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Goal of the research: Determine a Coding Scheme: How does neural ensemble activity
represent information about sensory stimuli?

GOAL OF THIS TALK: Show how the Ergodic Theorem, and the Shannon-McMillan-
Breiman Theorem justify our approach

Some MATHEMATICAL CONCEPTS needed to understand the methodology:

e A quantizer is a stochasic map, and a reproduction space is the image of a quan-
tizer.

e Entropy
In Information Theory, the entropy of a random variable X is

H = E,logp(x)

The concept of entropy was first introduced in thermodynamics to provide a state-
ment of the second law of thermodynamics: the entropy of an isolated system is non-
decreasing. In information theory, entropy is desribed as a measure of:
1. The amount of information required on the average to describe a r.v. (Cover 18)
2. The number of possible states of a r.v. (Reike 105)
3. Variability (Reike 118), randomness (Durrett 61), uncertainty, or self information
of ar.v. (Cover 12)

e Joint and Conditional entropy are defined as:

H(X:Y) = Ez,ylogp(xay)
H(Y|X) = E;,logp(y|z)

so H(X,Y) = H(X)+ H(Y|X) = HY) + H(X|Y)

e Mutual Information

I(X,Y) = H(X)+H(Y)-H(X,Y)
p(z,y)

= 108 e n(y)

T,y

The amount of information that one r.v. contains about another r.v.. Also called the
relative entropy or Kullback Leibler distance of p(z,y) and p(x)p(y).

e The Typical Sequences (z1, 9,23, ..., ) are those that one “typically observes”
(with probability close to 1). Need SMB Theorem to formalize this.
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e What are the associated o-algebra’s for X and Y7

SO WHAT?? So now we can formulate a model and describe our methodology:

e Problem: It would take an inordinate amount of data to determine the coding scheme
between X and Y.

e The Model: Consider the problem of determining the coding scheme between X and
Y}, a quantization of Y, such that: Y} preserves as much mutual information with X
as possible and the entropy of Y|V is maximized.

e Optimization Techniques

e Results with cricket data

PROBABILITY THEORY

Why do we need it? Need justification for assuming things like:

e Averaging over time is equivalent to averaging over experiments
Justification: Ergodic Theorem - No matter when one starts observing the sequence
of r.v.’s, the resulting observation has the same probabilistic structure (Breiman 104).

e Typical Sequences
Justification: Shannon-McMillan-Breiman Theorem - One can divide the set of
all sequences into two sets, the typical set, where the sample entropy is close to the
true entropy, and the non-typical set, which contains all other sequences (Cover 50).

First, some necessary definitions

e {X;} is stationary if for each n and k, (X, ..., X,,) and (X, ..., Xx1n) have the same
distribution.

e A measurable transformation ¢ : Q — Q is measure preserving if P(p~'A) =
P(A) VAe F

e Aset A€ Fisinvariant if o 'A = A. Let Z = {A|A is invariant}
e A measurable transformation ¢ is ergodic if VA € Z, P(A) € {0,1}

e X; = X o' is said to be ergodic if ¢ is ergodic

ERGODIC THEOREM (Birkhoff 1931)

e ¢ is a measure preserving transformation on (Q, F, P) and X a r.v. with E(X) < oc.
Then

n—1

1 .
lim — X(Q'w)=FE(X|T) a.s.
Jim () = BOXD) s

(for proof, see Durrett 341-3, Breiman 113-115)



e Corollary: SLLN for ergodic processes - If ¢ is ergodic, then E(X|Z) = E(X).

SHANNON-McMILLAN-BREIMAN THEOREM (1948, 1953, 1957)
If X,,,n €Z, is an ergodic stationary sequence taking values in a finite set S, then

1
lim ——logp(Xo, X1,..., X 1) =H
n—oo n
where H = lim,,_,o, F(—logp(X,|Xn_1, ..., Xo)) is the entropy rate of {X,}.
Remark 1: The entropy rate is exactly the entropy when {X;} are independent

Remark 2: Shannon’s Theorem (1948) If {X,} are i.i.d. then

1
lim ——log p(X1, Xo, ..., X;,) = H(X) a.s.
n

n—0o0
where H = E, logp(X).
proof: SLLN
Proof:

e Yes! Three more definitions. Let
Hk = E(—]ng(Xk‘Xk_l,...,Xo))
= E(—logp(Xo|X_1,X_s,.., X_1)) by stationarity
Hoo = E(—]ng(Xo‘X_l,X_Q,...))

The k' Markovian approximation for k£ < n is

n—1

P (X0, X1, e, Xn1) = p(Xo, -or Xi—1) Hp(Xi|Xi—1: ooy Xick)

i=k
e IDEA: H gets sandwiched between Hy and H.

e Lemma 1 (Markov approximations):

1
lim ——logp*(Xq, X1, ..., Xp_1) = Hy a.s.

n—oo n

1
lim —— logp(XO,Xl, ...,Xn_1|X_1, X_Q, ) = Hoo a.S.
n—oo 1

proof: By the Ergodic Theorem and the definitions of H, and H,,

e Lemma 2 (No gap): H, \, Hy and H = H,
proof: Martingale Convergence Theorem and LDCT

e Lemma 3 (Sandwich):

P(Xo, X1, Xnt) _
(X0, X1, s Xn1) =

p(Xo, X1, vy Xn_1) <0
(X0, X1y X1 | X1, X0, ) —

1
(1) lim sup — - log
n

1
(17) lim sup — - log
n
proof: Chebyshev’s Inequality and Borel-Cantelli Lemma, 1
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Now we can formalize the concept of typical sequences:

e Given n,e > 0, the typical set A? with respect to X is defined as

A? = {(x1, T2y ooy Ty) € X”|2_”(H(x)+€) < p(xy, Tay ooy Tpy) < 2_”(H(X)_f)}

(1,22, ..., Tn) € A" is called typical sequence.

e Asymptotic Equipartition Property, merely a reformulation of SMB Theorem,
gives the following properties of typical sequences:

L If (x1, 22, ..., 2y) € A? then H(X) — e < —1p(zy, 29, ..., ) < H(X) + €

2. P(A?) > 1 — e for n sufficiently large
3. (1—¢)- 2—n(HX)—e) < (A7 < 2—”(H(x)+€)}

Thus the typical set has probability nearly 1, typical sequences are nearly equiprobable
and the number of typical sequences is nearly 2"7%
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