Math 333 (2004) Assignment 3

(Due: October 7, 2004 in class)
Maximum 90points

- 1. (20) State which of the following sets V are vector spaces. If it is not a vector space, state <u>all</u> the axioms in pg 204 of the textbook that are not satisfied.
 - a) Standard addition and scalar multiplication operations on \mathbb{R}^2 with:

$$V = \{ x \in \mathbb{R}^2 : x_1 \ge 0 \}$$

b) Matrix addition and scalar multiplication and

$$V = \left\{ u \in M_{22} : u = \begin{bmatrix} a & 1 \\ 1 & b \end{bmatrix} \text{ for some } a, b \in \mathbb{R} \right\}$$

c) Matrix addition and scalar multiplication and

$$V = \left\{ u \in M_{22} : u = \begin{bmatrix} a & 0 \\ 0 & b \end{bmatrix} \text{ for some } a, b \in \mathbb{R} \right\}$$

d) The set $V = \mathbb{R}^2$ where if $x, y \in V$ and $\alpha \in \mathbb{R}$ addition and scalar multiplication are defined by:

$$\begin{array}{rcl}
x \oplus y & = & (x_1 y_1, x_2 y_2) \\
\alpha \odot x & = & (\alpha x_1, \alpha x_2)
\end{array}$$

2. (35) Use Theorem 5.2.1 of the textbook to determine whether the sets W defined below are subspaces of the indicated vector spaces V. In all, the usual addition and scalar multiplication definitions apply. When W is not a subspace indicate why.

a)
$$W = \left\{ u \in M_{22} : u = \begin{bmatrix} a & b \\ c & d \end{bmatrix} where \ a+b+c+d=0 \right\}$$
 , $V = M_{22}$

b)
$$W = \left\{ u \in M_{22} : u = \begin{bmatrix} a & b \\ c & d \end{bmatrix} where \ det(u) = 0 \right\}$$
 , $V = M_{22}$

c)
$$W = \{u \in \mathbb{R}^3 : u_3 = u_1 + u_2\}$$
, $V = \mathbb{R}^3$

d)
$$W = \{ f \in C(\mathbb{R}) : f(x) \le 0 \}$$
 , $V = C(\mathbb{R})$

e)
$$W = \left\{ f \in C(\mathbb{R}) : \frac{df}{dx} + f = 0 \right\}$$
, $V = C(\mathbb{R})$

f)
$$W = \{ f \in C(\mathbb{R}) : f(0) = 0 \}$$
 , $V = C^1(\mathbb{R})$ (be careful here)

g)
$$W = \{A \in M_{nn} : A^T = -A\}$$
, $V = M_{nn}$

- **3.** (20) For each of the following express w as a linear combination of the vectors v_k indicated. The vector space V which w, v_k are elements of are also indicated.
 - a) $V = \mathbb{R}^3$, w = (7, 8, 9), $v_1 = (2, 1, 4)$, $v_2 = (1, -1, 3)$, $v_3 = (3, 2, 5)$.
 - **b)** $V = P_2$, $w = 5x^2 + 13x + 3$, $v_1 = x^2 + 2x + 3$, $v_2 = -x^2 3x + 1$.
 - c) $V = C(\mathbb{R}), w = \cos(2x), v_1 = \cos^2 x, v_2 = \sin^2 x$. (Think trig)

d)
$$V = M_{22}, w = \begin{bmatrix} -1 & -5 \\ 4 & 1 \end{bmatrix}, v_1 = \begin{bmatrix} 1 & 2 \\ -1 & 0 \end{bmatrix}, v_2 = \begin{bmatrix} 2 & 1 \\ 1 & 1 \end{bmatrix}.$$

- **4.** (15) Indicate whether the following statements are true or false. When false, give a counterexample.
 - a) Let $A\mathbf{x} = \mathbf{b}$ be a consistent system where $A \in \mathbb{R}^{n \times n}$ and $\mathbf{b} \neq \mathbf{0}$. Then,

$$V = \{ x \in \mathbb{R}^n : Ax = b \}$$

is a subspace of \mathbb{R}^n .

- **b)** If $span\{v_1, v_2, \dots v_M\} = span\{u_1, u_2, \dots u_N\}$ then M = N.
- **c)** Let $x,y,z,w\in\mathbb{R}^2$. Suppose that $w\in span\{x,y\}$ and $w\in span\{y,z\}$ then $\mathbb{R}^2=span\{x,y,z\}$.