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1 Vector Spaces

Definition 1 Let V be a nonempty set on which the operations of addition + and scalar
multiplication have been defined:

(i) u + v is defined ∀u,v ∈ V
(ii) cu is defined ∀u ∈ V,∀c ∈ IR .

The set V is called a vector space if additionally, ∀u,v,w ∈ V and ∀b, c ∈ IR the
following axioms hold:

(A1) u + v ∈ V V closed under addition
(A2) u + v = v + u addition is commutative
(A3) u + (v + w) = (u + v) + w addition is associative
(A4) ∃0 ∈ V such that u + 0 = u existence of a zero vector
(A5) ∃ − u ∈ V such that u + (−u) = 0 existence of a negative element
(A6) cu ∈ V closed under scalar multiplication
(A7) c(u + v) = cu + cv distributive property I
(A8) (b + c)u = bu + cu distributive property II
(A9) c(βu) = (cβ)u commutativity of scalar multiplication
(A10) 1u = u scalar multiplication identity element

Sometimes the symbols ⊕ and ¯ will be used to denote vector addition and scalar
multiplication, respectively.

Example 1 : Let
V = {u : u = (u1, u2) ∈ IR2}

and

u ⊕ v ≡ (u1 + v1 + 1, u2 + v2 + 1)

c ¯ u ≡ cu = (cu1, cu2)

It is easy to show axioms (A1)-(A3) are satisfied. For instance

u + (v + w) = (u + v) + w = (u1 + v1 + w1 + 2, u2 + v2 + w2 + 2)

Also, (A6) and (A8)-(A10) are simple to verify. (A7) is not satisfied since

c(u + v) = (cu1 + cv1 + c, cu2 + cv2 + c)

cu + cv = (cu1 + cv1 + 1, cu2 + cv2 + 1)

implies c(u+v) 6= cu+ cv for all c. Moreover, (A4) is not satisfied and therefore (A5)
is not either. V is not a vector space.
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Some Common Vector spaces:

IRn the set of all ordered n-tuples of real numbers
Mmn = IRm×n the set of all real m by n matrices
Pn the set of all n-th degree polynomials
C(IR) the set of all continuous functions on IR
Cn(IR) the set of all functions on IR with n continous derivatives
C∞(IR) the set of all functions on IR with continuous derivatives of all orders
F (IR) the set of all function defined on IR

Note that the function spaces are subsets:

Pn ⊂ C(IR) ⊂ C1(IR) ⊂ C2(IR) ⊂ · · ·C∞(IR) ⊂ F (IR)
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2 Basic Definitions:

In all of the following V is a vector space:

Definition 2 W is a subspace of V if

a) W ⊂ V (subset)
b) u,v ∈ W ⇒ u + v ∈ W (closure under addition)
c) u ∈ W, c ∈ IR ⇒ cu ∈ W (closure under scalar addition)

This theorem implies W is also a vector space (see text).

Definition 3 w ∈ V is a linear combination of v1, . . .vn ∈ V if ∃ck ∈ IR such that

w = c1v1 + c2v2 + · · · cnvn

Definition 4 Let S = {v1,v2, . . .vn} ⊂ V .

span(S) ≡
{

w ∈ V : w =
n
∑

k=1

ckvk for some ck ∈ IR

}

In words, W = span(S) is the set of all linear combinations of the vectors v1,v2, . . .vn.
Note that W is a subspace of V .

Definition 5 A set S = {v1,v2, . . .vn} ⊂ V is linearly independent if

c1v1 + c2v2 + · · · cnvn = 0 ⇒ ck = 0 , ∀k = 1, . . . n.

If S is not linearly independent S is said to be linearly dependent.

If S is (linearly) dependent then at least one vector v ∈ S is a linear combination of
the remaining vectors.

Definition 6 A set E = {e1, e2, . . . en} ⊂ V is basis for V if

a) E is linearly independent
b) V = span(E)

By a theorem, if E = {e1, e2, . . . en} is a basis for V then for every v ∈ V there
are unique scalars c1, . . . cn such that

v = c1e1 + · · · cnen

Moreover, if
w = b1e1 + · · · bnen

then
v 6= w ⇔ (c1, . . . , cn) 6= (b1, . . . , bn)

This permitts the following definition.
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Definition 7 The coordinate (v)E of v ∈ V relative to the basis E = {e1, e2, . . . en}
is that unique c = (c1, . . . cn) ∈ IRn such that v = c1e1 + · · · cnen, i.e.,

c = (v)E ⇒ v = c1e1 + · · · cnen

Definition 8 If E = {e1, e2, . . . en} is a basis for V and 1 ≤ n < ∞ then V is said
to be finite dimensional with dimension

dim(V ) = n

If V = {0} then dim(V ) = 0.
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3 Basic Theorems for spanning, dependence and bases:

Theorem 1 Let V be a vector space with dim(V ) = n < ∞, having basis

E = {e1, . . . en},

W be any subspace of V and let

S = {v1, . . .vk} ⊂ V

be a finite collection of k vectors. Further define the set of coordinate vectors:

SE = {(v1)E , . . . (vk)E} ⊂ IRn .

Then,

S dependent ⇔ ∃v ∈ S such that v ∈ span(S − {v}).

k > n ⇒ S dependent

k < n ⇒ S does not span V

v /∈ span(S) and S independent ⇒ S+ ≡ S ∪ {v} independent

v ∈ span(S−) ≡ span(S − {v}) ⇒ span(S) = span(S−)

V = span(S) ⇒ ∃S− ⊂ S , S− a basis for V

V = span(S) and k = n ⇒ S a basis for V

S independent and k = n ⇒ S a basis for V

dim(W ) ≤ dim(V )

dim(W ) = dim(V ) ⇒ V = W

S independent in V ⇔ SE independent in IRn

V = span(S) and k = n ⇔ IRn = span(SE)
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4 Matrices and their Subspaces:

In the following A, B ∈ IRm×n are matrices, x ∈ IRn and y,b ∈ IRm. We shall
define ri to be the row vectors of A and cj to be the column vectors so that

A = [aij ] =









· · · · · · r1 · · · · · ·
· · · · · · r2 · · · · · ·
· · · · · · · · · · · · · · ·
· · · · · · rm · · · · · ·









=











...
...

...
...

c1 c2

... cn

...
...

...
...











For any matrix, its transpose AT is defined by

AT = [aji]

Important properties of the transpose are

(A + B)T = AT + BT

(AB)T = BT AT

For square matrices A,B ∈ IRn×n having inverses A−1 and B−1, respectively,

(AB)−1 = B−1A−1

(A−1)T = (AT )−1

A simple proof of the latter can be seen from the calculations:

x = A−1b

xT = bT (A−1)T

xT = xT AT (A−1)T , ∀x
I = AT (A−1)T .

Also, for any matrix one can define the four fundamental subspaces:

Definition 9 The four fundamantal subspaces of A are

row(A) ≡ span{r1, r2, . . . rm} ⊂ IRn

col(A) ≡ span{c1, c2, . . . cm} ⊂ IRm

N(A) ≡ {x : Ax = 0} ⊂ IRn

N(AT ) ≡ {y : AT y = 0} ⊂ IRm

Note that row(AT ) and col(AT ) have not been included since for every A ∈ IRm×n,

col(A) = row(AT ) .

Bases for row(A), col(A) and N(A) can all be found by row reducing A to its upper
echelon form U .
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Definition 10 Two matrices A,B ∈ IRm×n are said to be row equivalent if a finite
number of row operations (addition, multiplication and permutation) convert A to B.
When such matrices are row equivalent we write

A ∼ B .

Theorem 2

A ∼ B ⇒ row(A) = row(B)

A ∼ B ⇒ N(A) = N(B)

Row operations do not preserve the column space. For instance

A =

[

1 0
0 0

]

∼ B =

[

0 0
1 0

]

by a simple permutation of rows but clearly col(A) 6= col(B).

Definition 11 Let A ∈ IRm×n and b ∈ IRm. A system Ax = b is consistent if it has
a solution.

Theorem 3 (General Solutions) Let A ∈ IRm×n and b ∈ IRm,

Ax0 = b .

Then,
Ax = b ⇒ ∃v ∈ N(A) such that x = x0 + v .

Here x0 is called a particular solution and v is the homogeneous solution. Written
another way, if x0 is “a” solution and x is any other solution then there exists constants
c1, . . . ck such that

x = x0c1v1 + · · · ckvk

where
E = {v1, . . .vk}

is a basis for N(A). Also, conversely, if Ax0 = b, v ∈ N(A) and x = x0 + v then
Ax = b.

Next we describe one method for finding bases for row(A), N(A) and col(A). Sup-
pose that after row reduction one reduces A to U having the form:

A ∼ U =













1 ∗ ∗ ∗ ∗ ∗
0 0 1 ∗ ∗ ∗
0 0 0 1 ∗ ∗
0 0 0 0 0 1
0 0 0 0 0 0













=













. . . u1 . . .

. . . u2 . . .

. . . u3 . . .

. . . u4 . . .

. . . 0 . . .













In this example, there are 4 pivots (leading ones in rows). A basis E(row(A)) for
row(A) is the four non-zero row vectors of U , i.e.,

E(row(A)) = {u1,u2,u3,u4}
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from which we know dim(row(A)) = 4. Also, the 4 pivots in U occur in columns
1,3,4 and 6. A basis E(col(A)) for col(A) is the 1rst, 3rd, 4rth and 6th columns of A,
i.e.,

E(col(A)) = {c1, c3, c4, c6}
The columns of U which contain no pivots correspond to free variables. There are 2
free variables x2 and x5 since columns 2 and 5 contain no pivots. This means that by
backsolving Ux = 0, the remaining variables can be written in terms of x2 and x5.
This procedure implies that any solution of Ux = 0 can be written in the form

x = x1v1 + x2v2

where the vectors v1,v2 form a basis E(N(A)) for N(A), i.e.,

E(N(A)) = {v1,v2}

A basis for N(AT ) is found by row reducing AT and applying a similar procedure.

Note that an alternate method for finding a basis for col(A) uses the fact that col(A) =
row(AT ). Thus, by finding a basis for row(AT ) thru row reduction of AT , one is
actually finding a basis for col(A).

Knowing these methods for finding bases we have the following definitions and Theo-
rem.

Definition 12

rank(A) ≡ dim(row(A))

nullity(A) ≡ dim(N(A))

Theorem 4 Let r = rank(A) and A ∈ IRm×n.

dim(row(A)) = r

dim(col(A)) = r

dim(N(A)) = n − r

dim(N(AT )) = m − r
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5 Linear Transformations on IR
n

Definition 13 A linear transformation T on IRn is a function T : IRn → IRm such
that

T (x) = Ax

for some matrix A ∈ IRm×n. The matrix A is called the standard matrix associated
with T which we notationally denote

[T ] = A

so that T (x) = [T ]x.

This definition implies certain algebraic properties about linear transformations on IRn:

Theorem 5 T : IRn → IRm is a linear transformation if and only if

(a) T (x + y) = T (x) + T (y) , ∀x,y ∈ IRn (1)

(b) T (kx) = kT (x) , ∀x ∈ IRn,∀k ∈ IR (2)

This equivalence mean that properties a)-b) of the Theorem could be used to define lin-
ear transformations on IRn. Later, this will be the definition for linear transformations
on abstract vector spaces V .

Definition 14 Let f be a function from X into Y , i.e., f : X → Y . The domain D(f)
of f is defined by:

D(f) = {x ∈ X : f(x) is defined}
The range R(f) of f is defined by:

R(f) = {y ∈ Y : y = f(x) for some x ∈ X}

In this setting Y is called the codomain of f . Also, if y = f(x) for some x ∈ D(f),
then y is the image of x under f .

Note that if T is a linear transformation on IRn, D(T ) = IRn. In general, however,
R(T ) ⊂ IRm.

Definition 15 The function f : X → Y is 1 − 1 on D(f) if

∀x1,x2 ∈ D(f), , f(x1) = f(x2) ⇒ x1 = x2

Definition 16 If f : X → Y is 1-1 on D(f) then f has an inverse f−1 : Y → X
where D(f−1) = R(f) and

f−1(f(x)) = f(f−1(x)) = x, , ∀x ∈ D(f)

For linear transformations T on IRn that are 1-1, the inverse of T is denoted T−1 and

[T−1] = [T ]−1 .
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Theorem 6 Let T : IRn → IRn and T (x) = [T ]x = Ax. Then, the following are
equivalent:

a) T is 1-1

b) A is invertible

c) N(A) = {0}

d) Ax = b is consistent ∀b ∈ IRn.

e) det(A) 6= 0

f) R(T ) = col(A) = row(A) = IRn

g) rank(A) = n

h) nullity(A) = 0

If the standard basis vectors for IRn are e1, . . . en then we have the following useful
Theorem for determining the standard matrix [T ] of a linear transformation T :

Theorem 7 Let T : IRn → IRm be a linear transformation. Then,

[T ] =











...
...

...
...

T (e1) T (e2)
... T (en)

...
...

...
...










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6 Inner Products

Definition 17 Let V be a vector space. By an inner product on V we mean a real
valued function < u, v > on V × V which satisfies the following axioms:

a) < u,v >=< v,u > , ∀u,v ∈ V

b) < u + w,v >=< u,v > + < w,v > , ∀u,v,w ∈ V

c) < ku,v >= k < u,v > , ∀u,v ∈ V, k ∈ IR

d) < u,u > ≥ 0 , ∀u ∈ V

e) < u,u >= 0 ⇔ u = 0

If V has an inner product defined on it then V is said to be an inner product space.

In the definition above since < u,v > and k are real, V is sometimes said to be
an inner product space over the real field. In this case, if f(u,v) ≡< u,v > then
f : V × V → IR. However, if < u,v > and k are complex numbers, V is an inner
product space over the complex field where a) and c) are replaced by

a’) < u,v >= < v,u > , ∀u,v ∈ V

c’) < ku,v >= k̄ < u,v > , ∀u,v ∈ V, k ∈ IC

and (̄ ) denotes complex conjugate.

Below we give examples of several inner product spaces. In these examples, note that
V may have many different inner products.

Example 2 Scalar multiplication on V = IR:

< u, v >= uv

Example 3 Euclidean inner product on V = IRn:

< u, v >= u1v1 + . . . unvn =
n
∑

i=1

uivi

This is also known as the dot product and notationally written

< u,v >= u · v

Considering u,v ∈ IRn×1 as matrices, this can equivalently be written

< u,v >= uT v

Example 4 Weighted Euclidean inner product on V = IRn. Let ωi > 0,∀i.

< u,v >= ω1u1v1 + . . . ωnunvn =

n
∑

i=1

ωiuivi
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Example 5 Matrix induced inner product on V = IRn: Let A ∈ IRn×n have an
inverse.

< u,v >= (Au) · (Av) = (Au)T (Av)

Example 6 An inner product space on V = Mnn, n ≥ 1.

< u,v >= Tr(uT v)

where if A ∈ IRn×n = [aij ], the trace Tr(A) is the sum of its diagonal elements, i.e.,

Tr(A) = a11 + . . . ann =

n
∑

i=1

aii

Example 7 Other inner products on V = Mnn, n ≥ 1. For every element v ∈ V one
can define a unique element v̂ ∈ IRn2

as follows:

v = [vij ] ⇒ v̂ =





















v11

...
v1n

v21

...
vnn





















Then if we let < û, v̂ >IRn be any inner product on IRn we define the inner product on
V as follows:

< u,v >=< û, v̂ >IRn

If one chooses < û, v̂ >IRn to be the Euclidean inner product on IRn, the definition
above yields the same inner product described in Example 6, i.e.,

< u,v >=< û, v̂ >IRn= Tr(uT v)

Example 8 L2 inner product on the function space V = C[a, b]:

< u,v >=

∫ b

a

u(x)v(x)dx

Example 9 Weighted L2 inner product on the function space V = C[a, b]. Let ω(x) >
0, ω ∈ C[a, b], then

< u,v >=

∫ b

a

ω(x)u(x)v(x)dx

We now make an observation that if V = IRn then for each fixed v

Tv(u) ≡< u,v >

is a linear transformation from IRn into IR, i.e., Tv : IRn → IR. This fact follows from
b) and c) in the definition of the inner product.
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7 Norms induced by Inner products

A norm on any vector space is defined by:

Definition 18 We say ‖ u ‖ is a norm on a vector space V if ∀u, v ∈ V and α ∈ IR,

a) ‖ αu ‖= |α| ‖ u ‖

b) ‖ u ‖≥ 0

c) ‖ u ‖= 0 ⇔ u = 0

d) ‖ u + v ‖≤‖ u ‖ + ‖ v ‖

If V is an inner product space then

‖ u ‖≡ √
< u, u >

is the inner product induced norm for V . That this norm satisifies a)-c) in the above
definition is easy to see. Showing the triangle inequality d) is satisfied requires the
Cauchy-Schwartz inequality, however.

Theorem 8 Let V be an inner product space and assume ‖ u ‖ is the inner product
induced norm. Then

| < u, v > | ≤‖ u ‖‖ v ‖ , ∀u, v ∈ V

Proof: If u = 0 equality is attained so the statement is true. Thus, assume u 6= 0
and define P (t) =‖ tu + v ‖2. By properties of inner products we have

P (t) = at2 + 2bt + c =‖ u ‖2 t2 + 2 < u, v > t+ ‖ v ‖2

Since P (t) ≥ 0 and is quadratic in t it has either one root or no roots. In either case

b2 − ac ≤ 0

Written another way,
< u, v >2≤‖ u ‖2‖ v ‖2

from which the result follows.
With this we now state

Theorem 9 Let V be an inner product space and let

‖ u ‖≡ √
< u, u >

Then ‖ u ‖ defines a norm on V .
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Proof: We only verify d) since a)-c) are trivial. Let u, v ∈ V . Then

‖ u + v ‖2 = ‖ u ‖2 +2 < u, v > + ‖ v ‖2

≤ ‖ u ‖2 +2| < u, v > |+ ‖ v ‖2

≤ ‖ u ‖2 +2 ‖ u ‖‖ v ‖ + ‖ v ‖2

≤ (‖ u ‖ + ‖ v ‖)2

from which the result follows.

Example 10 Euclidean norm on V = IRn.

‖ u ‖=
√

u2
1 + u2

2 + · · · + u2
n

Example 11 L2 norm on V = C[a, b].

‖ u ‖=

√

∫ b

a

u(x)2dx

Example 12 Norm on V = Mnn.

‖ u ‖=
√

Tr(uT u)

Given every inner product space has a norm, every inner product space is also a
metric space with metric (or “distance”)

d(u, v) =‖ u − v ‖

8 Orthogonality

Definition 19 Let V be an inner product space. u, v ∈ V are said to be orthorgonal if

< u, v >= 0

For any subspace W of V , one can define the space of vectors which are orthogonal to
every element of W :

Definition 20 Let V be an inner product space and W be a subspace of V . Then, the
orthogonal complement W⊥ of W is

W⊥ = {v ∈ V :< v,w >= 0 , ∀w ∈ W}

The following Theorem (withour proof) summarizes several important facts about or-
thogonal complements:
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Theorem 10 Let V be a finite dimensional inner product space and X,Y,W be sub-
spaces of V . Then

a) {0}⊥ = V

b) W⊥ is a subspace of V .

c) W ∩ W⊥ = {0}

d) (W⊥)⊥ = W .

e) X ⊂ Y ⇒ Y ⊥ ⊂ X⊥

A very important Theorem in linear algebra relates to the four fundamental matrix
subspaces.

Theorem 11 (Orthogonality of Matrix Subspaces) Let A ∈ IRm×n and let orthogonal
complements be defined using the Euclidean inner product. Then,

a) row(A) = N(A)⊥

b) col(A) = N(AT )⊥

From this arises the Fredholm Alternative 1 on IRn:

Theorem 12 Let A ∈ IRn×n, b ∈ IRn. Then

Ax = b has a solution x ⇔ < v, b >= 0 , ∀v ∈ N(AT )

A further large result is that W and W⊥ can be used to “decompose” a finite dimen-
sional space into two parts. To make this precise we first make the following defini-
tions:

Definition 21 Let X,Y ⊂ V where V is a vector space. Then, the set X+Y is defined
as all possible sums of elements in X and Y :

X + Y = {x + y : x ∈ X, y ∈ Y }

Definition 22 Let V be a vector space and suppose

i) X,Y are subspaces of V .

ii) X ∩ Y = {0}

iii) V = X + Y

then X + Y is called a direct sum of X and Y and we write

V = X ⊕ Y

Now we state the decomposition Theorem:

1technically this is only part of the “alternative”
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Theorem 13 Let W be a subspace of a finite dimensional inner product space V .
Then,

V = W ⊕ W⊥

Moreover, for every v ∈ V there exist unique w ∈ W and w⊥ ∈ W⊥ such that

v = w + w⊥

Here the unique w ∈ W is called the projection of v onto W and is denoted:

w = projW v

When applied to the fundamental matrix subspaces, this Theorem implies for any ma-
trix A ∈ IRm×n

IRn = row(A) ⊕ N(A)

IRm = col(A) ⊕ N(AT )
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9 Appendix on Symbol Notations

= equals

≡ is defined as

⇒ implies

⇔ is equivalent to

∃ there exists

∀ for all

∈ is an element of

∪ union

∩ intersect

⊂ subset or proper subset

⊆ subset

+ vector addition

⊕ vector addition or direct sum

¯ scalar multiplication

· dot product or scalar multiplication

‖ u ‖ norm of u

Σ sum

Σn
i=0ui u1 + u2 + . . . un

d(u, v) distance between u and v
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