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1 \ector Spaces

Definition 1 Let V' be a nonempty set on which the operations of addition + and scalar
multiplication have been defined:

(i) u+v is defined Vu,v eV

(i) cu is defined Vu e V,Vee IR .

The set V' is called a vector space if additionally, Vu,v,w € V and Vb,c € IR the
following axioms hold:

(Al) u+veV V' closed under addition

(A2) u+v=v+u addition is commutative

(A3) u+(v+w)=(u+v)+w addition is associative

(Ad) 30 € Vsuchthatu+0=u existence of a zero vector

(A5) I —u €V suchthatu+ (—u) =0 existence of a negative element

(A6) cueV closed under scalar multiplication
(A7)  clu+v)=cu+cv distributive property |

(A8) (b+c)u=bu+cu distributive property Il

(A9)  ¢(Bu) = (cB)u commutativity of scalar multiplication
(A10) lu=u scalar multiplication identity element

Sometimes the symbols & and ® will be used to denote vector addition and scalar
multiplication, respectively.

Example 1 : Let
V={u:u=(u,u) € R?*}

and

udv = (up+v+1Lus+wve+1)

cOu = cu=(cup,cus)
It is easy to show axioms (A1)-(A3) are satisfied. For instance
ut (v+w)=(u+v)+w=(u +v1 +w +2,up +v2 +wsy+2)
Also, (A6) and (A8)-(A10) are simple to verify. (A7) is not satisfied since

clu+v) = (cus +cvr+ ¢ cug + cva +¢)
cut+cv = (cup+cvp+1,cus +cog+1)

implies ¢c(u+v) # cu+ cv for all c. Moreover, (A4) is not satisfied and therefore (A5)
is not either. V' is not a vector space.



Some Common Vector spaces:

R" the set of all ordered n-tuples of real numbers

M, = IR™*™  the set of all real m by n matrices

P, the set of all n-th degree polynomials

C(IR) the set of all continuous functions on IR

C"(IR) the set of all functions on IR with n continous derivatives

C*(R) the set of all functions on IR with continuous derivatives of all orders
F(IR) the set of all function defined on IR

Note that the function spaces are subsets:

P, c C(R) c CY(R) c C*(IR) C ---C*(R) C F(R)



2 Basic Definitions:

In all of the following V' is a vector space:

Definition 2 TV is a subspace of V' if

a WcVv (subset)
b) uveW=u+veW (closureunder addition)
) ueW,celR=cueW (closure under scalar addition)

This theorem implies W is also a vector space (see text).

Definition 3 w € V is a linear combination of vy, ...v,, € V if d¢;, € IR such that

W =cC1V] + vy + vy
Definition 4 Let S = {vy,va,...v,} C V.
span(S) = {W eV :w= chvk for some ¢, € IR}
k=1

Inwords, W = span(S) is the set of all linear combinations of the vectors vy, va, ... v,,.
Note that 17 is a subspace of V.

Definition 5 Aset S = {vy,va,...v,} C Vis linearly independent if

cvit+ceveot-e,vy, =0 = =0 , Vk=1,...n.

If S is not linearly independent S is said to be linearly dependent.

If S is (linearly) dependent then at least one vector v € S is a linear combination of
the remaining vectors.
Definition 6 Aset £ = {e;,es,...e,} C V isbasis for V if

a) FEislinearly independent

b) V = span(FE)

By a theorem, if E = {e1, eq,...e,} isabasis for V then for every v € V there
are unique scalars ¢y, . . . ¢, such that

vV =ce; +- --cpe,
Moreover, if
w=bie; +---be,

then
V#EWS (C1,...,6) 7 (b1,...,bp)
This permitts the following definition.



Definition 7 The coordinate (v) g of v € V relative to the basis £ = {e1,es,...e,}
is that unique ¢ = (c1,...¢,) € R™" suchthat v =cjey + -+ - cpep, i€,

c=WV)g = v=ce + e,

Definition 8 If E = {e1,es,...e,}isabasisfor V and 1 < n < oo then V is said
to be finite dimensional with dimension

dim(V) =n

If V= {0} then dim(V') = 0.



3 Basic Theorems for spanning, dependence and bases:

Theorem 1 Let V' be a vector space with dim(V') = n < oo, having basis

E={e,...e,},

W be any subspace of V" and let

S={vy,...vg} CV

be a finite collection of & vectors. Further define the set of coordinate vectors:

S = {(Vl)E7--~(Vk)E} cR™.

Then,
S dependent dv € Ssuch that v € span(S — {v}).
k>n S dependent
k<mn S does not span V'

v ¢ span(S) and S independent

St = S U{v} independent

v € span(S™) = span(S — {v})

span(S) = span(S™)

V = span(9) 35— c §,S abasisforV
V = span(S)and k = n S a basis for V'

S independentand k = n S a basis for V

dim(W) < dim(V)

dim(W) = dim(V) V=W

S independent in V'

Sg independent in IR"™

V =span(S)and k =n

R" = span(Sg)




4 Matrices and their Subspaces:

In the following A, B € IR"*™ are matrices, x ¢ IR" and y,b € IR"™. We shall
define r; to be the row vectors of A and c; to be the column vectors so that

For any matrix, its transpose A” is defined by
A" = ;1]
Important properties of the transpose are
(A+B)T = AT+ BT
(AB)T = BTAT

For square matrices A, B € IR™*™ having inverses A~! and B, respectively,

(AB)™' = B7'A-1

(A—l)T _ (AT)—l
A simple proof of the latter can be seen from the calculations:
= A'b
_ bT(A—l)T
_ XTAT(A—l)T
_ AT(Afl)T

, VX

»
~ 8 83X

Also, for any matrix one can define the four fundamental subspaces:

Definition 9 The four fundamantal subspaces of A are

row(A) = span{ri,ra,...r,} CIR"
col(A) = spanfcy,ca,...Cp} CIR™
N(A) = {x:Ax=0}CcR"
N(AT) = {y:ATy=0}CcR"

Note that row(AT) and col(A™T) have not been included since for every A € IR™*",
col(A) = row(AT) .

Bases for row(A), col(A) and N(A) can all be found by row reducing A to its upper
echelon form U.



Definition 10 Two matrices A, B € IR™*" are said to be row equivalent if a finite
number of row operations (addition, multiplication and permutation) convert A to B.
When such matrices are row equivalent we write

A~ B.
Theorem 2

A~B = row(A)=row(B)
A~B = N(A)=N(B)

Row operations do not preserve the column space. For instance
1 0 0 0
=laa]~e-[1 0]
by a simple permutation of rows but clearly col(A) # col(B).

Definition 11 Let A € IR™*™ and b € IR™. A system Ax = b is consistent if it has
a solution.

Theorem 3 (General Solutions) Let A € R™*"™ and b € IR™,
AXO = b.

Then,
Ax=b = 3Ive N(A) suchthatx =x¢+ V.

Here x, is called a particular solution and v is the homogeneous solution. Written
another way, if x, is “a” solution and x is any other solution then there exists constants
c1, ... cy such that

X = XoC1V] + - Ck Vg

where

E={vy,...vi}
is a basis for N(A). Also, conversely, if Axo = b, v € N(A4) and x = xo + v then
Ax = b.

Next we describe one method for finding bases for row(A), N(A) and col(A). Sup-
pose that after row reduction one reduces A to U having the form:

1 % % % % % u;
0 0 1 % % =« us
A~U=|[0 0 0 1 % % |= us
0 00 0 01 uy
0 0 0 0 0O 0

In this example, there are 4 pivots (leading ones in rows). A basis E(row(A)) for
row(A) is the four non-zero row vectors of U, i.e.,

E(row(A)) = {u1,uz,us,us}



from which we know dim(row(A)) = 4. Also, the 4 pivots in U occur in columns
1,3,4 and 6. A basis E(col(A)) for col(A) is the 175t 374 47th and 6" columns of A,
i.e.

E(col(A)) = {c1,c3,¢4,¢6}

The columns of U which contain no pivots correspond to free variables. There are 2
free variables x5 and x5 since columns 2 and 5 contain no pivots. This means that by
backsolving Ux = 0, the remaining variables can be written in terms of x5 and xs5.
This procedure implies that any solution of Ux = 0 can be written in the form

X = T1V] + ZaVo
where the vectors vy, v, form a basis E(N(A)) for N(A), i.e.,
E(N(4)) = {vi,v2}
A basis for N (AT is found by row reducing A7 and applying a similar procedure.

Note that an alternate method for finding a basis for col(A) uses the fact that col(A) =
row(AT). Thus, by finding a basis for row(AT) thru row reduction of A%, one is
actually finding a basis for col(A).

Knowing these methods for finding bases we have the following definitions and Theo-
rem.

Definition 12

rank(A) = dim(row(A))
nullity(A) = dim(N(A))

Theorem 4 Letr = rank(A)and A € R™*".

dim(row(A)) T
dim(col(A)) = r
dim(N(A)) = n—r

dim(N(AT)) = m—r



5 Linear Transformations on IR"

Definition 13 A linear transformation 7" on IR" is a function 7" : IR" — IR™ such
that

T(x) = Ax

for some matrix A € IR™*"™. The matrix A is called the standard matrix associated
with T" which we notationally denote

[T)=A
so that T'(x) = [T]x.

This definition implies certain algebraic properties about linear transformations on IR"™:
Theorem 5 T : IR™ — IR™ is a linear transformation if and only if

(a) Tx+y) = Tx)+T(y) , Vx,yeR" 1)
(b)) T(kx) = kT(x) , vxeR"WVkelR 2

This equivalence mean that properties a)-b) of the Theorem could be used to define lin-
ear transformations on IR™. Later, this will be the definition for linear transformations
on abstract vector spaces V.

Definition 14 Let f be a function from X into Y, i.e., f : X — Y. The domain D(f)
of f is defined by:
D(f) ={x€ X : f(x) is defined}
The range R(f) of f is defined by:
R(f)={yeY:y=f(x) for somex € X}

In this setting Y is called the codomain of f. Also, if y = f(x) for some x € D(f),
then y is the image of x under f.

Note that if 7" is a linear transformation on IR", D(T") = IR". In general, however,
R(T) Cc IR™.

Definition 15 The function f : X — Y is1 — 1 on D(f) if
Vx1,x2 € D(f), , [f(x1)=f(x2) =x1=x

Definition 16 If f : X — Y is 1-1 on D(f) then f has aninverse f~! : ¥ — X
where D(f~!) = R(f) and

f_l(f(x)):f(f_l(x))zxv ’ VXED(f)

For linear transformations 7" on IR™ that are 1-1, the inverse of T is denoted 7—! and



Theorem 6 Let T : IR" — IR" and T'(x) = [T]x = Ax. Then, the following are
equivalent:

a) Tis1-1

b) A isinvertible

0) N(4) = {0}

d) Ax = b s consistent Vb € IR".
e) det(A) #0

f) R(T) = col(A) = row(A) = R"
g) rank(A) =n

h) nullity(A) =0

If the standard basis vectors for IR™ are eq,. .. e, then we have the following useful
Theorem for determining the standard matrix [7T'] of a linear transformation 7":

Theorem 7 Let 7T : IR™ — IR™ be a linear transformation. Then,

11



6 Inner Products

Definition 17 Let V' be a vector space. By an inner product on V' we mean a real
valued function < u,v > on V x V which satisfies the following axioms:

a) <uv>=<v,u> , VYuveV

b) <u+w,ve>=<uv>+<w,v> , Yuv,welV
) <kwuv>=k<uv> , VYVuveVkelR

d <uu>>0 , YVueV

e) <uu>=0<u=0
If V has an inner product defined on it then V' is said to be an inner product space.

In the definition above since < u,v > and k are real, V' is sometimes said to be
an inner product space over the real field. In this case, if f(u,v) =< u,v > then
f:V xV — IR. However, if < u,v > and k are complex numbers, V" is an inner
product space over the complex field where a) and c) are replaced by

) <uyv>=<v,u> , VYuveV
¢) <kuv>=k<uv> , YuveVkeC

and ( ) denotes complex conjugate.

Below we give examples of several inner product spaces. In these examples, note that
V' may have many different inner products.

Example 2 Scalar multiplicationon V' = IR:
< U,V >=uv

Example 3 Euclidean inner producton V = 1R":
n
< U,V >= UV + ... UpUp = Zuivi
=1

This is also known as the dot product and notationally written
<u,v>=u-v

Considering u, v € IR"*! as matrices, this can equivalently be written

<u,vVv>= ulv

Example 4 Weighted Euclidean inner producton V' = IR". Let w; > 0, Vi.

n
< W,V >=wiuiv1 + ... Wpluply = g Wi Ui Vs
i=1

12



Example 5 Matrix induced inner product on V" = IR™: Let A € IR™*" have an
inverse.
<u,v >= (Au) - (Av) = (Au)T(4v)

Example 6 An inner product spaceon V = M,,,, n > 1.
<u,v>=Tr(u’v)

where if A € R™*" = [a;;], the trace T'r(A) is the sum of its diagonal elements, i.e.,

Tr(A) =ai1+...0n, = Za“
i=1

Example 7 Other inner products on V' = M,,,,, n > 1. For every element v € V one
. . 2
can define a unique element v € IR™ as follows:

Then if we let < @, v >R~ be any inner product on IR™ we define the inner product on
V as follows:
<u,v>=< U,V >Rn

If one chooses < 1, v >R~ to be the Euclidean inner product on IR", the definition
above yields the same inner product described in Example 6, i.e.,

<u,v>=< 0,V >geo=Tr(u’v)

Example 8 L? inner product on the function space V = C[a, b]:

<mv>=LZ@W@M¢

Example 9 Weighted L2 inner product on the function space V' = C|a, b]. Letw(z) >
0,w € Cla, b], then

b
<u,v >=/ w(z)u(z)v(z)d

We now make an observation that if V' = IR"™ then for each fixed v
Ty(u) =<u,v >
is a linear transformation from IR" into IR, i.e., T, : IR™ — IR. This fact follows from

b) and c) in the definition of the inner product.

13



7 Norms induced by Inner products
A norm on any vector space is defined by:
Definition 18 We say || « || is @ norm on a vector space V' if Vu,v € V and « € IR,
a) |l oufl=laf | u|
b) [ w]=0
C) [ul|=0<u=0
d lut+ol<ul+ o]
If V is an inner product space then
lull=v<uu>

is the inner product induced norm for V. That this norm satisifies a)-c) in the above
definition is easy to see. Showing the triangle inequality d) is satisfied requires the
Cauchy-Schwartz inequality, however.

Theorem 8 Let V' be an inner product space and assume || « || is the inner product
induced norm. Then

| <uw,o>|<[ulllv| , Yu,veV

Proof: If w = 0 equality is attained so the statement is true. Thus, assume u # 0
and define P(t) =|| tu + v ||2. By properties of inner products we have

Pt)=at* +2bt +c=[u [Pt +2 <u,v>t+ ||v]?
Since P(t) > 0 and is quadratic in ¢ it has either one root or no roots. In either case
¥ —ac<0

Written another way,
<wuo >l u [P v |2

from which the result follows.
With this we now state

Theorem 9 Let V be an inner product space and let

|ul|=vV<u,u>

Then || u || definesanormon V.

14



Proof: We only verify d) since a)-c) are trivial. Let u,v € V. Then

|| +2 < u,v >+ || v|?
lul? 42 <w,o> |+ o
Full>+2 [ w vl +v]?
(wl+ vl

lu+wv |

ININ A

from which the result follows.

Example 10 Euclidean normon V =1R".

luli= fud g+ a2

Example 11 L% normon V = C|a, b].

b
lul=y/ [ u(o)ds
Example 12 Normon V = M,,,.
[ wll=/Tr(u"u)

Given every inner product space has a norm, every inner product space is also a
metric space with metric (or “distance™)

d(u,v) = u—v |

8 Orthogonality
Definition 19 Let V be an inner product space. u,v € V are said to be orthorgonal if
<u,v>=0

For any subspace W of V/, one can define the space of vectors which are orthogonal to
every element of W

Definition 20 Let V' be an inner product space and W be a subspace of V. Then, the
orthogonal complement W+ of W is

Wt={veV:<v,w>=0, Ywe W}

The following Theorem (withour proof) summarizes several important facts about or-
thogonal complements:

15



Theorem 10 Let V be a finite dimensional inner product space and X, Y, W be sub-
spaces of V. Then

a) {0}t =V

b) W+ is a subspace of V.
c) Wnwt = {0}

d) (W)t =w.

e) XCcY=YtcXt

A very important Theorem in linear algebra relates to the four fundamental matrix
subspaces.

Theorem 11 (Orthogonality of Matrix Subspaces) Let A € IR™*™ and let orthogonal
complements be defined using the Euclidean inner product. Then,

a) row(A) = N(A)*
b) col(A) = N(AT)+

From this arises the Fredholm Alternative 1 on IR™:

Theorem 12 Let A € IR™*"™, b € IR™. Then
Az = b has a solution x & <v,b>=0, Yo N(AT)

A further large result is that W and W+ can be used to “decompose” a finite dimen-
sional space into two parts. To make this precise we first make the following defini-
tions:

Definition 21 Let X,Y C V where V is a vector space. Then, the set X +Y" is defined
as all possible sums of elements in X and Y':

X+Y={z+y:zeX,yeY}
Definition 22 Let V' be a vector space and suppose
i) X,Y are subspaces of V.
i) XNY ={0}
i) V=X+Y
then X + Y is called a direct sum of X and Y and we write
V=XaY

Now we state the decomposition Theorem:

Ltechnically this is only part of the “alternative”

16



Theorem 13 Let W be a subspace of a finite dimensional inner product space V.
Then,
V=WaeWw

Moreover, for every v € V' there exist unique w € W and w* € W+ such that
V=W + wt

Here the unique w € W is called the projection of v onto W and is denoted:
w = Projwou

When applied to the fundamental matrix subspaces, this Theorem implies for any ma-
trix A € R™*"

R" = row(4)® N(A)
R™ col(A) @ N(AT)

17



9 Appendix on Symbol Notations

= equals

= is defined as

= implies

& is equivalent to

3 there exists

4 for all

€ is an element of

U union

N intersect

C subset or proper subset
- subset

+ vector addition

® vector addition or direct sum
© scalar multiplication

dot product or scalar multiplication
Il | norm of u
b sum
oW Ul F U2+ ..Uy

d(u,v) distance between u and v
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