Annealing and the rate distortion problem
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Abstract

In this paper we introduce methodology to determine the bifurcation structure of
optima for a class of similar cost functions from Rate Distortion Theory, Determin-
istic Annealing, Information Distortion and the Information Bottleneck Method.
We also introduce a numerical algorithm which uses the explicit form of the bifur-
cating branches to find optima at a bifurcation point.

1 Introduction

This paper analyzes a class of optimization problems
max G(q) +£D(q) 1)

whereA is a linear constraint spacé&; and D are continuous, real valued functions @f
smooth in the interior of, andmax,c A G(g) is known. Furthermore; andD are invariant
under the group of symmetrigsy. The goal is to solve (1) faf = B € [0, o).

This type of problem, which appears to i&” hard, arises in Rate Distortion Theory [1, 2],
Deterministic Annealing [3], Information Distortion [4, 5, 6] and the Information Bottleneck
Method [7, 8].

The following basic algorithm, various forms of which have appeared in [3, 4, 6, 7, 8], can
be used to solve (1) fg¥ = B.

Algorithm 1 Let

qo be the maximizer ofneaic G(q) (2)
q

and letgy = 0. For k > 0, let (qx, Ox) be a solution to (1). Ilterate the following steps until
B, = B for somex.

1. Performg-step: LetGx11 = Bk + di, whered, > 0.



2. Takeq,(jz1 = qr + n, wheren is a small perturbation, as an initial guess for the
solutiongy+1 at B+1.

3. Optimization: solve
max G(q) + Br+1D(q)

to get the maximizeyy1, using initial guessj,(ﬁzl.

We introduce methodology to efficiently perform algorithm 1. Specifically, we implement
numerical continuation techniques [9, 10] to effect steps 1 and 2. We show how to detect
bifurcation and we rely on bifurcation theory with symmetries [11, 12, 13] to search for the
desired solution branch. This paper concludes with the improved algorithm 6 which solves

2).
2 The cost functions

The four problems we analyze are from Rate Distortion Theory [1, 2], Deterministic Anneal-
ing [3], Information Distortion [4, 5, 6] and the Information Bottleneck Method [7, 8]. We
discuss the explicit form of the cost function (i@&(q) andD(q)) for each of these scenarios

in this section.

2.1 The distortion function D(q)

Rate distortion theory is the information theoretic approach to the study of optimal source
coding systems, including systems for quantization and data compression [2]. To define how
well a source, the random varialig is represented by a particular representation using
symbols, which we calY}y, one introduces distortion functionbetweeny” andYy

D(q(yny)) = D(Y,Yn) = Eyynd(y,yn) = Y Y alun|y)p(v)d(y, yn)
Y YN
whered(y, yn) is thepointwise distortion functiowon the individual elements af € Y and
yn € Yn. q(yn|y) is a stochastic map guantizationof Y into a representatiobiy [1, 2].
The constraint space

A= {q(ynly) | D alynly) = 1andg(ynly) > 0Vy € Y} 3
YN
(compare with (1)) is the space of valid quantizer&ih A representatiolyy is optimal if
there is a quantizer*(yn|y) such thatD(¢*) = mingea D(q).

In engineering and imaging applications, the distortion function is usually chosenraséme
squared errofl, 3, 14], D(Y,Yy) = E, 4, d(y, y~n), Where the pointwise distortion func-

tion d(y, yn) is the Euclidean squared distance. In this cds@;, Yy ) is a linear function
of the quantizer. In [4, 5, 6], theformation distortion measure

Di(Y,Yn) =Y ply,yn) K L(p(zlyn)lp(z]y)) = I(X;Y) = I(X;Yw)
YYN
is used, where the Kullback-Leibler divergen€d. is the pointwise distortion function. Un-
like the pointwise distortion functions usually investigated in information theory [1, 3], this
one is nonlinear, it explicitly considers a third spaég, of inputs, and it depends on the
quantizerg(yn|y) throughp(zlyn) = >_, p(m|y)%. The only term inD; which
depends on the quantizerlisX; Y ), so we can replac®; with the effective distortion
Degplq) == 1(X;Yn).
D.;s(q) is the functionD(gq) from (1) which has been considered in [4, 5, 6, 7, 8].



2.2 Rate Distortion

There are two related methods used to analyze communication systems at a distgy}ieh
D, for some givenDy > 0 [1, 2, 3]. In rate distortion theory [1, 2], the problem of finding a
minimum rate at a given distortion is posed amiaimal information ratedistortion problem:

_ mingyyyea I (YY)
BB = D0 v <Dy )

This formulation is justified by the Rate Distortion Theorem [1]. A similar exposition using
the Deterministic Annealing approach [3] isreaximal entropyroblem

yN|y)EA H(Yn|Y)

max,(
Y:Yyn) < Dg : ©)

The justification for using (5) is Jayne’s maximum entropy principle [15]. These formulations
are related sincé(Y;Yy) = H(Yn) — HYN|Y).

Let I, > 0 be some given information rate. In [4, 6], the neural coding problem is formulated
as an entropy problem as in (5)

max(yyyyea H(Yn[Y) . ©6)
Dejf(Q) Z IO

which uses the nonlinear effective information distortion measurg .

Tishby et. al. [7, 8] use the information distortion measure to pose an information rate
distortion problem as in (4)

mingyyea I(Y;Yn) )
Deys(q) > Io

Using the method of Lagrange multipliers, the rate distortion problems (4),(5),(6),(7) can be
reformulated as finding the maxima of

max F'(q, #) = max|G(q) + 5D(q)] )
ISTAN geEA
as in (1) wheres = . For the maximal entropy problem (6),
F(q,8) = HYN|Y) + BDey(q) )

and soG(g) from (1) is the conditional entropif (Y |Y). For the minimal information rate
distortion problem (7),

F(q,8) = =I1(Y;YN) + BDeys(q) (10)
and soG(q) = —I(Y;Yn).
In [3, 4, 6], one explicity considers5 = oo0. For (9), this involves taking

limg_, oo maxgea F(q, ) = maxgea Deyy(q) which in turn givesming,, j,yea Dr. In
Rate Distortion Theory and the Information Bottleneck Method, one could be interested in
solutions to (8) for finite3 which takes into account a tradeoff betwdg’; Y ) and D, ¢.

For lack of space, here we consider (9) and (10). Our analysis extends easily to similar
formulations which use a norm based distortion suchég), as in [3].

3 Improving the algorithm

We now turn our attention back to algorithm 1 and indicate how numerical continuation
[9, 10], and bifurcation theory with symmetries [11, 12, 13] can improve upon the choice of
the algorithm’s parameters.



We begin by rewriting (8), now incorporating the Lagrange multipliers for the equality con-
straintzw q(ynlyx) = 1 from (3) which must be satisfied for eagh € Y. This gives the
Lagrangian

K
L(g ) B) =F(a,8)+ > > alynlye) — 1) (12)
k=1

YN

There are optimization schemes, such as the Fixed Point [4, 6] and projected Augmented
Lagrangian [6, 16] methods, which exploit the structure of (11) to find local solutions to (8)
for step 3 of algorithm 1.

3.1 Bifurcation structure of solutions

It has been observed that the solutidgs} undergobifurcationsor phase transition§3, 4,
6, 7, 8]. We wish to pose (8) as a dynamical system in order to studyjftiveation structure
of local solutions for3 € [0, B]. To this end, consider the equilibria of the flow

(1) =Vacars 12)

for 8 € [0,B]. These are point{ ;1\* ) whereV, A L(g*, \*, 3) = 0 for somefs. The

Jacobian of this system is the Hessian, L(g, A, 5). Equilibria, (¢*, A*), of (12), for which
A, F(¢*, B) is negative definite, are local solutions of (8) [16, 17].

Let|Y| = K, |Yy| = N, andn = NK. Thus,g € A C ®" and\ € RE. The(n + K) x
(n+ K) Hessian of (11) is

T
Ag L(q, N\, () = ( AqF}qﬁ) JO >

where0 is K x K [17]. A,F is then x n block diagonal matrix ofV K x K matrices
{B;}¥, [4]. JistheK x n Jacobian of the vector df constraints from (11),

J=(Ix Ix . Ig). (13)

N blocks

The kernel ofA, £ plays a pivotal role in determining the bifurcation structure of solutions
to (8). This is due to the fact that bifurcation of an equilibfig, A*) of (12) atg = 5*
happen whetker A, »L£(¢*, \*, %) is nontrivial. Furthermore, the bifurcating branches are
tangent to certain linear subspace&kaf A, A L(¢*, \*, 5%) [12].

3.2 Bifurcations with symmetry

Any solution ¢*(yx|y) to (8) gives another equivalent solution simply by permuting the
labels of the classes afy. For example, ifP; and P, are twon x 1 vectors such that for

a solutiong*(yn|y), ¢*(ynv = 1ly) = P, and ¢*(yny = 2|y) = P», then the quantizer
whereg(yy = 1ly) = P, 4(yn = 2|y) = P and(ynly) = ¢"(yn|y) for all other
classeg/y is a maximizer of (8) with¥'(¢, 3) = F'(¢*, 3). Let S be the algebraic group of
all permutations orV symbols [18, 19]. We say thdt(q, ) is Sy-invariantif F(q,3) =
F(o(q), B) whereo(q) denotes the action anby permutation of the classesBf; as defined

by anyo € Sy [17]. Now suppose that a solutiot is fixed by all the elements of;,

for M < N. Bifurcations at3 = §* in this scenario are callesymmetry breakingf the
bifurcating solutions are fixed (and only fixed) by subgroups pf



To determine where a bifurcation of a solutiéq, \*, 3) occurs, one determine$ for
which A, F(¢*, 3) has a nontrivial kernel. This approach is justified by the fact that
Ag Lg%, \*, ) is singular if and only ifA,F(q*, §) is singular [17]. At a bifurcation
(¢*, \*, B*) whereg* is fixed by Sy; for M < N, A, F(¢*,5*) hasM identical blocks.
The bifurcation is generic if

each of the identical blocks has a singteigenvectory,

and the other blocks are nonsingular. (14)

Thus, a generic bifurcation can be detected by looking for singularity of one df'thekK’
identical blocks ofA,F'(¢*, 5). We call the classes df; which correspond to identical
blocks unresolvedclasses. The classes Bfy that are not unresolved are callegsolved
classes.

The Equivariant Branching Lemma and the Smoller-Wasserman Theorem [12, 13] ascertain
the existence of explicit bifurcating solutions in subspacekeof\, »L(¢*, A*, 5*) which

are fixed by special subgroups §f,; [12, 13]. Of particular interest are the bifurcating
solutions in subspaces kér A, »L(¢*, A*, 5*) of dimensionl guaranteed by the following
theorem

Theorem 2 [17] Let (¢*, A*, 3*) be a generic bifurcation of (12) which is fixed (and only
fixed) bySy,, for 1 < M < N. Then, for smalk, with 3(¢t = 0) = (%, there exists\/
bifurcating solutions,

ii n < B ) wherel < m < M (15)
b ) U@ ) wheret < m < A

—v if v is some other unresolved class}gf (16)

(M —1)v if visthem'™ unresolved class dfy
[um]u -
0 otherwise

andw is defined as in (14). Furthermore, each of these solutions is fixed by the symmetry
group Sar—1.

For a bifurcation from the uniform quantizq% , Which is identically% for all y and ally ,
all of the classes ofy are unresolved. In this case,

U, = (—vT, . —vT (N = 1T, —vT, . —vT 01T
where(N — 1)v is in them!* component of,,, .

Relevant to the computationalist is that instead of looking for a bifurcation by looking for
singularity of then x n HessianA,F(¢*, 3), one may look for singularity of one of the

K x K identical blocks, wherd{ = . After bifurcation of a local solution to (8) has
been detected & = 3*, knowledge of the bifurcating directions makes finding solutions of
interest for3 > 6* much easier (see section 3.4.1).

3.3 The subcritical bifurcation

In all problems under consideration, the solution fbr= 0 is known. For (9), (10) this
solution isqy = qL. For (4) and (5)4qo is the mean oft". Rose [3] was able to compute
explicitly the critical valueG* whereq loses stability for the Euclidean pointwise distortion
function. We have the following related result.

Theorem 3 [20] Consider problems (9), (10). The solutigg = 1/N loses stability at
8 = 3* wherel/3* is the second largest eigenvalue of a discrete Markov chain on vertices
y € Y, where the transition probabilities(y; — yi) := >, p(yk|z:)p(xi|yi)-



Corollary 4 Bifurcation of the solutiomq%,ﬁ) in (9), (10) occurs ap > 1.

Thediscriminantof the bifurcating branch (15) is defined as [17]

((q*7ﬁ*7um) = 3<um783,)\£(q*7A*7ﬂ*)[’u"maEL—Ea(i)\‘C(q*7A*vﬁ*)[um7um”>
—(um,aiAC(q*, A*aﬁ*)[umaumaum]%

where(., ) is the Euclidean inner produaty , L[, ..., -] is the multilinear form of theat"

derivative of £, E is the projection matrix ontoange(A, A L(g*, A*, %)), and L~ is the
Moore-Penrose generalized inverse of the HesdianL(¢*, \*, 5*).

Theorem 5 [17] If {(¢*, 5*,un) < 0, then the bifurcating branch (15) is subritical (i.e. a
first order phase transition). i (¢*, 8*,u,,) > 0, then (15) is supercritical.

For a data set with a joint probability distribution modelled by a mixture of four Gaussians as
in [4], Theorem 5 predicts a subcritical bifurcation frqm% , 3% =~ 1.038706) for (9) when

N > 3. The existence of a subcritical bifurcation (a first order phase transition) is intriguing.

2.5

o 5
1.034 1.036 1.038 1.04 1.042 1.044
B

Figure 1:A joint probability space on the random variab(€$, Y') was constructed from a mixture of
four Gaussians as in [4]. Using this probability space, the equilibria of (12 fas defined in (9) were
found using Newton’s method. Depicted is the subcritical bifurcation f(@g] [* = 1.038706).

In analogy to the rate distortion curve [2, 1], we can definéfah curve for the problem (6)

H(Iy) := qu,rg?;{leo H(YN|Y).
Let I1yax = maxgea Desy. Then for eachly € (0, Iax) the valueH (1) is well defined
and achieved at a point whefe. s, = I,. At such a point there is a Lagrange multipligr
such thatv, » £ = 0 (compare with (11) and (12)) and thissolves problem (9). Therefore,
for eachl € (0, I,ax), there is a correspondingwhich solves problem (9). The existence
of a subcritical bifurcation ins implies that this correspondence is not monotone for small
values ofI.

3.4 Numerical Continuation

Numericalcontinuationmethods efficiently analyze the solution behavior of dynamical sys-
tems such as (12) [9, 10]. Continuation methods can speed up the search for the gglytion

at 3,1 in step 3 of algorithm 1 by improving upon the perturbed chqk&él = qr+n. First,



the vector(9zqi 9sA})" which is tangent to the curv@, L(q, A, 3) = 0 at (gx, Ak, )
is computed by solving the matrix system

0
Ag L (qk, M, Bre) ( 3531\]; ) = =05V aL(qr, Ak, Br)- (17)

Now the initial guess in step 2 becomqégzl = qr + diOgqr wWhere d, =

Ss for A 0. Furthermore in step 1 is found by using this
V110sak|2+18s Ak [12+1 5 > Br+1 p y g

samedy,. This choice ofdj, assures that a fixed step alofi@yg! 93A\%)7 is taken for each
k. We use three different continuation methods which implement variations of this scheme:
Parameter, TangerdandPseudo Arc-LengtfB, 17]. These methods can greatly decrease the

optimization iterations needed to fingd.; from q,io)l in step 3. The cost savings can be
significant, especially when continuation is used in conjunction with a Newton type opti-
mization scheme which explicitly uses the Hesstay¥'(gx, 8). Otherwise, the CPU time
incurred from solving (17) may outweigh this benefit.

3.4.1 Branch switching

Suppose that a bifurcation of a solutigh of (8) has been detected @at. To proceed, one
uses the explicit form of the bifurcating directions,,, }/_, from (16) to search for the
bifurcating solution of interest, say..1, whose existence is guaranteed by Theorem 2. To
do this, letu = u,,, for somem < M, then implement &ranch switcH9]

0 *
q,ile:q +di - u.

4 A numerical algorithm

We conclude with a numerical algorithm to solve (1). The section numbers in parentheses
indicate the location in the text supporting each step.

Algorithm 6 Letgy be the maximizer afiax,ea G, fo = 1 (3.3) andAs > 0. For k > 0,
let (g%, Bx) be a solution to (1). lterate the following steps umil = 55 for somex.

1. (3.4) Performg-step: solve (17) fo(dzqf 9sA%)T and selectdy 1 = By + dy
whered,, = As

V119aae P +19s Akl [P+1

2. (3.4) The initial guess fof 1 at By+1 IS q,(ﬁzl = g + di, - Osqr.
3. Optimization: solve
max G(q) + Br+1D(q)
geEA
to get the maximizeyy1, using initial guessj,(ﬁzl.

4. (3.2) Check for bifurcation: compare the sign of the determinant of an identical
block of each of

Ag[G(ar) + BeD(qr)] and Ay [G(qr+1) + Br+1D(qr+1)]-

If a bifurcation is detected, then Sﬁ(ﬂl = qx, + di, -u Whereu is defined as in (16)
for somem < M, and repeat step 3.
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