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SUMMARY

The Kalman filter is a technique for estimating a time-varying state given a dynamical model for and indirect
measurements of the state. It is used, for example, on the control problems associated with a variety of nav-
igation systems. Even in the case of nonlinear state and/or measurement models, standard implementations
require only linear algebra. However, for sufficiently large-scale problems, such as arise in weather forecast-
ing and oceanography, the matrix inversion and storage requirements of the Kalman filter are prohibitive,
and hence, approximations must be made. In this paper, we describe how the conjugate gradient iteration
can be used within the Kalman filter for quadratic minimization, as well as for obtaining low-rank approx-
imations of the covariance and inverse-covariance matrices required for its implementation. The approach
requires that we exploit the connection between the conjugate gradient and Lanczos iterations. Copyright
© 2011 John Wiley & Sons, Ltd.
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1. INTRODUCTION

In 1960, the Kalman filter (KF) was introduced by R. E. Kalman [1] as a statistically optimal method
for recursively estimating a time-varying state, given a linear dynamical model, as well as indirect
observations of the state.

The filter has been used extensively in application areas such as autonomous and assisted nav-
igation. We are interested here in its use on large-scale examples, such as numerical weather
forecasting, where standard formulations of KF, and its nonlinear analogue, the extended Kalman
filter (EKF) [2], are computationally infeasible to implement.

Several variants of KF and EKF improve efficiency by projecting the state space onto a low-
dimensional subspace; see, for example, [3–8]. This ‘reduced-rank’ approach is effective, provided
the state is well represented on the subspace throughout the time window of the observations. How-
ever, because the subspace is typically fixed in time, the dynamics of the system are often not
correctly captured [9].

Another approach is to recast the filtering problem in variational form. In weather forecasting,
for example, three-dimensional variational data assimilation (3D-Var) relies on a variational for-
mulation of the Kalman filter [10], whereas the current state of the art is four-dimensional (4D)-Var
[9,11], which utilizes a variational formulation of an initial value estimation problem [10,12,13] and
has been shown to be identical to a Kalman smoother when the model is assumed to be perfect [14].
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The quadratic minimization problems required for implementation of 3D-Var and 4D-Var are
large scale (104–107 unknowns), and so efficient numerical optimization methods are needed. Simi-
lar to the ‘reduced-rank’ methods mentioned earlier, the partial orthogonal decomposition is used in
[15] to reduce the dimensionality of the 4D-Var minimization problem. A more standard approach
is to implement a preconditioned conjugate gradient (CG) method [8, 16–20].

In this paper, we propose the use of CG for quadratic minimization, as well as for the computation
of ‘low-rank’ approximations of covariance, and inverse covariance, matrices. It is well known that
when CG is applied to the minimization of

�.x/D
1

2
hAx, xi � hb, xi,

where A is symmetric, positive definite, and n � n, and x and b are n � 1, the minimizer, A�1b, is
obtained in, at most, n steps. Lesser known is the fact that CG can be used to efficiently build low-
rank approximations of both A�1 and A using the close connection between the CG and Lanczos
iterations. Using such low-rank approximations, we are able to obtain computationally efficient, low
storage implementations of KF and of a variational formulation of KF (which we call VKF) that is
similar to 3D-Var. The CG–Lanczos connection is also exploited in [19], where it is used instead to
build preconditioners for CG iterations within 4D-Var.

Our overall approach is similar to that of [21, 22], the difference being that we use CG, rather
than limited memory Broyden–Fletcher–Goldfarb–Shanno (LBFGS) [18, 23], for quadratic mini-
mization, as well for constructing low storage covariance, and inverse covariance, approximations.
The use of LBFGS within 3D and 4D-Var data assimilation was also explored in [8, 24].

The problem of using CG to build covariance, and inverse covariance, approximations has been
studied extensively by Schneider and Willsky [25,26]. These authors even suggested the use of their
ideas in the context of the Kalman filter applied to an oceanography problem [27] but provided
no mathematical detail regarding their implementation. In this paper, we introduce two different
approximate Kalman filters, each of which employs CG for both quadratic minimization as well as
for obtaining low-rank covariance and inverse covariance approximations.

The paper is organized as follows. In Section 2, we present both KF and VKF, and provide a
general outline of the approximate filters, which we denote CG-KF and CG-VKF. In Section 3, we
provide details on how to use CG to compute low-rank approximations of covariance and inverse
covariance matrices and provide optimality results, as well as bounds on the error of these approxi-
mations. CG-KF and CG-VKF are tested on two numerical examples in Section 4, and we provide
conclusions in Section 5.

2. KALMAN FILTERING METHODS

We begin our mathematical discussion by considering the following coupled system of discrete,
linear, stochastic difference equations

xk DMkxk�1C "
p

k
, (1)

yk DKkxk C "
o
k . (2)

In the first equation, xk denotes the n � 1 state vector of the system at time k; Mk is the n � n
linear evolution operator; and "p

k
is an n� 1 random vector representing the prediction error and is

assumed to characterize errors in the model and in the corresponding numerical approximations. In
the second equation, yk denotes the m� 1 observed data vector; Kk is the m� n linear observation
operator; and "o

k
is an m � 1 random vector representing the observation error. The error terms are

assumed to be independent and normally distributed, with zero mean and with covariance matrices
C"p

k
and C"0

k
, respectively.
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The task is to estimate the state xk and its error covariance Ck at time point k given yk , Kk , C"o
k

,
Mk , C"p

k
, and estimates xest

k�1
and Cest

k�1
of the state and covariance at time point k � 1.

The classical Kalman filter (KF) is the standard approach taken for such problems. It is optimal
in the sense that it yields a minimum variance estimator [1] and has the following form.

Algorithm 1 (KF)
Select initial guess xest

0 and covariance Cest
0 and set k D 1.

1. Compute the evolution model estimate and covariance:
(a) compute xp

k
DMkxest

k�1
;

(b) define Cp
k
DMkCest

k�1
MT
k
CC"p

k
.

2. Compute KF estimate and covariance:
(a) define the Kalman Gain Gk D Cp

k
KT
k
.KkCp

k
KT
k
CC"0

k
/�1;

(b) compute the KF estimate xest
k
D xp

k
CGk.yk �Kkxp

k
/;

(c) define the estimate covariance Cest
k
D Cp

k
�GkKkCp

k
.

3. Update k WD kC 1 and return to Step 1.

The cost of implementing the KF iteration is about 1=3.m3/ floating point operations (flops) for
the computation of the Cholesky factorization of the matrix whose inverse appears in Step 2(a), as
well as the system back-solves with this matrix required in Steps 2(b) and (c) [28]. Storage of, and
multiplication by, full n� n covariance matrices is also required.

An equivalent variational formulation of KF follows from a sequential application of Bayes’
Theorem. To see this, we recall Bayes’ formula

pxjy.xjy// pyjx.yjx/px.x/, (3)

where x is the vector of unknowns, y the measurements, px denotes the prior density, and pyjx is the
density of the likelihood function. The maximum a posteriori estimate is obtained by maximizing
(3). Equivalently, one can minimize

`.xjy/D� logpyjx.yjx/� logpx.x/. (4)

For the linear model (2) at time k with normally distributed error, the function ` assumes the form

`.xjyk/D
1

2
.yk �Kkx/TC�1

"0
k

.yk �Kkx/C
1

2
.x� xp

k
/T.Cp

k
/�1.x� xp

k
/, (5)

where C"0
k

and Cp
k

are the covariance matrices of the measurement noise "o
k

and of the prior xp
k

,
respectively.

The KF estimate xest
k

and its covariance Cest
k

are precisely the minimizer and inverse Hessian of
`.xjyk/, respectively. This allows us to re-express the KF iteration in a variational form, which we
denote the variational Kalman filter (VKF) [22].

Algorithm 2 (VKF)
Select initial guess xest

0 and covariance Cest
0 and set k D 1.

1. Compute the evolution model estimate and covariance:
(a) compute xp

k
DMkxest

k�1
;

(b) define Cp
k
DMkCest

k�1
MT
k
CC"p

k
.

2. Compute VKF and covariance estimates:
(a) compute the minimizer xest

k
and inverse Hessian Cest

k
of

`.xjyk/D
1

2
.yk�Kkx/T.C"o

k
/�1.yk�Kkx/C

1

2
.x�xp

k
/T.Cp

k
/�1.x�xp

k
/

to obtain xest
k

and Cest
k

.
3. Update k WD kC 1 and return to Step 1.
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The cost of implementing VKF is dominated by the computation of the minimizer of `.xjyk/,
whose definition requires the inverse of Cp

k
. The storage of n � n covariance matrices is also

required. However, as we will see later, VKF is particularly amenable to computationally efficient
approximations.

2.1. Extensions to nonlinear models

Nonlinear extensions of KF and VKF have been developed for the case when (1) and (2) are replaced
by

xk DM.xk�1/C "
p

k
, (6)

yk DK.xk/C "ok , (7)

where M and K are possibly nonlinear functions defined by the evolution and observation operators,
respectively.

The best-known extension is the extended Kalman filter (EKF). EKF is obtained by the following
modification of the KF algorithm: in Step 1, (a), use the nonlinear model xp

k
DM.xest

k�1
/ to compute

the prior, but otherwise, use the following linearized approximations of M and K:

Mk D
@M.xest

k�1
/

@x
and Kk D

@K.xp
k
/

@x
. (8)

Exactly the same changes can be made to VKF to incorporate nonlinear evolution and observation
models. This is the approach we take for the nonlinear example in this paper.

The linearizations Mk and Kk in (8) can be computed or estimated in a number of ways. A com-
mon approach is to use finite differences. A more efficient approach—both computationally and in
terms of storage—employs the adjoint and tangent linear codes defined by the numerical scheme(s)
used in the solution of the evolution and/or the observation model. These codes are available in
many important instances, for example, in weather forecasting [13]. The tangent code for the evo-
lution and observation operators computes multiplication of a vector by Mk and Kk , respectively;
whereas the adjoint code for the evolution and observation operators computes multiplication of a
vector by MT

k
and KT

k
, respectively.

2.2. Efficient Kalman filter and variational Kalman filter algorithms using conjugate gradient

For large-scale problems, KF, EKF, and VKF can be prohibitively expensive to implement because
of the need for the storage and inversion of large, dense matrices at every iteration. To address this
challenge, we advocate the use of iterative methods within the filters for both the solution of lin-
ear systems (or quadratic minimization), as well as for obtaining low storage approximations of
these matrices. In [21, 22], the LBFGS method was used for this purpose, whereas in this paper,
we describe how to use the conjugate gradient (CG) method for efficient implementation of these
filtering methods.

We assume that multiplication by the evolution and observation matrices Mk and Kk and their
transposes are efficient, both in terms of storage and CPU time.

CG is a well-known iterative method for minimizing quadratic functions of the type

�.x/D
1

2
hAx, xi � hb, xi, (9)

where A is an n � n symmetric positive-definite matrix and b is an n � 1 vector [18]. After k iter-
ations of CG, we obtain an approximate minimizer of �, which we denote xkCG. We will show later
that the CG iteration history can also be used to create an approximation Bk of A�1 and that both
xkCG and Bk are optimal approximations over a certain Krylov subspace. Moreover, we will show
how to use the connection between CG and the Lanczos iterations to efficiently and stably compute
both Bk and its pseudoinverse B�

k
, which approximates A, also from CG iteration history.

Copyright © 2011 John Wiley & Sons, Ltd. Numer. Linear Algebra Appl. (2011)
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In order to illustrate how CG is used within KF and VKF, we include a pseudocode for the
approximate filtering methods.

Algorithm 3 (CG-KF)
Select initial guess xest

0 and lower storage initial covariance .B#
0/
� D Cest

0 and set k D 1.

1. Compute the evolution model estimate and covariance:
(a) compute xp

k
DMkxest

k�1
;

(b) define Cp
k
DMk.B#

k�1
/�MT

k
CC"p

k
.

2. Compute KF estimate and covariance:
(a) apply CG to (9), with AD KkCp

k
KT
k
CC"o

k
and bD .yk �Kkxp

k
/, to obtain x�

k
, and low

rank approximation B�
k

of A�1;
(b) compute approximate KF estimate xest

k
D xp

k
CCp

k
KT
k

x�
k

;
(c) apply CG to (9) with A D Cp

k
� Cp

k
KT
k

B�
k

KkCp
k

and b D v, where v is a white noise
random vector, to obtain low-rank approximation .B#

k
/� of A.

3. Update k WD kC 1 and return to Step 1.

Note that CG-KF closely mimics KF (or Algorithm 1). Also, in Step 2(a), the matrix A is m�m,
where m is the dimension of the observation space. Thus, if m is small, the application of CG in
Step 2(a) could be removed.

In Step 2(c), we choose v to be the random vector with entries �1 or 1 with equal probability,
because this optimizes the accuracy of the covariance/inverse covariance approximations [29]. We
have also tried taking v�N.0, I/, which works equally well. Note that, here, the covariance/inverse
covariance approximation is of interest.

For VKF, we make similar modifications. However, only one application of CG per filter iteration
is required, provided we assume that the approximation of the estimate covariance B#

k
� Cest

k
can

be written in square root form

B#
k D XkXT

k ,

where Xk is defined as in Remark 6 later and is n � p with p the number of CG iterations. Then,
using the matrix inversion lemma,

.Cp
k
/�1 D ..MkXk/.MkXk/

TCC"p
k
/�1

D C�1
"
p

k

�C�1
"
p

k

MkXk.ICXT
kMT

kC�1
"
p

k

MkXk/
�1XT

kMT
kC�1

"
p

k

.
(10)

We assume that C"p
k

is diagonal and that p is small enough that the p�p matrix inverse required in

(10) can be computed efficiently. Then multiplication by .Cp
k
/�1 can be efficiently performed using

(10).

Algorithm 4 (CG-VKF)
Select initial guess xest

0 and low-rank covariance approximation B#
0 D X0XT

0 of Cest
0 and set k D 1.

1. Compute the evolution model estimate and covariance:
(a) compute xp

k
DMkxest

k�1
;

(b) define .Cp
k
/�1 using (10).

2. Compute VKF and covariance estimates:
(a) apply CG to the problem of minimizing

`.xjyk/D
1

2
.yk �Kkx/T.C"o

k
/�1.yk �Kkx/C

1

2
.x� xp

k
/T.Cp

k
/�1.x� xp

k
/,

which has the form (9) with A D KT
k
.C"o

k
/�1Kk C .C

p

k
/�1 and b D KT

k
.C"o

k
/�1yk C

.Cp
k
/�1xp

k
, to obtain xest

k
and low-rank approximation B#

k
D XkXT

k
of A�1.

3. Update k WD kC 1 and return to Step 1.
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We note that if p is too large, the matrix inversion lemma (10) will be expensive to compute. In
this case, an auxiliary optimization, such as was done in Step 2(c) of CG-KF, can be used instead.
However, in our experiments, an additional regularization term was needed with this approach.

Extensions of CG-KF and CG-VKF to the nonlinear cases (6) and (7) are exactly as for KF and
VKF. Thus computation of the tangent linear and adjoint models are required, and in Step 1(a) of
both algorithms, xp

k
is computed using xp

k
DM.xest

k�1
/.

The cost of implementing CG-KF and CG-VKF is dominated by the matrix-vector multiplies at
a cost of about 2n2 (or 2m2) flops in each CG iteration [28]. Thus, as long as the number of CG
iterations p is small relative to n, then CG-KF and CG-VKF will be cheaper to implement than
KF and VKF. In addition, the covariance approximations used require only the storage of an n� p
(rather than n� n) matrix.

It remains to show how to construct the covariance and inverse covariance approximations (B�
k

and .B#
k
/� in CG-KF and B#

k
in CG-VKF) from CG iteration history. We do this in the next section.

3. KRYLOV SPACE APPROXIMATION OF A AND A�1

In this section, we provide necessary details for the implementation of CG within both CG-KF and
CG-VKF. In particular, focusing on the general minimization problem (9), we present mathematical
results regarding the efficient computation of both B�

k
� A and Bk � A�1 from CG iterations. For

this, we exploit the Lanczos iteration and its close connection to CG [30–32].

3.1. Conjugate gradient iteration

Given a symmetric, positive-definite n � n matrix A, CG is a well-known iterative algorithm for
solving the linear system Ax D b or, equivalently, for minimizing a quadratic of the form (9) [33].
In order to establish necessary notation, we present the CG iteration now.

Algorithm 5
Given A, b, and x0, let r0 D b � Ax0, p0 D r0, and k D 1. Specify some stopping tolerance �.
Iterate:

1. �k�1 D
r.k�1/Trk�1

p.k�1/TApk�1
is the one-dimensional minimizer of � in the direction xk�1C �pk�1.

2. xk D xk�1C �k�1pk�1.
3. rk D�rx�.xk/D b�Axk D rk�1 � �k�1Apk�1 is the residual.
4. ˇk D�

rkTrk

r.k�1/Trk�1
.

5. pk D rk � ˇkpk�1 is the next conjugate search direction.
6. Quit if jjrkjj< �. Else, set k WD kC 1 and go to Step 1.

If we let Pk be the n� k matrix with fpigk�1iD0 as columns and PB be the n� .n� k/ matrix with
fpign�1

iDk
as columns, then given what we know about CG (see, e.g., [31]),

Dn D
�

Dk 0

0 DB

�
D

�
PT
k

APk 0

0 PT
BAPB

�
D PT

nAPn

is an invertible diagonal matrix with entries ŒDn�i i D piTAPi . Thus,

A�1 D PnD�1n PT
n D PkD�1k PT

k C PBD�1B PT
B .

For k < n, the k-rank approximation of A�1 produced by the CG algorithm is then

Bk D PkD�1k PT
k . (11)

Remark 6
We use (11) to define Bk within CG-KF, Step 2(a), and CG-VKF, Step 2(a). To minimize stor-
age requirements, the matrix Xk D PkD�1=2

k
is saved, which is n � p, where p is the number of

CG iterations.

Copyright © 2011 John Wiley & Sons, Ltd. Numer. Linear Algebra Appl. (2011)
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3.2. Lanczos iteration

The Lanczos algorithm is an iterative method for solving the eigenvalue problem for large sparse
matrices [34,35], and its performance in finite precision is well studied [32,36,37]. CG is equivalent
to the Lanczos method for symmetric, positive-definite matrices [30–32].

In exact arithmetic, the Lanczos algorithm approximates the eigenpairs .�i , wi / of a given
n � n positive-definite matrix A. In order to establish necessary notation, we provide the two-term
recurrence version of the Lanczos algorithm due to Paige [32].

Algorithm 7
Given an initial vector Qv0, let v0 D Qv0

jjQv0jj
, ˛0 D v0TAv0, Qv1 D Av0 � ˛0v0 and k D 1. Specify some

stopping tolerance �. Iterate:

1. �k D jjQvkjj. Quit if �k < �.
2. vk D Qv

k

�k
is a Lanczos vector.

3. uk D Avk � �kvk�1.
4. ˛k D vkTuk .
5. QvkC1 D uk � ˛kvk .
6. k WD kC 1, and go to Step 1.

If we define Vk to be the matrix with columns fvigk�1iD0 and the tridiagonal Lanczos matrix Tk by

Tk D

0
BBBB@

˛0 �1
�1 ˛1 �2

. . .
. . .

. . .
�k�2 ˛k�2 �k�1

�k�1 ˛k�1

1
CCCCA ,

then [31, 32]

Tk D VT
kAVk ,

which suggests the following low-rank approximation of A:

B�
k
D VkTkVT

k . (12)

An efficient approximate eigenvalue decomposition for A can be efficiently obtained from (12).
In particular, because Tk is tridiagonal, its spectral decomposition

Tk D Yk‚kYT
k , ‚k D diag.�k1 , : : : , �kk /,

can be efficiently computed [31,36,38]. The Lanczos approximate eigen-decomposition of A is then
given by

B�
k
D .VkYk/‚k.VkYk/

T, (13)

with the Ritz pairs f.�ki , Vkyi
k
/g approximating k of the eigenpairs of A.

Remark 8
We use covariance approximation (13) to define .B#

k
/� within CG-KF, Step 2(c). To minimize

storage requirements, the n� p matrix Xk D VkYk‚
1=2

k
is saved.

Remark 9
As an aside, we also note that the use of CG/Lanczos within CG-KF and CG-VKF when K and/or
M are nonlinear is related to the work of Saad [39], where the (nonlinear) matrix exponential is
approximated by a matrix generated using the Lanczos method.

Copyright © 2011 John Wiley & Sons, Ltd. Numer. Linear Algebra Appl. (2011)
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3.3. Equivalence of the conjugate gradient and Lanczos approximations

To obtain Vk from CG iterations, which is what will be required in KF applications, we note that its
columns can be obtained from the CG residuals via ([31, 32], p. 50)

vi D .�1/i
ri

jjri jj
. (14)

Moreover, it can be shown [32] that

T�1k D RkD�1k RT
k , where Rk D VT

kPk . (15)

and hence,

VkT�1k VT
k D PkD�1k PT

k ,

which shows that (11) and (12) are equivalent.

Remark 10
In our implementation, the covariance approximation (13) is obtained from CG iterations via (14)
and (15), and the eigenvalue decomposition T�1

k
D Yk‚

�1
k YT

k
.

3.4. Optimality and error bounds for matrix approximations

The fact that Tk D VT
k

AVk shows that the Lanczos algorithm is a Raleigh–Ritz process, with Tk the
minimizer of 	.�jVk/ WD jjAVk �Vk�jj2 [36]. In other words,

min
�2Rk�k

	.�jVk/D jj.A�VkTkVT
k/Vkjj2,

which shows that B�
k
D VkTkVT

k
is the best rank k approximation of A in range.Vk/, the k-

dimensional Krylov space also spanned by the CG conjugate directions. Moreover, when CG con-
verges, this Krylov space contains the eigenspaces corresponding to the extreme and well-separated
eigenvalues of A [32,36,37,40]. That is, B�

k
is an accurate approximation of A (and Bk approximates

A�1) in these eigenspaces.
Moreover, from Weyl’s Theorem [36] and the triangle inequality, it can be shown that the norm of

the error in the covariance approximation, jjA�1 � Bkjj2, is at least as large as 1=�kC1, the largest
eigenvalue of A�1 not being estimated by the T�1

k
, and it can become as large as this eigenvalue

plus the error in the Lanczos estimates. Similarly, jjA � B�
k
jj2 is at least as large as ��.kC1/, the

largest eigenvalue of A not being estimated by the Lanczos tridiagonal Tk , and it can become as
large as this eigenvalue plus the error in the Lanczos Ritz pairs.

3.5. The effect of finite precision

In finite precision, the CG search directions fpkg lose conjugacy. Nevertheless, as long as ‘local
conjugacy’ is maintained, the eigenvalues of A are not on the order of machine precision and the
condition number of A is not too large, convergence xkCG! A�1b is guaranteed [32].

On the other hand, loss of conjugacy of the search directions (which corresponds to loss of orthog-
onality of the Lanczos vectors fvkg) is detrimental to a Lanczos eigen-solver, resulting in only a few
of the eigenvalues of A being estimated, the extreme and well-separated ones. It can be shown [32]
that loss of conjugacy/orthogonality occurs at the same iteration k that a Ritz pair .�ki , Vkyi

k
/ con-

verges. This can happen at the same iteration that CG converges, but it can also happen sooner.
The upside is that by the time CG converges, all Lanczos eigenpair estimates have already con-
verged, and so Bk is a good approximation to A�1 (and B�

k
approximates A) in the corresponding

eigenspaces.
The ramifications for CG-KF and CG-VKF are that, without corrective measures, the covariance

approximations are guaranteed to be accurate only in a small k-dimensional eigenspace of A (see

Copyright © 2011 John Wiley & Sons, Ltd. Numer. Linear Algebra Appl. (2011)
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discussion in Section 3.4), where k is the iteration at which loss of conjugacy of the search direc-
tions occurs. In order to attain more accurate covariance approximations, corrective measures such
as reorthogonalization [26,32,36], which is commonly used with Lanczos schemes, must be imple-
mented. Depending on the distribution of the eigenvalues of A, the expense in computational time
and memory requirements can be as large as a Cholesky factorization, which, for the large-scale
problems we consider, is prohibitive.

4. NUMERICAL EXAMPLES

In this section, we test CG-KF and CG-VKF on two examples.

4.1. An example with a large-scale linear evolution model

The first example is large dimensional and linear. We consider the following forced heat equation
model

@x

@t
D�

@2x

@u2
�
@2x

@v2
C ı exp

�
�
.u� 2=9/2C .v � 2=9/2


2

�
, (16)

where x is a function of u and v over the domain �D f.u, v/ j 0 6 u, v 6 1g and ı > 0. We gener-
ate synthetic data using (16) with ı > 0 and assume that the evolution model is given by (16) with
ı D 0, which gives a model bias. The problem can be made arbitrarily large scale via a sufficiently
fine spatial discretization. However, the well-behaved nature of solutions of (16) calls for further
experiments with a different test case, hence our second example in the next subsection.

We discretize the model (16) using a uniform N �N computational grid and the standard finite
difference schemes of both the time and spatial derivatives. This gives the time stepping equation
xkC1 DMxkC f, where MD I��tL. Here, L is given by the standard finite difference discretiza-
tion of the two-dimensional Laplacian operator with homogeneous Dirichlet boundary conditions,
�t is chosen to guarantee stability, and f is the constant vector determined by the evaluation of
the forcing term in (16) at each of the points of the computational grid. We define the observation
matrix as Kk D K for all k in (2), where K is the full weighting matrix that has the following grid
representation

1

16

2
4 1 2 1

2 4 2

1 2 1

3
5 .

Such an observation matrix could model, for example, an array of square heat sensors on the bottom
of a metal plate that have dimension 2=N � 2=N with the edges aligned with the grid lines and
equally spaced at n2=64 locations.

We first generate synthetic data using the stochastic equations

xkC1 DMxk C fC "p
k

, (17)

ykC1 DKxkC1C "
o
k , (18)

with "o
k
� N.0, .0.8
obs/

2I/, "p
k
� N.0, .0.5
ev/

2I/, ı D 3=4 in (16), and where 
2obs and 
2ev are
chosen so that the signal-to-noise ratios kKx0k2=n2
2obs and kx0k2=n2
2ev are both 50. The initial
condition used for the data generation is

Œx0�ij D expŒ�..ui � 1=2/
2C .vj � 1=2/

2/�,

where .ui , vj / is the ij th grid point.
For the implementation of our filtering algorithms, we assume the model

xkC1 DMxk C "
p

k
,

ykC1 DKxkC1C "
o
k ,
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with "p
k
� N.0, 
2evI/, "o

k
� N.0, 
2obsI/, and where xest

0 D 0 and Cest
0 D 0 in Step 1 of the filter.

Notice that the forcing function f is not contained in the evolution model, which adds a bias.
In our first example, we assume a 32 � 32 computational grid. For all implementations of CG

within CG-KF and CG-VKF, the zero vector was the initial guess, and a stopping tolerance of
krkk< 10�6 was used to signal CG convergence, where rk is the residual at iteration k. The
maximum number of CG iterations was set to 40.

In Figure 1, the root mean square errors
q
1=N kxk � xtrue

k
k are given for different methods. We

compare KF, CG-KF, CG-VKF, and the algorithms LBFGS-KF from [21] and LBFGS-VKF from
[22], which are the same as CG-KF and CG-VKF, except that instead of CG, the LBFGS method
is used for quadratic optimization, and the LBFGS Hessian and inverse Hessian approximations are
used for the approximation of the covariance/precision matrices. For LBFGS implementations, the
same stopping tolerance and maximum number of iterations were used, and all vectors were stored
for the covariance/precision matrix approximations.

The approximate methods produce results that are comparable with KF, with less computational
cost (roughly five times faster in this case). The methods perform in a similar way, CG-VKF being
slightly better and LBFGS-KF converging a bit slower than the others. The computational benefit of
CG-VKF over the other methods is that only one CG optimization is required, because the matrix
inversion lemma (10) is used for defining .Cp

k
/�1.

As a second example, we run a much higher dimensional case with a 128 � 128 computational
grid. In this case, the memory of a standard desktop computer is not enough to run KF. In Figure 2,
we compare the CG and LBFGS implementations of the approximate filters. CG-based methods
perform better in this test, and CG-VKF is, again, better than the others.

4.2. An Example with a small-scale, nonlinear evolution model

Our second example produces chaotic, unpredictable behavior but is not large scale. We consider
the nonlinear Lorenz 1995 model introduced and analyzed in [41, 42], given by

@xi

@t
D .xiC1 � xi�2/xi�1 � xi C 8, i D 1, 2, : : : , 40, (19)

with periodic state space variables, that is, x�1 D xn�1, x0 D xn and xnC1 D x1. In the present
tests, we use the dimension nD 40. The model shares many characteristics with realistic atmo-
spheric models (cf. [42]) and is often used as a test case for various weather forecasting schemes.

Next, we apply the filtering methods to the problem of estimating the state variables from data
generated using the nonlinear, chaotic evolution model (19). The data was generated by integrating
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Figure 1. Root mean square error versus iteration for EKF, CG-KF, CG-VKF, LBFGS-KF, and LBFGS-VKF
on a 32� 32 computational grid.
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Figure 2. Root mean square error versus iteration for CG-KF, CG-VKF, LBFGS-KF, and LBFGS-VKF on
a 128� 128 computational grid.

the model using a fourth-order Runge–Kutta (RK4) method with time step �t D 0.025. The dis-
cussion in [42] suggests that when using (19) as a test example for weather forecasting algorithms,
the characteristic time scale is such that the mentioned �t corresponds to 3 h. The ‘truth’ was gen-
erated by taking 42, 920 time steps of the RK4 method, that is, 5365 days. The initial state for the
data generation was x20 D 8C 0.008 and xi D 8 for all i ¤ 20.

The observed data is then computed using this true data. In particular, after a 365-day long initial
period, the true data is observed at every other time step and at the last three grid points in each set
of five; that is, the observation matrix is m� n, with nonzero entries

ŒK�rs D
�
1 .r , s/ 2 f.3j C i , 5j C i C 2/ j i D 1, 2, 3, j D 0, 1, : : : , 7g,
0 otherwise.

The observation error is simulated using Gaussian noise N.0, .0.15 
clim/
2I/ where 
clim D

3.6414723 is a standard deviation of the model state used in climatological simulations. The data
generation codes, which were those used in the papers [21, 22] and were originally transcribed by
us from the scilab codes written by the author of [43], are written in MATLAB (The MathWorks,
Inc.).

For the application of EKF and VKF, we employ the coupled system

xkC1 DM.xk/C "
p

k
, (20)

ykC1 DKxkC1C "
o
k , (21)

with "p
k
�N.0, .0.05 
clim/

2I/ and "o
k
�N.0, .
clim/

2I/ and where M.xk/ is obtained by taking two
steps of the RK4 method applied to (19) from xk with time step 0.025. Because M is a nonlinear
function, EKF must be used. Because K WD K in (7) is linear, Kk D K for all k in (8). However,
a linearization of the nonlinear evolution function M is required. The computation of the tangent
linear model Mk in (8) is performed by a routine in one of the scilab codes mentioned earlier,
adopted for our use in MATLAB.

The initial guesses for the kF iterations were xest
0 D 1 and Cest

0 D I. In all implementations of CG
within CG-KF and CG-VKF, iterations were stopped once krkk< 10�6, signaling CG convergence,
where rk is the residual at iteration k. The maximum number of CG iterations was set to 50. As in
the previous example, the results were compared with the LBFGS versions [21, 22], and the same
optimization settings were used for LBFGS iterations.

The results are given in Figures 3–5. CG-KF and LBFGS-KF are compared in terms of root mean
square error in Figure 3, whereas CG-VKF and LBFGS-VKF are compared in Figure 4. In Figure 5,
a comparison of the forecast skill of the methods is given, where forecast skill is defined as the mean
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Figure 3. Root mean square error versus iteration for EKF, CG-KF, and LBFGS-KF.
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Figure 4. Root mean square error versus iteration for EKF, CG-VKF, and LBFGS-VKF.
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Figure 5. Forecast root mean square error versus iteration for EKF, CG-KF, CG-VKF, LBFGS-KF and
LBFGS-VKF.
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squared difference between the ‘truth’ and the forecast made with the model, scaled with 
clim (see
[21, 22] for details). The forecasts are started at every fourth filter step, starting from the 64th step
(when all filters have converged). All methods track quite closely with the KF estimates after a suf-
ficient number of iterations. However, CG implementations work better than the LBFGS versions,
which is especially visible in the forecast skill in Figure 5.

5. CONCLUSIONS

For large-scale examples, such as arise in weather forecasting and oceanography, the Kalman filter
can be prohibitively expensive to implement because it requires the solution of large linear sys-
tems and the storage of large, dense matrices. In this paper, we show how the conjugate gradient
(CG) algorithm can be used for both the approximate solution of large linear systems, as well as for
obtaining low-rank and low-storage approximations of matrices within KF.

Conjugate gradient is a standard iterative method for solving large, symmetric positive-definite
linear systems. CG iteration history can also be used to obtain approximations of the coefficient
matrix and its inverse. In p CG iterations, this inverse approximation will have rank p and requires
the storage of only p n-vectors. To obtain the approximation of the coefficient matrix itself, the
p � p tridiagonal Lanczos matrix Tk must be diagonalized, which can be efficiently done for p of
small-to-moderate size. Multiplication by these approximate matrices is also efficient. We make use
of these facts to define our approximate KF algorithms: CG-KF and CG-VKF.

More specifically, our implementation of CG-VKF made use of the CG approximation (11) once,
whereas CG-KF made use of both the CG approximation (11) and the Lanczos approximation (13).
The equivalence of (11) and (13) was made explicit and was used both in our numerical calculations
of Lanczos from CG, as well as in the brief theoretical analysis of the covariance approximations
contained in Section 3.4.

The resulting algorithms, which we have denoted the CG-KF and CG-VKF, are much more effi-
cient to implement than KF for the two numerical examples considered here—one large scale and
linear and the other medium scale and nonlinear—and provide results that are comparable. More-
over, in all of our tests, the CG-based approximate Kalman filters outperform the analogous limited
memory BFGS (LBFGS) approximate Kalman filters, introduced in [21, 22].
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