Math 333 (2004) Assignment 2

(Due: September 23, 2004 in class)

- 1. (10) For each of the linear transformations T defined below, determine if T is 1-1 and if it is find $[T^{-1}]$.

 - a) $T(\mathbf{x}) = (x_1 + 2x_2, -x_1 + x_2)$, $\mathbf{x} = (x_1, x_2)$ b) $T(\mathbf{x}) = (x_1 2x_2 + 2x_3, 2x_1 + x_2 + x_3, x_1 + x_2)$, $\mathbf{x} = (x_1, x_2, x_3)$
- 2. (10) For each of the linear transformations T defined below, describe the range R(T) and state whether T is 1-1.
 - a) $T: \mathbb{R}^3 \to \mathbb{R}^3$ is the projection onto u = (1, 2, 3). b) $T: \mathbb{R}^3 \to \mathbb{R}$ where $T(\mathbf{x}) = x_1 + x_2 x_3$.
- **3.** (15) For each of the linear transformations T defined below, use properties a) and b) in Theorem 4.3.2 of the textbook to determine if T is a linear transformation. If T is not linear, state which property(ies) is(are) violated.

 - $T(\mathbf{x}) = (x_1 + 1, x_2) , \mathbf{x} = (x_1, x_2)$ $T(\mathbf{x}) = (x_1, x_2 + x_3) , \mathbf{x} = (x_1, x_2, x_3)$ $T(\mathbf{x}) = (1, 1) , \mathbf{x} = (x_1, x_2)$
- 4. (15) State whether each of the following statements are true or false and give a simple explanation or counterexample.
 - a) The transformation $T: \mathbb{R}^2 \to \mathbb{R}^2$ which rotates vectors and then projects them onto u = (1, 2) is invertible.
 - b) If $T: \mathbb{R}^n \to \mathbb{R}^m$ is a 1-1 linear transformation then m = n.
 - c) If $T: \mathbb{R}^n \to \mathbb{R}^m$ and $T(\mathbf{0}) = \mathbf{0}$ then T is linear.
- 5. (10) For each of the linear transformations T defined below, use Theorem 4.3.3 of the textbook to determine [T].
 - a) $T: \mathbb{R}^2 \to \mathbb{R}^2$ is the linear transformation which rotates vectors <u>clockwise</u> by 30° and then projects onto the x_2 axis.
 - b) $T: \mathbb{R}^2 \to \mathbb{R}^2$ is the linear transformation which projects vectors onto u = (1, 2) and then dilates by 2.
- **6.** (15) Let $T: \mathbb{R}^3 \to \mathbb{R}^3$ be a linear operator.
 - a) If $T(2\mathbf{e}_1) = (2, 2, 4)$ and $T(\mathbf{e}_1 \mathbf{e}_2) = (1, -1, 0)$ what is $T(4\mathbf{e}_1 5\mathbf{e}_2)$?
 - b) If additionally one knows $T(\mathbf{e}_3) = (1, 3, 4)$ then what is [T]?
 - c) Is T 1-1?