Math 333 Linear Algebra Supplementary Lecture Notes

Mark Pernarowski

November 11, 2004

Contents

1	Vector Spaces	2
2	Basic Definitions:	4
3	Basic Theorems for spanning, dependence and bases:	6
4	Matrices and their Subspaces:	7
5	Linear Transformations on ${\rm I\!R}^n$	10
6	Inner Products	12
7	Norms induced by Inner products	14
8	Orthogonality	15
9	Appendix on Symbol Notations	18

1 Vector Spaces

Definition 1 Let V be a nonempty set on which the operations of addition + and scalar multiplication have been defined:

- (i) $\mathbf{u} + \mathbf{v}$ is defined $\forall \mathbf{u}, \mathbf{v} \in V$
- (ii) $c\mathbf{u}$ is defined $\forall \mathbf{u} \in V, \forall c \in \mathbb{R}$.

The set V is called a <u>vector space</u> if additionally, $\forall \mathbf{u}, \mathbf{v}, \mathbf{w} \in V$ and $\forall b, c \in \mathbb{R}$ the following axioms hold:

(A1)	$\mathbf{u} + \mathbf{v} \in V$	V closed under addition
(A2)	$\mathbf{u} + \mathbf{v} = \mathbf{v} + \mathbf{u}$	addition is commutative
(A3)	$\mathbf{u} + (\mathbf{v} + \mathbf{w}) = (\mathbf{u} + \mathbf{v}) + \mathbf{w}$	addition is associative
(A4)	$\exists 0 \in V such \ that \ \mathbf{u} + 0 = \mathbf{u}$	existence of a zero vector
(A5)	$\exists -\mathbf{u} \in V \ such \ that \ \mathbf{u} + (-\mathbf{u}) = 0$	existence of a negative element
(A6)	$c\mathbf{u} \in V$	closed under scalar multiplication
(A7)	$c(\mathbf{u} + \mathbf{v}) = c\mathbf{u} + c\mathbf{v}$	distributive property I
(A8)	$(b+c)\mathbf{u} = b\mathbf{u} + c\mathbf{u}$	distributive property II
(A9)	$c(\beta \mathbf{u}) = (c\beta)\mathbf{u}$	commutativity of scalar multiplication
(A10)	$1\mathbf{u} = \mathbf{u}$	scalar multiplication identity element

Sometimes the symbols \oplus and \odot will be used to denote vector addition and scalar multiplication, respectively.

Example 1: Let

$$V = {\mathbf{u} : \mathbf{u} = (u_1, u_2) \in \mathbb{R}^2}$$

and

$$\mathbf{u} \oplus \mathbf{v} \equiv (u_1 + v_1 + 1, u_2 + v_2 + 1)$$

 $c \odot \mathbf{u} \equiv c\mathbf{u} = (cu_1, cu_2)$

It is easy to show axioms (A1)-(A3) are satisfied. For instance

$$\mathbf{u} + (\mathbf{v} + \mathbf{w}) = (\mathbf{u} + \mathbf{v}) + \mathbf{w} = (u_1 + v_1 + w_1 + 2, u_2 + v_2 + w_2 + 2)$$

Also, (A6) and (A8)-(A10) are simple to verify. (A7) is not satisfied since

$$c(\mathbf{u} + \mathbf{v}) = (cu_1 + cv_1 + c, cu_2 + cv_2 + c)$$

 $c\mathbf{u} + c\mathbf{v} = (cu_1 + cv_1 + 1, cu_2 + cv_2 + 1)$

implies $c(\mathbf{u}+\mathbf{v}) \neq c\mathbf{u}+c\mathbf{v}$ for all c. Moreover, (A4) is not satisfied and therefore (A5) is not either. V is not a vector space.

Some Common Vector spaces:

 ${\rm I\!R}^n$ the set of all ordered n-tuples of real numbers

 $M_{mn} = \mathbb{R}^{m \times n}$ the set of all real m by n matrices P_n the set of all n-th degree polynomials $C(\mathbb{R})$ the set of all continuous functions on \mathbb{R}

 $C^{n}(\mathbb{R})$ the set of all functions on \mathbb{R} with n continuous derivatives

 $C^{\infty}(\mathbb{R})$ the set of all functions on \mathbb{R} with continuous derivatives of all orders

 $F(\mathbb{R})$ the set of all function defined on \mathbb{R}

Note that the function spaces are subsets:

$$P_n \subset C(\mathbb{R}) \subset C^1(\mathbb{R}) \subset C^2(\mathbb{R}) \subset \cdots \subset C^{\infty}(\mathbb{R}) \subset F(\mathbb{R})$$

2 Basic Definitions:

In all of the following V is a vector space:

Definition 2 W is a subspace of V if

- a) $W \subset V$ (subset)
- b) $\mathbf{u}, \mathbf{v} \in W \Rightarrow \mathbf{u} + \mathbf{v} \in W$ (closure under addition)
- c) $\mathbf{u} \in W, c \in \mathbb{R} \Rightarrow c\mathbf{u} \in W$ (closure under scalar addition)

This theorem implies W is also a vector space (see text).

Definition 3 $\mathbf{w} \in V$ is a <u>linear combination</u> of $\mathbf{v}_1, \dots \mathbf{v}_n \in V$ if $\exists c_k \in \mathbb{R}$ such that

$$\mathbf{w} = c_1 \mathbf{v}_1 + c_2 \mathbf{v}_2 + \cdots + c_n \mathbf{v}_n$$

Definition 4 Let $S = \{\mathbf{v}_1, \mathbf{v}_2, \dots \mathbf{v}_n\} \subset V$.

$$span(S) \equiv \left\{ \mathbf{w} \in V : \mathbf{w} = \sum_{k=1}^{n} c_k \mathbf{v}_k \quad for \ some \ c_k \in \mathbb{R} \right\}$$

In words, W = span(S) is the set of all linear combinations of the vectors $\mathbf{v}_1, \mathbf{v}_2, \dots \mathbf{v}_n$. Note that W is a subspace of V.

Definition 5 A set $S = \{\mathbf{v}_1, \mathbf{v}_2, \dots \mathbf{v}_n\} \subset V$ is linearly independent if

$$c_1\mathbf{v}_1 + c_2\mathbf{v}_2 + \cdots + c_n\mathbf{v}_n = 0 \quad \Rightarrow \quad c_k = 0 \quad , \quad \forall k = 1, \dots n.$$

If S is not linearly independent S is said to be linearly dependent.

If S is (linearly) dependent then at least one vector $\mathbf{v} \in S$ is a linear combination of the remaining vectors.

Definition 6 A set $E = \{\mathbf{e}_1, \mathbf{e}_2, \dots \mathbf{e}_n\} \subset V$ is <u>basis</u> for V if

- a) E is linearly independent
- b) V = span(E)

By a theorem, if $E = \{e_1, e_2, \dots e_n\}$ is a basis for V then for every $\mathbf{v} \in V$ there are unique scalars $c_1, \dots c_n$ such that

$$\mathbf{v} = c_1 \mathbf{e}_1 + \cdots + c_n \mathbf{e}_n$$

Moreover, if

$$\mathbf{w} = b_1 \mathbf{e}_1 + \cdots + b_n \mathbf{e}_n$$

then

$$\mathbf{v} \neq \mathbf{w} \Leftrightarrow (c_1, \dots, c_n) \neq (b_1, \dots, b_n)$$

This permitts the following definition.

Definition 7 The <u>coordinate</u> $(\mathbf{v})_E$ of $\mathbf{v} \in V$ relative to the basis $E = \{\mathbf{e}_1, \mathbf{e}_2, \dots \mathbf{e}_n\}$ is that unique $\mathbf{c} = (c_1, \dots c_n) \in \mathbb{R}^n$ such that $\mathbf{v} = c_1\mathbf{e}_1 + \dots c_n\mathbf{e}_n$, i.e.,

$$\mathbf{c} = (\mathbf{v})_E \quad \Rightarrow \quad \mathbf{v} = c_1 \mathbf{e}_1 + \cdots + c_n \mathbf{e}_n$$

Definition 8 If $E = \{e_1, e_2, \dots e_n\}$ is a basis for V and $1 \le n < \infty$ then V is said to be finite dimensional with <u>dimension</u>

$$dim(V) = n$$

If
$$V = \{0\}$$
 then $dim(V) = 0$.

3 Basic Theorems for spanning, dependence and bases:

Theorem 1 Let V be a vector space with $dim(V) = n < \infty$, having basis

$$E = \{\mathbf{e}_1, \dots \mathbf{e}_n\},\$$

W be any subspace of V and let

$$S = {\mathbf{v}_1, \dots \mathbf{v}_k} \subset V$$

be a finite collection of k vectors. Further define the set of coordinate vectors:

$$S_E = \{(\mathbf{v}_1)_E, \dots (\mathbf{v}_k)_E\} \subset \mathbb{R}^n$$
.

Then,

S dependent	\Leftrightarrow	$\exists \mathbf{v} \in S \text{ such that } \mathbf{v} \in span(S - \{\mathbf{v}\}).$
k > n	\Rightarrow	S dependent
k < n	\Rightarrow	S does not span V
$\mathbf{v} \notin span(S)$ and S independent	\Rightarrow	$S^+ \equiv S \cup \{ {f v} \}$ independent
$\mathbf{v} \in span(S^{-}) \equiv span(S - \{\mathbf{v}\})$	\Rightarrow	$span(S) = span(S^{-})$
V = span(S)	\Rightarrow	$\exists S^- \subset S$, S^- a basis for V
V = span(S) and $k = n$	\Rightarrow	S a basis for V
S independent and $k=n$	\Rightarrow	S a basis for V
$dim(W) \le dim(V)$		
dim(W) = dim(V)	\Rightarrow	V = W
S independent in V	\Leftrightarrow	S_E independent in ${ m I\!R}^n$
V = span(S) and $k = n$	\Leftrightarrow	$\mathbb{R}^n = span(S_E)$

4 Matrices and their Subspaces:

In the following $A, B \in \mathbb{R}^{m \times n}$ are matrices, $\mathbf{x} \in \mathbb{R}^n$ and $\mathbf{y}, \mathbf{b} \in \mathbb{R}^m$. We shall define \mathbf{r}_i to be the row vectors of A and \mathbf{c}_j to be the column vectors so that

$$A = [a_{ij}] = \begin{bmatrix} \cdots & \mathbf{r}_1 & \cdots & \vdots \\ \cdots & \mathbf{r}_2 & \cdots & \vdots \\ \vdots & \vdots & \vdots & \vdots \\ \mathbf{c}_1 & \mathbf{c}_2 & \vdots & \mathbf{c}_n \\ \vdots & \vdots & \vdots & \vdots \end{bmatrix}$$

For any matrix, its transpose A^T is defined by

$$A^T = [a_{ji}]$$

Important properties of the transpose are

$$(A+B)^T = A^T + B^T$$
$$(AB)^T = B^T A^T$$

For square matrices $A, B \in \mathbb{R}^{n \times n}$ having inverses A^{-1} and B^{-1} , respectively,

$$(AB)^{-1} = B^{-1}A - 1$$

 $(A^{-1})^T = (A^T)^{-1}$

A simple proof of the latter can be seen from the calculations:

$$\mathbf{x} = A^{-1}\mathbf{b}$$

$$\mathbf{x}^{T} = \mathbf{b}^{T}(A^{-1})^{T}$$

$$\mathbf{x}^{T} = \mathbf{x}^{T}A^{T}(A^{-1})^{T} , \forall \mathbf{x}$$

$$I = A^{T}(A^{-1})^{T} .$$

Also, for any matrix one can define the four fundamental subspaces:

Definition 9 The four fundamental subspaces of A are

$$row(A) \equiv span\{\mathbf{r}_1, \mathbf{r}_2, \dots \mathbf{r}_m\} \subset \mathbb{R}^n$$

$$col(A) \equiv span\{\mathbf{c}_1, \mathbf{c}_2, \dots \mathbf{c}_m\} \subset \mathbb{R}^m$$

$$N(A) \equiv \{\mathbf{x} : A\mathbf{x} = 0\} \subset \mathbb{R}^n$$

$$N(A^T) \equiv \{\mathbf{y} : A^T\mathbf{y} = 0\} \subset \mathbb{R}^m$$

Note that $row(A^T)$ and $col(A^T)$ have not been included since for every $A \in \mathbb{R}^{m \times n}$,

$$col(A) = row(A^T)$$
.

Bases for row(A), col(A) and N(A) can all be found by row reducing A to its upper echelon form U.

Definition 10 Two matrices $A, B \in \mathbb{R}^{m \times n}$ are said to be row equivalent if a finite number of row operations (addition, multiplication and permutation) convert A to B. When such matrices are row equivalent we write

$$A \sim B$$
.

Theorem 2

$$A \sim B \Rightarrow row(A) = row(B)$$

 $A \sim B \Rightarrow N(A) = N(B)$

Row operations do not preserve the column space. For instance

$$A = \left[\begin{array}{cc} 1 & 0 \\ 0 & 0 \end{array} \right] \sim B = \left[\begin{array}{cc} 0 & 0 \\ 1 & 0 \end{array} \right]$$

by a simple permutation of rows but clearly $col(A) \neq col(B)$.

Definition 11 Let $A \in \mathbb{R}^{m \times n}$ and $\mathbf{b} \in \mathbb{R}^m$. A system $A\mathbf{x} = \mathbf{b}$ is <u>consistent</u> if it has a solution.

Theorem 3 (General Solutions) Let $A \in \mathbb{R}^{m \times n}$ and $\mathbf{b} \in \mathbb{R}^m$,

$$A\mathbf{x}_0 = \mathbf{b}$$
.

Then,

$$A\mathbf{x} = \mathbf{b} \quad \Rightarrow \quad \exists \mathbf{v} \in N(A) \text{ such that } \mathbf{x} = \mathbf{x}_0 + \mathbf{v} .$$

Here \mathbf{x}_0 is called a <u>particular solution</u> and \mathbf{v} is the <u>homogeneous solution</u>. Written another way, if \mathbf{x}_0 is "a" solution and \mathbf{x} is any other solution then there exists constants $c_1, \ldots c_k$ such that

$$\mathbf{x} = \mathbf{x}_0 c_1 \mathbf{v}_1 + \cdots c_k \mathbf{v}_k$$

where

$$E = \{\mathbf{v}_1, \dots \mathbf{v}_k\}$$

is a basis for N(A). Also, conversely, if $A\mathbf{x}_0 = \mathbf{b}$, $\mathbf{v} \in N(A)$ and $\mathbf{x} = \mathbf{x}_0 + \mathbf{v}$ then $A\mathbf{x} = \mathbf{b}$.

Next we describe one method for finding bases for row(A), N(A) and col(A). Suppose that after row reduction one reduces A to U having the form:

$$A \sim U = \begin{bmatrix} 1 & * & * & * & * & * & * \\ 0 & 0 & 1 & * & * & * \\ 0 & 0 & 0 & 1 & * & * \\ 0 & 0 & 0 & 0 & 0 & 1 \\ 0 & 0 & 0 & 0 & 0 & 0 \end{bmatrix} = \begin{bmatrix} \dots & \mathbf{u}_1 & \dots \\ \dots & \mathbf{u}_2 & \dots \\ \dots & \mathbf{u}_3 & \dots \\ \dots & \mathbf{u}_4 & \dots \\ \dots & 0 & \dots \end{bmatrix}$$

In this example, there are 4 pivots (leading ones in rows). A basis E(row(A)) for row(A) is the four non-zero row vectors of U, i.e.,

$$E(row(A)) = {\mathbf{u}_1, \mathbf{u}_2, \mathbf{u}_3, \mathbf{u}_4}$$

from which we know dim(row(A))=4. Also, the 4 pivots in U occur in columns 1,3,4 and 6. A basis E(col(A)) for col(A) is the $1^{rst}, 3^{rd}, 4^{rth}$ and 6^{th} columns of A, i.e.,

$$E(col(A)) = {\mathbf{c}_1, \mathbf{c}_3, \mathbf{c}_4, \mathbf{c}_6}$$

The columns of U which contain no pivots correspond to *free variables*. There are 2 free variables x_2 and x_5 since columns 2 and 5 contain no pivots. This means that by backsolving $U\mathbf{x} = 0$, the remaining variables can be written in terms of x_2 and x_5 . This procedure implies that any solution of $U\mathbf{x} = 0$ can be written in the form

$$\mathbf{x} = x_1 \mathbf{v}_1 + x_2 \mathbf{v}_2$$

where the vectors $\mathbf{v}_1, \mathbf{v}_2$ form a basis E(N(A)) for N(A), i.e.,

$$E(N(A)) = {\mathbf{v}_1, \mathbf{v}_2}$$

A basis for $N(A^T)$ is found by row reducing A^T and applying a similar procedure.

Note that an alternate method for finding a basis for col(A) uses the fact that $col(A) = row(A^T)$. Thus, by finding a basis for $row(A^T)$ thru row reduction of A^T , one is actually finding a basis for col(A).

Knowing these methods for finding bases we have the following definitions and Theorem.

Definition 12

$$rank(A) \equiv dim(row(A))$$

 $nullity(A) \equiv dim(N(A))$

Theorem 4 Let r = rank(A) and $A \in \mathbb{R}^{m \times n}$.

$$dim(row(A)) = r$$

$$dim(col(A)) = r$$

$$dim(N(A)) = n - r$$

$$dim(N(A^{T})) = m - r$$

5 Linear Transformations on \mathbb{R}^n

Definition 13 A <u>linear transformation</u> T on \mathbb{R}^n is a function $T: \mathbb{R}^n \to \mathbb{R}^m$ such that

$$T(\mathbf{x}) = A\mathbf{x}$$

for some matrix $A \in \mathbb{R}^{m \times n}$. The matrix A is called the <u>standard matrix</u> associated with T which we notationally denote

$$[T] = A$$

so that $T(\mathbf{x}) = [T]\mathbf{x}$.

This definition implies certain algebraic properties about linear transformations on \mathbb{R}^n :

Theorem 5 $T: \mathbb{R}^n \to \mathbb{R}^m$ is a linear transformation if and only if

(a)
$$T(\mathbf{x} + \mathbf{y}) = T(\mathbf{x}) + T(\mathbf{y})$$
, $\forall \mathbf{x}, \mathbf{y} \in \mathbb{R}^n$ (1)

(b)
$$T(k\mathbf{x}) = kT(\mathbf{x})$$
, $\forall \mathbf{x} \in \mathbb{R}^n, \forall k \in \mathbb{R}$ (2)

This equivalence mean that properties a)-b) of the Theorem could be used to define linear transformations on \mathbb{R}^n . Later, this will be the definition for linear transformations on abstract vector spaces V.

Definition 14 Let f be a function from X into Y, i.e., $f: X \to Y$. The <u>domain</u> D(f) of f is defined by:

$$D(f) = \{ \mathbf{x} \in X : f(\mathbf{x}) \text{ is defined} \}$$

The range R(f) of f is defined by:

$$R(f) = \{ \mathbf{y} \in Y : \mathbf{y} = f(\mathbf{x}) \text{ for some } \mathbf{x} \in X \}$$

In this setting Y is called the <u>codomain</u> of f. Also, if $\mathbf{y} = f(\mathbf{x})$ for some $\mathbf{x} \in D(f)$, then y is the image of x under f.

Note that if T is a linear transformation on \mathbb{R}^n , $D(T) = \mathbb{R}^n$. In general, however, $R(T) \subset \mathbb{R}^m$.

Definition 15 The function $f: X \to Y$ is 1 - 1 on D(f) if

$$\forall \mathbf{x}_1, \mathbf{x}_2 \in D(f), \quad f(\mathbf{x}_1) = f(\mathbf{x}_2) \quad \Rightarrow \mathbf{x}_1 = \mathbf{x}_2$$

Definition 16 If $f: X \to Y$ is 1-1 on D(f) then f has an <u>inverse</u> $f^{-1}: Y \to X$ where $D(f^{-1}) = R(f)$ and

$$f^{-1}(f(\mathbf{x})) = f(f^{-1}(\mathbf{x})) = \mathbf{x}, \quad \forall \mathbf{x} \in D(f)$$

For linear transformations T on \mathbb{R}^n that are 1-1, the inverse of T is denoted T^{-1} and

$$[T^{-1}] = [T]^{-1}$$
.

Theorem 6 Let $T: \mathbb{R}^n \to \mathbb{R}^n$ and $T(\mathbf{x}) = [T]\mathbf{x} = A\mathbf{x}$. Then, the following are equivalent:

- a) T is 1-1
- b) A is invertible
- c) $N(A) = \{0\}$
- d) $A\mathbf{x} = \mathbf{b}$ is consistent $\forall \mathbf{b} \in \mathbb{R}^n$.
- $e) det(A) \neq 0$
- f) $R(T) = col(A) = row(A) = \mathbb{R}^n$
- $g) \ rank(A) = n$
- h) nullity(A) = 0

If the standard basis vectors for \mathbb{R}^n are $\mathbf{e}_1, \dots \mathbf{e}_n$ then we have the following useful Theorem for determining the standard matrix [T] of a linear transformation T:

Theorem 7 Let $T: \mathbb{R}^n \to \mathbb{R}^m$ be a linear transformation. Then,

$$[T] = \begin{bmatrix} \vdots & \vdots & \vdots & \vdots \\ T(\mathbf{e}_1) & T(\mathbf{e}_2) & \vdots & T(\mathbf{e}_n) \\ \vdots & \vdots & \vdots & \vdots \end{bmatrix}$$

6 Inner Products

Definition 17 Let V be a vector space. By an <u>inner product</u> on V we mean a real valued function $\langle u, v \rangle$ on $V \times V$ which satisfies the following axioms:

$$a$$
) $< \mathbf{u}, \mathbf{v} > = < \mathbf{v}, \mathbf{u} >$, $\forall \mathbf{u}, \mathbf{v} \in V$

b)
$$\langle \mathbf{u} + \mathbf{w}, \mathbf{v} \rangle = \langle \mathbf{u}, \mathbf{v} \rangle + \langle \mathbf{w}, \mathbf{v} \rangle$$
, $\forall \mathbf{u}, \mathbf{v}, \mathbf{w} \in V$

c)
$$\langle k\mathbf{u}, \mathbf{v} \rangle = k \langle \mathbf{u}, \mathbf{v} \rangle$$
, $\forall \mathbf{u}, \mathbf{v} \in V, k \in \mathbb{R}$

$$d$$
) $< \mathbf{u}, \mathbf{u} > \ge 0$, $\forall \mathbf{u} \in V$

$$e$$
) $< \mathbf{u}, \mathbf{u} > = 0 \Leftrightarrow u = 0$

If V has an inner product defined on it then V is said to be an inner product space.

In the definition above since $\langle \mathbf{u}, \mathbf{v} \rangle$ and k are real, V is sometimes said to be an inner product space over the real field. In this case, if $f(\mathbf{u}, \mathbf{v}) \equiv \langle \mathbf{u}, \mathbf{v} \rangle$ then $f: V \times V \to \mathbb{R}$. However, if $\langle \mathbf{u}, \mathbf{v} \rangle$ and k are complex numbers, V is an inner product space over the complex field where a) and c) are replaced by

a')
$$\langle \mathbf{u}, \mathbf{v} \rangle = \overline{\langle \mathbf{v}, \mathbf{u} \rangle}$$
, $\forall \mathbf{u}, \mathbf{v} \in V$

c')
$$\langle k\mathbf{u}, \mathbf{v} \rangle = \bar{k} \langle \mathbf{u}, \mathbf{v} \rangle$$
 , $\forall \mathbf{u}, \mathbf{v} \in V, k \in \mathbb{C}$

and () denotes complex conjugate.

Below we give examples of several inner product spaces. In these examples, note that V may have many different inner products.

Example 2 Scalar multiplication on $V = \mathbb{R}$:

$$< u, v> = uv$$

Example 3 Euclidean inner product on $V = \mathbb{R}^n$:

$$\langle u, v \rangle = u_1 v_1 + \dots u_n v_n = \sum_{i=1}^n u_i v_i$$

This is also known as the dot product and notationally written

$$<\mathbf{u},\mathbf{v}>=\mathbf{u}\cdot\mathbf{v}$$

Considering $\mathbf{u}, \mathbf{v} \in \mathbb{R}^{n \times 1}$ as matrices, this can equivalently be written

$$\langle \mathbf{u}, \mathbf{v} \rangle = \mathbf{u}^T \mathbf{v}$$

Example 4 Weighted Euclidean inner product on $V = \mathbb{R}^n$. Let $\omega_i > 0, \forall i$.

$$<\mathbf{u},\mathbf{v}> = \omega_1 u_1 v_1 + \dots \omega_n u_n v_n = \sum_{i=1}^n \omega_i u_i v_i$$

Example 5 Matrix induced inner product on $V = \mathbb{R}^n$: Let $A \in \mathbb{R}^{n \times n}$ have an inverse.

$$\langle \mathbf{u}, \mathbf{v} \rangle = (A\mathbf{u}) \cdot (A\mathbf{v}) = (A\mathbf{u})^T (A\mathbf{v})$$

Example 6 An inner product space on $V = M_{nn}$, $n \ge 1$.

$$<\mathbf{u},\mathbf{v}>=Tr(\mathbf{u}^T\mathbf{v})$$

where if $A \in \mathbb{R}^{n \times n} = [a_{ij}]$, the trace Tr(A) is the sum of its diagonal elements, i.e.,

$$Tr(A) = a_{11} + \dots a_{nn} = \sum_{i=1}^{n} a_{ii}$$

Example 7 Other inner products on $V = M_{nn}$, $n \ge 1$. For every element $\mathbf{v} \in V$ one can define a unique element $\hat{\mathbf{v}} \in \mathbb{R}^{n^2}$ as follows:

$$\mathbf{v} = [v_{ij}] \quad \Rightarrow \quad \hat{\mathbf{v}} = \begin{pmatrix} v_{11} \\ \vdots \\ v_{1n} \\ v_{21} \\ \vdots \\ v_{nn} \end{pmatrix}$$

Then if we let $\langle \hat{\mathbf{u}}, \hat{\mathbf{v}} \rangle_{\mathbb{R}^n}$ be any inner product on \mathbb{R}^n we define the inner product on V as follows:

$$<\mathbf{u},\mathbf{v}>=<\hat{\mathbf{u}},\hat{\mathbf{v}}>_{\mathrm{I\!R}^n}$$

If one chooses $<\hat{\mathbf{u}}, \hat{\mathbf{v}}>_{\mathbb{R}^n}$ to be the Euclidean inner product on \mathbb{R}^n , the definition above yields the same inner product described in Example 6, i.e.,

$$<\mathbf{u},\mathbf{v}>=<\hat{\mathbf{u}},\hat{\mathbf{v}}>_{\mathbb{R}^n}=Tr(\mathbf{u}^T\mathbf{v})$$

Example 8 L^2 inner product on the function space V = C[a, b]:

$$<\mathbf{u},\mathbf{v}>=\int_{a}^{b}u(x)v(x)dx$$

Example 9 Weighted L^2 inner product on the function space V=C[a,b]. Let $\omega(x)>0, \omega\in C[a,b]$, then

$$<\mathbf{u},\mathbf{v}> = \int_{a}^{b} \omega(x)u(x)v(x)dx$$

We now make an observation that if $V = \mathbb{R}^n$ then for each fixed \mathbf{v}

$$T_{\mathbf{v}}(\mathbf{u}) \equiv <\mathbf{u}, \mathbf{v}>$$

is a linear transformation from \mathbb{R}^n into \mathbb{R} , i.e., $T_{\mathbf{v}}: \mathbb{R}^n \to \mathbb{R}$. This fact follows from b) and c) in the definition of the inner product.

7 Norms induced by Inner products

A norm on any vector space is defined by:

Definition 18 We say ||u|| is a norm on a vector space V if $\forall u, v \in V$ and $\alpha \in \mathbb{R}$,

- *a*) $\parallel \alpha u \parallel = |\alpha| \parallel u \parallel$
- *b*) $||u|| \ge 0$
- $c) \parallel u \parallel = 0 \Leftrightarrow u = 0$
- d) $||u+v|| \le ||u|| + ||v||$

If V is an inner product space then

$$\parallel u \parallel \equiv \sqrt{\langle u, u \rangle}$$

is the inner product induced norm for V. That this norm satisfies a)-c) in the above definition is easy to see. Showing the triangle inequality d) is satisfied requires the Cauchy-Schwartz inequality, however.

Theorem 8 Let V be an inner product space and assume $\parallel u \parallel$ is the inner product induced norm. Then

$$|< u, v>| \le ||u|| ||v||$$
 , $\forall u, v \in V$

Proof: If u=0 equality is attained so the statement is true. Thus, assume $u\neq 0$ and define $P(t)=\parallel tu+v\parallel^2$. By properties of inner products we have

$$P(t) = at^2 + 2bt + c = ||u||^2 t^2 + 2 < u, v > t + ||v||^2$$

Since $P(t) \ge 0$ and is quadratic in t it has either one root or no roots. In either case

$$b^2 - ac < 0$$

Written another way,

$$< u, v>^2 \leq \parallel u \parallel^2 \parallel v \parallel^2$$

from which the result follows.

With this we now state

Theorem 9 Let V be an inner product space and let

$$\parallel u \parallel \equiv \sqrt{\langle u, u \rangle}$$

Then ||u|| defines a norm on V.

Proof: We only verify d) since a)-c) are trivial. Let $u, v \in V$. Then

from which the result follows.

Example 10 Euclidean norm on $V = \mathbb{R}^n$.

$$||u|| = \sqrt{u_1^2 + u_2^2 + \dots + u_n^2}$$

Example 11 L^2 norm on V = C[a, b].

$$||u|| = \sqrt{\int_a^b u(x)^2 dx}$$

Example 12 Norm on $V = M_{nn}$.

$$\parallel u \parallel = \sqrt{Tr(u^Tu)}$$

Given every inner product space has a norm, every inner product space is also a metric space with metric (or "distance")

$$d(u,v) = \parallel u - v \parallel$$

8 Orthogonality

Definition 19 Let V be an inner product space. $u, v \in V$ are said to be orthoronal if

$$< u, v > = 0$$

For any subspace W of V, one can define the space of vectors which are orthogonal to every element of W:

Definition 20 Let V be an inner product space and W be a subspace of V. Then, the orthogonal complement W^{\perp} of W is

$$W^{\perp} = \{ v \in V : \langle v, w \rangle = 0 , \forall w \in W \}$$

The following Theorem (withour proof) summarizes several important facts about orthogonal complements:

Theorem 10 Let V be a finite dimensional inner product space and X, Y, W be subspaces of V. Then

- a) $\{0\}^{\perp} = V$
- b) W^{\perp} is a subspace of V.
- c) $W \cap W^{\perp} = \{0\}$
- d) $(W^{\perp})^{\perp} = W$.
- e) $X \subset Y \Rightarrow Y^{\perp} \subset X^{\perp}$

A very important Theorem in linear algebra relates to the four fundamental matrix subspaces.

Theorem 11 (Orthogonality of Matrix Subspaces) Let $A \in \mathbb{R}^{m \times n}$ and let orthogonal complements be defined using the Euclidean inner product. Then,

- a) $row(A) = N(A)^{\perp}$
- b) $col(A) = N(A^T)^{\perp}$

From this arises the <u>Fredholm Alternative</u> 1 on \mathbb{R}^{n} :

Theorem 12 Let $A \in \mathbb{R}^{n \times n}$, $b \in \mathbb{R}^n$. Then

$$Ax = b \text{ has a solution } x \qquad \Leftrightarrow \qquad \langle v, b \rangle = 0 , \forall v \in N(A^T)$$

A further large result is that W and W^{\perp} can be used to "decompose" a finite dimensional space into two parts. To make this precise we first make the following definitions:

Definition 21 Let $X, Y \subset V$ where V is a vector space. Then, the set X + Y is defined as all possible sums of elements in X and Y:

$$X + Y = \{x + y : x \in X, y \in Y\}$$

Definition 22 Let V be a vector space and suppose

- i) X, Y are subspaces of V.
- *ii*) $X \cap Y = \{0\}$
- iii) V = X + Y

then X + Y is called a direct sum of X and Y and we write

$$V=X\oplus Y$$

Now we state the decomposition Theorem:

¹technically this is only part of the "alternative"

Theorem 13 Let W be a subspace of a finite dimensional inner product space V. Then,

$$V = W \oplus W^{\perp}$$

Moreover, for every $v \in V$ there exist unique $w \in W$ and $w^{\perp} \in W^{\perp}$ such that

$$v = w + w^{\perp}$$

Here the unique $w \in W$ is called the projection of v onto W and is denoted:

$$w = proj_W v$$

When applied to the fundamental matrix subspaces, this Theorem implies for any matrix $A \in {\rm I\!R}^{m \times n}$

$${\rm I\!R}^n = row(A) \oplus N(A)$$

$$\mathbb{R}^m = col(A) \oplus N(A^T)$$

9 Appendix on Symbol Notations

- = equals
- \equiv is defined as
- \Rightarrow implies
- \Leftrightarrow is equivalent to
- ∃ there exists
- \forall for all
- \in is an element of
- ∪ union
- \cap intersect
- \subseteq subset
- + vector addition
- \oplus vector addition or direct sum
- o scalar multiplication
- · dot product or scalar multiplication
- $\parallel u \parallel$ norm of u
- Σ sum
- $\sum_{i=0}^{n} u_i \quad u_1 + u_2 + \dots u_n$
- d(u, v) distance between u and v