditions which must be satisfied gener-
ically at a non-symmetry breaking bifurcation of an M -uniform solution, which in-
cludes saddle-node bifurcations. The next theorem shows that ∆F (q∗) is generically
nonsingular at a bifurcation which is not symmetry breaking.

Theorem 138. At a non-symmetry breaking bifurcation of an M-uniform solution
(q∗, λ∗, β∗), ∆F (q∗) is generically nonsingular.

Proof. If ∆F (q∗) is singular, then, generically, either Rν is singular for some resolved
block of ∆F (q∗), or the unresolved block B of ∆F (q∗) is singular. If the former
holds, then generically, B

∑
i R

−1
i +MIK is nonsingular, and now Theorem 114 shows

that ∆L(q∗) is nonsingular, which is impossible since we assume that we are at a
bifurcation. If B is singular, then generically, B

∑
i R

−1
i +MIK is nonsingular, which

we showed in chapter 6 leads to symmetry breaking bifurcation (Theorem 110 and
Corollary 111). Thus, we must have that ∆F (q∗) is nonsingular. 2

The next theorem shows that, generically, the kernel of ∆L(q∗) at a non-symmetry
breaking bifurcation has dimension 1. Thus, we are able to give an explicit bifurcating
direction.
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Theorem 139. At a generic non-symmetry breaking bifurcation (q∗, λ∗, β∗) of an M-
uniform solution, dim ker ∆L(q∗) = 1 and the bifurcating direction uuu is given by

uuu =

(
ûuu

−Bvvv

)
,

where

[ûuu]η =

{
R−1

ν Bvvv if η is the νth resolved class of R
vvv otherwise (i.e. if η ∈ U)

,

and vvv is in the kernel of
∑

ν R−1
ν B + MIK.

Proof. By genericity, we can apply by Theorem 138, and Lemmas 136 and 137, show-
ing that dim ker ∆L(q∗) = 1. Since bifurcating directions are in ker ∆L(q∗) (see
(5.35)), then the basis vector given in Lemma 136 must be the bifurcating direction.
2

At a non-symmetry breaking bifurcation, the whole kernel of ∆L(q∗) is fixed by
the isotropy group of (q∗, λ∗, β∗).

Theorem 140. At a generic non-symmetry breaking bifurcation (q∗, λ∗, β∗) of an M-
uniform solution, Fix(ΓU) ∩ ker ∆L(q∗) = ker ∆L(q∗).

Proof. By genericity, we can apply Theorem 138 and Lemma 136 to get the explicit
form of kkk, the basis vector of ∆L(q∗), from (8.1) and (8.2). The desired result now
follows by Theorem 71 and the definition of the group ΓU from (6.8). 2

A Sufficient Condition

In this section we provide a sufficient condition for the existence of saddle-node
bifurcations. Observe that the first assumption given in the following theorem is
satisfied generically at any non-symmetry breaking bifurcation (Theorem 139), and
that the second assumption is a crossing condition.

Theorem 141. Suppose that (q∗, λ∗, β∗) is a bifurcation point of (3.18) such that:

1. The dimension of ker ∆q,λL(q∗, λ∗, β∗) is 1 with basis vector k.

2. The dot product < kkk,

( ∇D(q∗)
000

)
> 6= 0.

Then (q∗, λ∗, β∗) is a saddle-node bifurcation.
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Proof. Since dim ker ∆q,λL(q∗, λ∗, β∗) = 1, then a bifurcating branch must be of the
form ((

q∗

λ∗

)
+ tuuu, β∗ + β(t)

)

for uuu ∈ ker ∆q,λL(q∗, λ∗, β∗). We prove the theorem by showing that β′(0) = 0 and
that the number of equilibria, n(β), changes from 0 to 2 about bifurcation at β = β∗

(see Definition 134).
Since we have chosen kkk as the single basis vector of ker ∆q,λL(q∗, λ∗, β∗), then

uuu = x0kkk

for some nonzero scalar x0 ∈ <. Furthermore, by definition of the Liapunov-Schmidt
reduction given in (5.36), we have that

r(x, β) := kkkT (I − E)F(kkkx + U(kkkx, β), β) (8.6)

r : <× < → <,

where F(q, λ, β) = ∇q,λL(q + q∗, λ + λ∗, β + β∗) and q = kkkx + U(kkkx, β). Thus,

r(tx0, β) = h(t, β)x0 (8.7)

for some scalar function h(t, β). From (8.6) we have that r(0, 0) = 0, and now (8.7)
implies that

h(0, 0) = 0. (8.8)

From (8.7) we see that ∂βr(tx0, β) = ∂βh(t, β)x0 from which it follows that

∂βr(0, 0) = ∂βh(0, 0)x0.

To show that ∂βh(0, 0) 6= 0, we appeal to equations (5.39) and (8.6), which show that

∂βr(0, 0) = kkkT (I − E)∂β∇q,λL(q∗, λ∗, β∗)

= kkkT

( ∇D(q∗)
000

)
,

where the last equality follows from the fact that ∂β∇q,λL = (∇DT 000T )T , and that
< kkk, (I −E)V >=< kkk, V > for any vector V since kkk ⊥ EV . By the assumption that

< kkk,

( ∇D(q∗)
000

)
> 6= 0, we have that ∂βh(0, 0) 6= 0. This and (8.8) show that the

Implicit Function Theorem can be applied to solve

h(t, β) = 0 (8.9)

uniquely in < for β = β(t) about (t = 0, β = 0). Thus, there is only one bifurcating
branch in ker ∆q,λL(q∗, λ∗, β∗) for small t

((
q∗

λ∗

)
+ tuuu, β∗ + β(t)

)
.
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Thus, n(β) must change from 0 to 2 about bifurcation at β = β∗, since there is one
bifurcating branch for positive t, and a second branch for negative t. The only other
possibility is that n(β) is 1 for all β about β∗, which violates the assumption that
bifurcation occurs at β = β∗.

To show that β′(0) = 0, we find the total derivative of (8.9), giving

∂th(t, β) + ∂βh(t, β)β′(t) = 0

from which it follows that

β′(0) = − ∂th(0, 0)

∂βh(0, 0)
.

By (8.7) we see that

∂xr(tx0, β)x0 = ∂th(t, β)x0, (8.10)

and so (8.6) and the fact that ker(I − E) = range∆q,λL(q∗, λ∗, β∗) show that

∂th(0, 0) = ∂xr(0, 0) = kkkT (I − E)∆q,λL(q∗, λ∗, β∗) = 0.

Thus β′(0) = 0. 2
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CHAPTER 9

OPTIMIZATION SCHEMES

Up until now, we have studied the structure of all of the stationary points of (1.9),

max
q∈∆

(G(q) + βD(q)).

by working with (3.1)
max
q∈∆E

(G(q) + βD(q)).

In this chapter, we derive three methods to find solutions of (1.9), which are stationary
points (q∗, β∗) of (1.9) for which ∆F (q∗) is non-positive definite on ker J , the kernel
of the Jacobian of the constraints (3.7) (Theorem 20).

We begin by reviewing the theory which justifies our use of numerical optimization
techniques to solve (1.9). We use the Augmented Lagrangian method (Algorithm 149)
with a Newton Conjugate Gradient line search (Algorithm 145). We also present an
implicit solution method (9.20). Both of these methods are used in conjunction with
the method of annealing, Algorithm 1. When D(q) is convex and β → ∞, the
maximizer of (1.9) lies generically at a vertex of ∆ (Theorem 153). Thus, we use an
algorithm, called Vertex Search (Algorithm 155), to solve (1.9) in this instance, by
searching over the vertices of ∆. We conclude the chapter with numerical results of
these applications on synthetic and physiological data sets.

Notation

The following notation will be used throughout the chapter:

n := NK, the number of coordinates of q ∈ ∆.

F (q) := F (q, β) for a fixed β.

Optimization Theory

The goal of numeric optimization techniques is to efficiently compute the opti-
mizer of a given cost function subject to given constraints. In the case of solving
(1.9), this means that we search for

arg maxq∈∆F (q,B), (9.1)
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where B ∈ [0,∞), and F is defined as in (1.10),

F (q, β) = G(q) + βD(q).

Using Algorithm 1 to find (9.1), we see that in step 3 of the mth iteration, one finds

qm+1 = arg maxq∈∆F (q, βm). (9.2)

In other words, at the mth iteration, one is interested in solving (1.9) for a fixed
β = βm. One of the main topics of this chapter is solving (9.2) for such a fixed β.
Since β is fixed, we will write F (q) instead of F (q, β) throughout much of this chapter.

As in step 3 of Algorithm 1, we wish to find a local solution qm (for m ≥ 0) of
(1.9) at β = βm. We let

q∗ = qm.

Thus, (q∗, β) is a local solution of (1.9) (and of (3.1) - see Remark 19). Furthermore,
by Theorem 16, there exists a vector of Lagrange multipliers λ∗ such that (q∗, λ∗, β)
is an equilibria of (3.19) (and of (3.18) - see Remark 28).

Let L̂ be the Lagrangian of (1.9)

L̂(q, λ, ξ, β) = F (q, β) +
K∑

k=1

λk(
N∑

ν=1

qνk − 1) +
K∑

k=1

N∑
ν=1

ξνkqνk

(compare with (3.3) and (3.13)). The goal of constrained numerical optimization
techniques is to find q∗ by building a sequence {qk}∞k=1 which converges to q∗ such
that

F is increased for each k : F (qk+1) ≥ F (qk) for all k. (9.3)

global convergence: ||∇q,λL̂(qk)|| → 0 as k →∞. (9.4)

qk ∈ ∆ for each k. (9.5)

One way to stipulate (9.5) is to define constraint functions {ci}i∈E∪I as in Remark
17.

When no constraints are present, then unconstrained numerical optimization tech-
niques are used to find the unconstrained maximizer q̂ of F (q, β) by building a se-
quence {qk}∞k=1 which converges to q∗ such that

F is increased for each k : F (qk+1) ≥ F (qk) for all k. (9.6)

global convergence: ||∇F (qk)|| → 0 as k →∞. (9.7)

We review unconstrained numerical techniques as an introduction to the methods
used in the constrained regime.
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Unconstrained Line Searches
Unconstrained line searches can be used to find a sequence {qk}∞k=1 which con-

verges to
q∗ = argmaxq∈<nF (q, β),

where each element of the sequence satisfies (9.6) and (9.7).

Algorithm 142 (Unconstrained Line Search). Choose some q0 and let k ≥ 0.
At qk compute qk+1 as follows:

1. Compute an ascent direction pk at qk.

2. Compute the step length

αk ≈ arg max
α>0

F (qk + αpk).

3. Define qk+1 = qk + αkpk.

Recall that ∇F ∈ <n. An ascent direction is a vector pk ∈ <n for which

∇F (qk)
T pk > 0. (9.8)

Such a pk guarantees that F can be increased along pk for some step α, since applying
Taylor’s Theorem about α = 0 shows that

F (qk + αpk) = F (qk) + αpk∇F (qk) +O(α2)

which implies that
F (qk + αpk)− F (qk) > 0

for α sufficiently small. Geometrically, letting θk be the angle between ∇F (qk) and
pk, (9.8) is equivalent to requiring that

‖∇F (qk)‖‖pk‖ cos θk > 0,

which implies that −π
2

< θk < π
2
. To compute the step length αk given an ascent

direction pk, one might only require that

F (qk + αkpk) > F (qk).

This naive condition is not strong enough. Rather, one must find αk such that the
following two conditions, called the Wolfe Conditions, are satisfied

F (qk + αkpk) ≥ F (qk) + c1αk∇F (qk)
T pk for some c1 ∈ (0, 1) (9.9)

∇F (qk + αkpk)
T pk ≤ c2∇F (qk)

T pk for some c2 ∈ (c1, 1). (9.10)

Condition (9.9) requires sufficient decrease of F and (9.10) is called the curvature
condition. The following theorem shows that enacting a line search with αk and pk

which satisfy the Wolfe Conditions yields qk such that (9.6) and (9.7) are satisfied.
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Theorem 143. (p. 45-6 [50]) Let F be defined as in (3.2) with Assumptions 15. If
for every k ≥ 0 in Algorithm 142, pk is an ascent direction, and αk satisfies (9.9)
and (9.10), then limk→∞ ‖∇F (qk)‖ = 0.

Other conditions on pk and αk which also yield global convergence of the cost
function are the Goldstein and Strong Wolfe Conditions [50].

We now review three common ways to compute an ascent direction pk. The first
is called the method of steepest ascent, where

pk = ∇F (qk), (9.11)

which clearly satisfies (9.8). Convergence to q∗ in this case is linear, but the computa-
tional cost incurred calculating∇F (qk) is low compared to Newton and Quasi-Newton
methods [50, 40]. A Newton or quasi-Newton direction is found by considering the
quadratic model for F at qk, given by

m(p) = F (qk) + pT∇F (qk) +
1

2
pT Bkp ≈ F (qk + p)−O(p3),

where Bk ≈ ∆F (qk). If Bk is negative definite, then m(p) is maximized at p∗ such
that ∇pm(p∗) = 000. That is

∇F (qk) + Bkp
∗ = 000, (9.12)

from which it follows that p∗ = −B−1
k ∇F (qk) is the unique maximizer of m(p).

Checking (9.8), we see that

∇F (qk)
T p∗ = −∇F (qk)

T B−1
k ∇F (qk),

which is guaranteed to be positive when Bk is negative definite. Letting Bk = ∆F (qk)
in (9.12), we see that the Newton direction is found by solving

∆F (qk)pk = −∇F (qk) (9.13)

for pk. In this case, convergence is quadratic, but the computational cost incurred
determining ∆F (qk) and then solving (9.13) can be very high [50]. A compromise
between convergence and cost can be accomplished by using a quasi-Newton direction,
which is found by solving

Bkpk = −∇F (qk) (9.14)

for pk, where Bk is an approximation of ∆F (qk). Observe that the method of steepest
ascent can be interpreted as a quasi-Newton direction with Bk = −I. For a general
quasi-Newton direction, if the approximation is negative definite and close enough to
∆F (qk), then convergence to q∗ can be shown to be superlinear [50, 40], while the
cost of computing Bk and then solving (9.14) can be much less than computing Hk

and then solving (9.13). As we see in the next section, there are algorithms, such
as the Newton Conjugate Gradient method (Algorithm 145), which compute Bk and
solve (9.14) simultaneously.

We now state the following Corollary to Theorem 143.
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Corollary 144. (p. 45 [50]) Let F be defined as in (3.2) with Assumptions 15.
Suppose that for every k ≥ 0 in Algorithm 142, αk satisfies (9.9) and (9.10). If pk

is the steepest ascent direction (9.11) for every k, then limk→∞ ‖∇F (qk)‖ = 0. If
pk is a Newton or quasi-Newton direction as in (9.13) or (9.14) for every k, then
limk→∞ inf ‖∇F (qk)‖ = 0. Furthermore, if there is some M > 0 such that

‖Bk‖‖B−1
k ‖ ≤ M

with Bk negative definite for all k, then limk→∞ ‖∇F (qk)‖ = 0.

To deal with the case when Bk is not negative definite for some k, many schemes
have been devised to impose this condition [50]. For example, small multiples of the
identity are added to ∆F (qk), or one simply creates a negative definite approxima-
tion to ∆F (qk) by flipping the signs of the positive eigenvalues of ∆F (qk). Other
diagonal modifications include changing positive eigenvalues of ∆F (qk) for ones with
small negative eigenvalues, or increasing the diagonal elements encountered during
the Cholesky factorization (where necessary) of ∆F (qk) to ensure that its eigenvalues
are sufficiently positive (p. 143-145 [50]).

Newton Conjugate Gradient Method
One quasi-Newton method used to solve (9.14) for pk, while simultaneously com-

puting the Hessian approximation Bk, is the Newton Conjugate Gradient (CG) method.
Determining a search direction pk by solving Bkpk = −∇F (qk) can be expensive. The
goal of Newton CG is to efficiently solve

Bp = −g

where B ∈ <n×n and p, g ∈ <n. The Newton Conjugate Gradient method accom-
plishes this goal by creating a sequence {pj} which converges to p∗ = −B−1g in at
most n iterations when B is negative definite. Newton CG is implemented by the
following algorithm, which minimizes the quadratic

φ(p) =
1

2
pT Bp + gT p

when B is symmetric negative definite, using the line search Algorithm 142.

Algorithm 145 (Newton Conjugate Gradient Method). (p. 108 and 111
[50]) Implement Algorithm 142:

1. The ascent direction, dj, at the jth step is

dj = ∇φj−1 − < ∇φj−1, dj−1 >B

||dj−1||2B
dj−1.
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2. The step length at the jth step is found by solving

τj = arg max
τ>0

φ(pj + τdj).

3. pj+1 = pj + τjdj.

Algorithm 145 is a Gram-Schmidt process with respect to − < ·, · >B, which is
an inner product when B is negative definite. Thus, when B is negative definite, {dj}
form a (−B)-orthogonal set in <n. Furthermore, the algorithm depends on B only in
< ·, · >B. Thus, Algorithm 145 does not require that the full matrix B be computed.
Rather, only the vector-matrix multiplications Bdj−1 need to be computed in step 1.

Theorem 146. (p. 103 [50]) If B is symmetric negative definite, then for any initial
p0 ∈ <n, pj → p∗ in at most n steps.

To deal with the case when B is not negative definite, one stops Algorithm 145
when either of the following occur:

1. CG residual ||Bpj + g|| ≤ ε, where ε denotes a stopping tolerance.

2. Positive curvature detected, i.e., dT
j Bdj > 0.

These criteria are called Steihaug’s Stopping Criteria (p. 75-6 [50]).

Constrained Line Searches
Now we address the types of line searches that can be used to solve the constrained

system (1.9). The goal of constrained line searches is to build a sequence {qk}∞k=1 of
approximates to q∗ such that (9.3), (9.4) and (9.5) are satisfied for each k. The idea
is that at qk, one computes an ascent direction pk, and then projects (or ”bends”) it
so that pk is still an ascent direction and so that qk+1 = qk + αpk remains feasible.
That is, ∇F (qk)

T pk > 0, and the constraints must be satisfied at qk+1: ci(qk+1) ≥ 0
for inequality constraints (i ∈ I), and ci(qk+1) = 0 for equality constraints (i ∈ E)
(see Theorem 16).

In chapter 6, we argued that we could ignore the equality constraints, since sta-
tionary points of (1.9),

max
q∈∆

F (q, β),

in the interior of ∆ are stationary points of (3.1)

max
q∈∆E

F (q, β)

(see Remark 19). Along this same line of reasoning, let us consider a solution (q∗, β)
of (1.9) in the interior of ∆. Then, by Theorem 20, ∆F (q∗, β) is non-positive definite
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on ker J , where J is defined in (3.7). However, (q∗, β∗) is guaranteed to be a solution
of (3.1) only if ∆F (q∗, β) is negative definite on ker J . Furthermore, the functions G
and D may very well not even be defined on ∆E (as is the case for the Information
Distortion and the Information Bottleneck cost functions (2.34) and (2.35) respec-
tively). This is of course not a problem for the theorist, but a definite problem for a
numerical algorithm. For these reasons, when looking for solutions of (1.9), we use
constrained optimization techniques which enforce the negativity constraints.

A constraint ci(qk) is said to be active if ci(qk) = 0. ci(qk) is inactive if ci(qk) > 0.
Thus, equality constraints are always active.

Remark 147. Once the active constraints are identified, then Theorem 143 can be
used to assure that constrained line searches, under the assumptions of the theorem,
procure a stationary point (p 95-6 [40],[50]).

A computational problem is that the projection can be expensive. So projected
line searches work best for simple inequality constraints, such as the non-negativity
constraints imposed by (1.11):

q(ν|y) ≥ 0 ∀ y ∈ Y and ∀ ν ∈ YN . (9.15)

We now review three common ways to compute a projected ascent direction which
deals with the nonnegativity constraints (9.15). The first is the projected gradient
method, where one finds the steepest ascent direction, then projects if necessary

pk = qk −max(qk −∇F (qk), η),

where η ∈ <n, with components greater than zero. As with the steepest ascent
method, convergence in this case is linear (p. 95-6 [40]), and the computational cost
is low [50, 40].

Projected Newton and quasi-Newton methods find an ascent direction by solving
the system

BkRed
pk = −∇F (qk) (9.16)

where BkRed
is an approximation of the reduced Hessian, HkRed

, a non-negative definite
matrix defined by

[HkRed
]ij :=

(
δij if either ci(qk) or cj(qk) are active

[∆F (qk)]ij otherwise.

)

Convergence in this regime is superlinear (p.565-6 [50], p.90 [40]). For the simple non-
negativity constraints, ci = [q]j ≥ 0 for every j, 1 ≤ j ≤ n and i ∈ I, Newton and
quasi-Newton projection methods behave like steepest ascent on the active constraints
and like Newton and Quasi-Newton methods on the inactive constraints. This claim
becomes evident by rewriting the quantizer q as

q =

(
qI

qA

)
,
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where the subscript A denotes the components of q which are zero (i.e. those j for
which ci(qk) = [q]j = 0 for some i ∈ I), and the subscript A denotes those components
of q which are strictly larger than zero (i.e. those j for which ci(qk) = [q]j > 0 for
some i ∈ I). Similarly rewriting ∇F (qk) and BkRed

using this convention,

∇F (qk) =

( ∇FI

∇FA

)

and

BkRed
=

(
BI 0
0 I

)
,

we see that

pk = −B−1
kRed

∇F (qk) =

( −B−1
I ∇FI

−∇FA

)
.

Augmented Lagrangian
We want a fast, rigorous quasi-Newton algorithm which takes into account all

the constraints imposed by ∆ (1.11). Many optimization methods consider either
all equality constraints or all inequality constraints. The Augmented Lagrangian
algorithm is one method which takes into account both kinds of constraints. It is
similar to other quadratic penalty methods [50] in that the constraints to the problem
are subtracted from F to create a new cost function to maximize, such as,

P (q, µ) := F (q)− 1

2µ

∑
j

(cj(q))
2,

where cj(q) :=
∑

YN
q(yN |y) − 1, is the constraint imposed for every yj ∈ Y . The

more infeasible the constraints cj(q) (when
∑

YN
q(yN |y)− 1 >> 0), the harsher the

penalty in P . P is ill conditioned as µ →∞.
The Augmented Lagrangian, however, avoids the ill-conditioning of other penalty

methods (as µ →∞) by introducing explicit approximations of the Lagrange multi-
pliers into the cost function at each optimization iteration (p.494-5,498,513-14 [50])
(Theorem 148). These approximations are constructed in such a way so that the
solution to the algorithm satisfies the KKT conditions [50] (Lemma 150).

The new cost function to maximize, the Augmented Lagrangian LA, is defined as

LA(q, λl, µl) := F(q) +
∑
j∈E

λl
jcj(q)− 1

2µl

∑
j∈E

cj(q)
2,

which deals with the equality constraints cj(q) =
∑

YN
q(yN | y)−1 = 0 (p. 514 [50]).

To deal with the non-negativity constraints, a Newton CG projected line search is
used.

The next theorem shows that we don’t need µl → 0 to determine q∗.
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Theorem 148. (p. 519 [50]) If q∗ = arg maxq∈∆ F such that ∆F (q∗) is negative
definite on ker J , then there exists µ̄ > 0 such that q∗ = arg maxLA(q, λ∗, µ) for
µ ∈ (0, µ̄].

Algorithm 149 (Augmented Lagrangian Method). (p. 515,523 [50]) There
are three nested iterations. The first is the Augmented Lagrangian or outer iteration,
subscripted by l. The second is the optimization or inner iteration, subscripted by k.
The third is the line search iteration implicit in step 1.

Choose q0 ∈ ∆, µ0 > 0, 0 < τ, ε, s < 1, and set l = 0.

1. Solve ql = arg maxLA(q, λl, µl) using a projected line search which satisfies the
Wolfe Conditions, and Newton CG is used to compute the ascent direction pk

by solving
BkRed

pk = −∇LA(qk, λl, µl).

2. λl+1
i = λl

i − ci(ql)µl

3. µl+1 = sµl

4. Stop if both of the following occur:

||P[η,∞)∇LA(qk, λl, µl)|| ≤ τ

||cy(q)|| < ε

5. Let l = l + 1 and repeat steps 1-4.

Lemma 150. Step 2 of Algorithm 149 assures that (ql, λl) satisfies the KKT conditions
for every l.

Proof. ∇qLA = ∇F−∑
j

(
λl − cj(q)

µl

)
∇cj(q). Since ∇LA(ql) = 0, then it follows that

∇F =
∑

j

(
λl

j −
cj(q)

µl

)
∇cj(q)

if and only if the Lagrange multipliers corresponding with constraint cj(q) is

λ∗ = λl − c(q)

µl

.

2

The following theorem gives conditions under which there is a maximizer ql of LA

that lies close to q∗, and gives error bounds on ql obtained from performing Algorithm
149 at iteration l.
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Theorem 151. ([50] p.521) Let q∗ be a solution of (1.9), with corresponding vector
of Lagrange multipliers λ∗, such that ∆F (q∗) is negative definite on ker J , and let µ̄
be chosen as in Theorem 148. Then there exists δ, ε, m > 0 such that for all λl and
µl satisfying

‖λl − λ∗‖ ≤ δ

µl

for µl ≤ µ̄, the problem

maxq LA(q, λl, µl) subject to

‖q − q∗‖ ≤ ε

has a unique solution ql. Furthermore, we have

‖ql − q∗‖ ≤ mµl‖λl − λ∗‖.

Optimization Schemes

In this section, we investigate and compare three different approaches to solving
the optimization problem (1.9) for β = B ∈ [0,∞). Two of them use the method
of annealing to find extrema by starting in the interior of the feasible region ∆ and
incrementing β in sufficiently small steps until β = B. The third method is based
on the observation (Theorem 153) that an optimal solution of (1.9) for B = ∞ lies
generically at a vertex of the feasible region if D(q) is convex. As a consequence
of this fact, in Theorem 154 we formulate an equivalent problem to (1.9), and pose
Algorithm 155, called vertex search, to solve it. This algorithm finds an optimal
solution of (1.9) when D(q) = Deff under mild conditions (Theorem 156).

When searching for the extrema of a general optimization problem, there is
no known theory indicating whether using continuous, gradient-type algorithms is
cheaper than searching over a finite, large set which contains the extrema. We com-
pare these methods in section 9 of this chapter on synthetic data.

Annealing
A basic annealing algorithm is given by Algorithm 1. In this regime, one tracks

the optimal solutions, (qk, βk), of (1.9) for βk values incremented in small steps from
β0 = 0 to βmax = B in order to find q∗ = arg maxq∈∆(G+BD). At β0 = 0, the optimal
solution to (1.9) is a maximum of G. When G is strictly concave, this solution
is unique. For the Information Distortion problem (2.34), the optimal solution at
β0 = 0 is the unique uniform solution q(YN |Y ) = q 1

N
(Lemma 79). The Information

Bottleneck problem (2.35) also has q(YN |Y ) = q 1
N

as a solution for β0 = 0, but it is

not unique since G = −I(Y ; YN) is not strictly concave.
We have implemented two annealing algorithms which differ in the optimization

techniques implemented in step 3 of Algorithm 1. The first uses an Augmented
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Lagrangian algorithm (Algorithm 149). The second is an implicit solution algorithm,
introduced in [22, 29], which we describe next.

The implicit solution algorithm is based on the observation that extrema of F can
be found by setting the gradient of the Lagrangian (3.3) with respect to the quantizer
q(YN |Y ) to zero [22]

0 = (∇q

(
F +

∑
j

λj

∑
ν

qνj − 1
)
)νk (9.17)

= (∇qH)νk + β(∇qDeff )νk + λk

= −p(yk)
( lnqνk

ln2
+

1

ln2

)
+ β(∇qDeff )νk + λk ⇔

0 = lnqνk − βln2
(∇Deff )νk

p(yk)
− µk

where µk = λkln2
p(yk)

− 1. Using this,

lnqνk = βln2
(∇Deff )νk

p(yk)
+ µk ⇔ (9.18)

qνk = eµke
βln2

(
(∇Deff )νk

p(yk)

)

The constraint on q requires that

1 =
∑

ν

qνk ⇒ (9.19)

1 = eµk

∑
ν

e
βln2

(
(∇Deff )νk

p(yk)

)
⇔

eµk =
1

∑
ν e

βln2

(
(∇Deff )νk

p(yk)

)

We can substitute this in equation (9.18) and obtain an implicit expression for the
optimal q(yν |yk),

qνk =
e

βln2

(
(∇Deff )νk

p(yk)

)

∑
ν e

βln2

(
(∇Deff )νk

p(yk)

) . (9.20)

For a fixed value of β we use a fixed point iteration

qn+1 := f(qn),

where f is the right hand side of expression (9.20), to generate a sequence {qn} to
find a solution q∗ for the optimization problem (1.9).

We do not have a complete theoretical understanding of the convergence of the
implicit solution algorithm.
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Remark 152. The ”solutions” {(qk, βk)} found by the authors in [22, 29] and given
in Figure 1 are shifted in β when β is small (see Figure 20). This discrepancy is due
to the fact that the authors incorrectly used the expression

qνk =
e

β

(
(∇Deff )νk

p(yk)

)

∑
ν e

β

(
(∇Deff )νk

p(yk)

)

instead of (9.20) when implementing the implicit solution method.

Vertex Search
We now describe a method which can solve (1.9) when D(q) is convex and β →∞,

as is the case with the Information Distortion problem (2.34). The method simply
searches over the vertices of the constraint space ∆, which is a product of simplices,
for a solution. This approach is justified by the following theorem

Theorem 153. [29] Let D(q) from (3.2) be convex, and let E be the set of vertices
of ∆. Then

max
E

D(q) ≥ max
∆

D(q).

This result allows us to reformulate the problem (1.9) as follows

Theorem 154. [29] Suppose that D(q) is convex and let E be the set of vertices of
∆. The optimal solution of the problem (1.9) with maximal possible value of D(q)
can be found by the following algorithm:

1. Find a vertex e ∈ E such that

D(e) := max
E

D(q)

2. Assume that e is a strict maximum of D(q) on the set E. That is, for all
neighboring vertices ei ∈ E we have D(ei) < D(e). Then e is an optimal
solution of (2.16) with maximal possible value of D(q).

3. Assume that e = e1 is not a strict maximum. Then there are neighboring vertices
e1, . . . , ek such that D∗ := D(ei) = D(ej) for all 1 ≤ i, j ≤ k. Consider the
region Qy1× . . .×Qys, where Qyj

⊂ ∆yj
is the simplex spanned by the projection

of these vertices to ∆yj
. For all j, take Dyj

⊂ Qyj
to be the maximal sub-simplex

with the property that D(x) = D∗ for all x ∈ Dy1× . . .×Dys. Then the solution
of (2.16) is the product of the barycenters of Dyi

.

Theorem 154 justifies the following algorithm (see Figure 26).
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Figure 26. The vertex search algorithm, used to solve (1.9) when D(q) is convex and
B = ∞, shown here for N = 3, YN = {1, 2, 3}, and K = 3. A: A simplex ∆y. Each
vertex ν ∈ YN corresponds to the value q(ν|y) = 1. B: The algorithm begins at some
initial q(ν|y), in this case with q(ν|y) = 1/3 for all y and ν. C: Randomly assign y1

to a class ν = 1. D: Assign y2 consecutively to each class of YN = {1, 2, 3}, and for
each such assignment evaluate D(q). Assign y2 to the class ν which maximizes D(q).
Repeat the process for y3. Shown here is a possible classification of y1, y2 and y3: y1

and y3 are assigned to class 1, and y2 is assigned to class 2. Class 3 remains empty.

Algorithm 155 (Vertex Search).

1. We start the search from the uniform solution q 1
N
.

2. Randomly select y1 and evaluate the function D(q) at all the vertices of ∆y1,
such that q(ν|y1) = 1 for some class ν ∈ YN and q(η|y1) = 0 for all other
classes η ∈ (YN \ {ν}). Perform this calculation for each ν ∈ YN . Select the
assignment of y1 to a class which gives the maximal value of D(q).

3. Repeat step 2 with y2, y3, . . . until all of the K elements yk ∈ Y are assigned
classes. The resulting deterministic quantizer is a vertex e of ∆.

4. Starting from the vertex e found in step 3, we repeat steps 1-3 until a local
maximum in the set E is found.

5. The steps 1-4 are repeated many times to avoid local maxima.
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The vertex search algorithm converges to a local maximum under certain condi-
tions when D(q) = Deff . The notation

y ∈ C(ν)

means that the element y ∈ Y has been assigned to class ν ∈ YN . That is, q(ν|y) = 1.

Theorem 156. [29] The point e, obtained by a vertex search, is a local maximum of
Deff if for each k, when q(ν|yk) is determined, we have

p(x, yk) <<
∑

yi∈C(ν),i6=k

p(x, yi), p(yk) <<
∑

yi∈C(ν),i 6=k

p(yi)

for each class ν ∈ YN .

A New Numerical Algorithm

In chapter 7, we were interested in finding the stationary points of (1.9). In this
chapter, we address the issue of finding solutions of (1.9), which are stationary points
such that ∆F is negative definite on ker J (Theorem 20). We now incorporate the
ideas from both approaches. We apply continuation methods and our knowledge of
the bifurcation structure into Algorithm 1, which can potentially aid in the search
for solutions of (1.9) by minimizing the arbitrariness of the choice of the algorithm’s
parameters. We apply one of the optimization schemes from this chapter to perform
the optimization.

Implementing continuation techniques (Algorithm 131) minimizes the arbitrari-
ness of the choice of the parameters in Algorithm 1. Specifically, these techniques
determine dk in step 1, and choose an initial guess q

(0)
k+1 in step 2. This alleviates

the need for the perturbation η. Furthermore, continuation methods provide explicit
estimates of the Lagrange multipliers,

λ
(0)
k+1 = λk + d∂sλk,

for the equality constraints, which could improve the performance of methods, such as
the Augmented Lagrangian method (Algorithm 149) in step 3 of Algorithm 1, which
depend on explicit approximations to λ. And lastly, applying bifurcation theory in
the presence of symmetries indicates how to detect bifurcation of the branch on which
the solutions {(qk, βk)} reside, and where to search for a desired solution branch once

bifurcation is detected. This knowledge yields an initial guess q
(0)
k+1 in step 2 once a

bifurcation is detected. The cost savings of these changes can be significant, especially
when continuation is used in conjunction with a Newton type optimization scheme
which explicitly uses the Hessian ∆F (qk, βk) (see (7.5), (7.14), (9.13), (9.14), and
(9.16)). Otherwise, the CPU time incurred from solving (7.16) may outweigh this
benefit.
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We now provide an algorithm which incorporates the annealing algorithm (Algo-
rithm 1), the bifurcation theory from chapter 6, the continuation ideas from chapter
7, and potentially an optimization scheme from this chapter.

Algorithm 157. Let q0 be the maximizer of maxq∈∆ G, λ0 be defined as in (7.19),
β0 = 1, and d > 0. Iterate the following steps until βK = B for some K > 0.

1. Perform β-step: solve (7.16) and (7.17) for (∂sq
T
k ∂sλ

T
k )T and select βk+1 =

βk + ∆βk, where ∆βk = d sgn(cos θ)√
||∂sqk||2+||∂sλk||2+1

and θ is defined as in (7.18).

2. The initial guess at βk+1 is

(
q
(0)
k+1

λ
(0)
k+1

)
=

(
qk + d∂sqk

λk + d∂sλk

)
.

3. Optimization: solve

maxq∈∆ G(q) + βk+1D(q) constrained by

P (qk, λk, βk)− d = 000

to get the maximizer qk+1 and vector of Lagrange multipliers λk+1, using the

initial guess (q
(0)
k+1, λ

(0)
k+1). The function P is defined in (7.12).

4. Check for bifurcation: compare the sign of the determinant of an identical block
of each of

∆[G(qk) + βkD(qk)] and ∆[G(qk+1) + βk+1D(qk+1)].

If a bifurcation is detected, then set q
(0)
k+1 = qk + dk · uuu where uuu is defined as in

(6.57) for some m ≤ M , and repeat step 3.

One might remark why we use an optimization scheme in step 3. Obviously, this
method will not be attracted to the stationary points which are not solutions of (1.9),
as may happen when all of the bifurcating branches are subcritical for example. We
observe in practice that searching for a solution in the bifurcating direction in this
scenario may still have significant cost benefit over simply perturbing the solution as
is done in Algorithm 1.

We have not fully explored this algorithm numerically.

Numerical Results

All of the results presented here are for the Information Distortion problem (2.34),

max
q∈∆

(H(q) + βDeff (q)).
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Algorithm Cost in MFLOPs I(X; YN) in bits
N 2 3 4 2 3 4

Lagrangian 431 822 1,220 0.8272 1.2925 1.6269
Implicit Solution 38 106 124 0.8280 1.2942 1.6291
Vertex Search 6 18 21 0.8280 1.2942 1.6291

Table 4. [29] Comparison of the optimization schemes on synthetic data. The first
three columns compare the computational cost in FLOPs. The last three columns
compare the value of Deff = I(X; YN), evaluated at the optimal quantizer obtained
by each optimization algorithm..

We created software in MATLAB to implement the Augmented Lagrangian (Algo-
rithm 149), the Vertex Search (Algorithm 155), and the implicit solution algorithm
(9.20) to both synthetic and physiological data sets to determine solutions of (2.34).

Synthetic Data
We analyze the performance of the three optimization schemes on the Four Blob

Problem introduced in chapter 1 and Figure 1. Table 4 gives a comparison of the Aug-
mented Lagrangian and the implicit solution optimization algorithms for this data
set. For N = 2, 3 and 4, left side of the table shows computational cost of each and
the right side indicates the maximal value of Deff procured by each algorithm. The
vertex search was the fastest and the Augmented Lagrangian the slowest of the three
with an order of magnitude difference between each two algorithms. The values of
the cost function are almost identical. Each algorithm has its advantages, though,
as the Augmented Lagrangian (Algorithm 149) gives a point that satisfies the KKT
conditions (Corollary 144 and Lemma 150) and the Vertex Search (Algorithm 155)
does so under certain conditions (see Theorem 156). Although we do not have a
complete theoretical understanding of the convergence of the implicit solution algo-
rithm (9.20), in particular, the fact that we do not understand the solutions we get
for 0 < β << ∞, it works very well in practice as β →∞.

Physiological Data
A biological system that has been used very successfully to address aspects of

neural coding [7, 15, 44, 48, 76] is the cricket’s cercal sensory system. It provides the
benefits of being simple enough so that all output signals can be recorded, yet suffi-
ciently elaborate to address questions about temporal and collective coding schemes.
The cricket’s cercal system is sensitive to low frequency, near-field air displacement
stimuli [38]. During the course of the physiological recording, the system was stimu-
lated with air current stimuli, drawn from a band-limited (5-500Hz) Gaussian white



182

0 50 100

0

5

10

t, m
s

A

1 2 3 4 5 6
0

1

2

I, b
its

I
max
I
G

    

cla
ss

es

B

20 40 60 80 100

1

2

cla
ss

es

pattern number

D

20 40 60 80 100

1

2

3

−25 −20 −15 −10 −5 0
−0.1

0

0.1

Air
 ve

loc
ity

 (a
rbi

tra
ry 

un
its

)

C

−25 −20 −15 −10 −5 0
−0.1

0

0.1

t, ms

E F

Figure 27. [29] Results from the information distortion method. A: All the response
spike patterns that were analyzed. Each dot represents the occurrence of a single
spike. Each column of dots represents a distinct sequence of spikes. The y axis is
the time in ms after the occurrence of the first spike in the pattern. The x axis here
and below is an arbitrary number, assigned to each pattern. B: The lower bound
of I (dashed line) obtained through the Gaussian model can be compared to the
absolute upper bound I = log2 N for an N class reproduction (solid line). C: The
optimal quantizer for N = 2 classes. This is the conditional probability q(ν|y) of
a pattern number y from (A) (horizontal axis) belonging to class ν (vertical axis).
White represents zero, black represents one, and intermediate values are represented
by levels of gray. D: The means, conditioned on the occurrence of class 1 (dotted
line) or 2 (solid line). E: The optimal quantizer for N = 3 classes. F: The means,
conditioned on the occurrence of class 1 (dotted line), 2 (solid line) or 3 (dashed line)..

noise (GWN) source [75]. We apply the method to intra-cellular recordings from
identified inter-neurons in this system.

When applying the method to this data, the joint stimulus/response probability
p(x, y) needs to be estimated. We use D̃eff (2.28) in place of Deff , and the optimiza-
tion scheme (2.29). Figure 27 illustrates the data set and optimal quantizers for this
system. Sequences 2 through 105 in A were obtained by choosing 10 ms sequences
from the recording which started with a spike (at time 0 here). Sequences in which
the initial spike was preceded by another spike closer than 10 ms were excluded. Se-
quence 2 contains a single spike. Sequences 3-59 are doublets. Sequences 60-105 are
triplets. Sequence 1 is a well isolated empty codeword (occurrences were chosen to
be relatively far from the other patterns). Each pattern was observed multiple times
(histogram not shown).

Panels C–F show the results of applying the information distortion approach to
this data set. The optimal quantizer for the N = 2 reproduction is shown in panel
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Algorithm Cost in GFLOPs I(X, YN) in bits
N 3 4 5 3 4 5

Lagrangian 13 29 59 0.18 0.18 0.16
Implicit Solution 7 11 9 0.43 0.80 1.14
Vertex Search 31 84 141 0.44 0.85 1.81

Table 5. [29] Comparison of the optimization schemes on physiological data. The first
four columns compare the computational cost in gigaFLOPs. The last four columns
compare the value of Deff = I(X; YN), evaluated at the optimal quantizer obtained
by each optimization algorithm..

C. It isolates the empty codeword in one class (class ν = 1) and all other patterns
in another class (class ν = 2). The mean of the stimuli conditioned with the zero
codeword (panel D, dotted line), does not significantly deviate from a zero signal.
Panels E and F show the results of extending the analysis to a reproduction of N = 3
classes. The zero codeword remains in class 1. The former class 2 is split into two
separate classes: class 2, which contains the single spike codeword and codewords
with an inter-spike interval ISI > 5ms, and class 3, which contains all doublets with
ISI < 2ms and all triplets. The mean in (D, solid line) is split into two separate
class conditioned means (F, solid and dashed line).

In table 5 we compare the three algorithms on the physiological data set. We see
that the cost is lowest for the implicit solution algorithm, but the vertex search finds
the ”best” solution, measured in terms of the value of Deff .
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CHAPTER 10

CONCLUSION

Our explicit goal in this thesis was to solve problems of the form

max
q(YN |Y )∈∆

(G(q) + βD(q)) (10.1)

at some β = B ∈ (0,∞) when G and D have symmetry: renaming classes of YN

leaves the values of G(q(YN |Y )) and D(q(YN |Y )) unchanged. The major ingredient
to our approach was to build a mathematical theory which describes the bifurcation
structure of stationary points of (10.1) for each β ∈ [0,B]. As we have seen, the
symmetry dictates the bifurcation structure of solutions to the problem (10.1). Our
understanding of the bifurcation structure of these solutions lends itself to the com-
putational problem of solving (10.1) since we know how to detect symmetry breaking
bifurcation, and, once this of type of bifurcation is detected, we know in which direc-
tion the new branches bifurcate. We presented an algorithm (Algorithm 157) which
uses these ideas.

For the Information Distortion method, which concerns itself with the biological
problem of deciphering the neural code, we numerically confirmed the bifurcation
structure predicted by the theory by implementing continuation techniques. We also
presented optimization schemes, such as the Augmented Lagrangian, implicit solution
and the vertex search method, to find solutions of the problem (10.1).

Determining the bifurcation structure of stationary points of (10.1), and imple-
menting an efficient algorithm to solve (10.1) are two different things. The former
illuminates how one might create the latter. Although we have presented Algorithm
157 which incorporates these ideas, we have not yet fully explored the method nu-
merically, which holds the tantalizing prospect of an efficient algorithm to find local
solutions of the problem (10.1).
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